-
1
-
-
0037699955
-
Angiogenesis in health and disease
-
DOI 10.1038/nm0603-653
-
Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653-660. (Pubitemid 36749213)
-
(2003)
Nature Medicine
, vol.9
, Issue.6
, pp. 653-660
-
-
Carmeliet, P.1
-
2
-
-
80052933197
-
Basic and therapeutic aspects of angiogenesis
-
Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873-887.
-
(2011)
Cell
, vol.146
, pp. 873-887
-
-
Potente, M.1
Gerhardt, H.2
Carmeliet, P.3
-
3
-
-
77957241701
-
Dynamics of endothelial cell behavior in sprouting angiogenesis
-
Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol. 2010;22:617-625.
-
(2010)
Curr Opin Cell Biol.
, vol.22
, pp. 617-625
-
-
Eilken, H.M.1
Adams, R.H.2
-
4
-
-
79956328903
-
Molecular mechanisms and clinical applications of angiogenesis
-
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298-307.
-
(2011)
Nature
, vol.473
, pp. 298-307
-
-
Carmeliet, P.1
Jain, R.K.2
-
5
-
-
84887456534
-
Role of endothelial cell metabolism in vessel sprouting
-
De Bock K, Georgiadou M, Carmeliet P. Role of endothelial cell metabolism in vessel sprouting. Cell Metab. 2013;18:634-647.
-
(2013)
Cell Metab.
, vol.18
, pp. 634-647
-
-
De Bock, K.1
Georgiadou, M.2
Carmeliet, P.3
-
6
-
-
84881119066
-
Role of PFKFB3-driven glycolysis in vessel sprouting
-
De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154:651-663.
-
(2013)
Cell
, vol.154
, pp. 651-663
-
-
De Bock, K.1
Georgiadou, M.2
Schoors, S.3
-
7
-
-
78149450359
-
Antiangiogenic activity of 2-deoxy-D-glucose
-
Merchan JR, Kovács K, Railsback JW, Kurtoglu M, Jing Y, Piña Y, Gao N, Murray TG, Lehrman MA, Lampidis TJ. Antiangiogenic activity of 2-deoxy-D-glucose. PLoS One. 2010;5:e13699.
-
(2010)
PLoS One.
, vol.5
-
-
Merchan, J.R.1
Kovács, K.2
Railsback, J.W.3
Kurtoglu, M.4
Jing, Y.5
Piña, Y.6
Gao, N.7
Murray, T.G.8
Lehrman, M.A.9
Lampidis, T.J.10
-
9
-
-
34247598856
-
Endothelial mitochondria: Contributing to vascular function and disease
-
DOI 10.1161/01.RES.0000261970.18328.1d, PII 0000301220070427000007
-
Davidson SM, Duchen MR. Endothelial mitochondria: contributing to vascular function and disease. Circ Res. 2007;100:1128-1141. (Pubitemid 46684126)
-
(2007)
Circulation Research
, vol.100
, Issue.8
, pp. 1128-1141
-
-
Davidson, S.M.1
Duchen, M.R.2
-
10
-
-
84881027891
-
Balancing glycolytic flux: The role of 6- phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism
-
Ros S, Schulze A. Balancing glycolytic flux: the role of 6- phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab. 2013;1:8.
-
(2013)
Cancer Metab.
, vol.1
, pp. 8
-
-
Ros, S.1
Schulze, A.2
-
11
-
-
23844517036
-
Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer
-
DOI 10.1158/1078-0432.CCR-05-0149
-
Bando H, Atsumi T, Nishio T, Niwa H, Mishima S, Shimizu C, Yoshioka N, Bucala R, Koike T. Phosphorylation of the 6- phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin Cancer Res. 2005;11:5784-5792. (Pubitemid 41170304)
-
(2005)
Clinical Cancer Research
, vol.11
, Issue.16
, pp. 5784-5792
-
-
Bando, H.1
Atsumi, T.2
Nishio, T.3
Niwa, H.4
Mishima, S.5
Shimizu, C.6
Yoshioka, N.7
Bucala, R.8
Koike, T.9
-
12
-
-
38349183620
-
Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth
-
Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J, Lane A, Trent JO, Chesney J. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 2008;7:110-120.
-
(2008)
Mol Cancer Ther.
, vol.7
, pp. 110-120
-
-
Clem, B.1
Telang, S.2
Clem, A.3
Yalcin, A.4
Meier, J.5
Simmons, A.6
Rasku, M.A.7
Arumugam, S.8
Dean, W.L.9
Eaton, J.10
Lane, A.11
Trent, J.O.12
Chesney, J.13
-
13
-
-
84876813443
-
Disruption of inducible 6-phosphofructo-2-kinase impairs the suppressive effect of ppargamma activation on diet-induced intestine inflammatory response
-
Guo X, Li H, Xu H, Halim V, Thomas LN, Woo SL, Huo Y, Chen YE, Sturino JM, Wu C. Disruption of inducible 6-phosphofructo-2-kinase impairs the suppressive effect of ppargamma activation on diet-induced intestine inflammatory response. J Nutr Biochem. 2013;24:770-775.
-
(2013)
J Nutr Biochem.
, vol.24
, pp. 770-775
-
-
Guo, X.1
Li, H.2
Xu, H.3
Halim, V.4
Thomas, L.N.5
Woo, S.L.6
Huo, Y.7
Chen, Y.E.8
Sturino, J.M.9
Wu, C.10
-
14
-
-
77954889396
-
Involvement of inducible 6-phosphofructo-2-kinase in the anti-diabetic effect of peroxisome proliferator-activated receptor gamma activation in mice
-
Guo X, Xu K, Zhang J, Li H, Zhang W, Wang H, Lange AJ, Chen YE, Huo Y, Wu C. Involvement of inducible 6-phosphofructo-2-kinase in the anti-diabetic effect of peroxisome proliferator-activated receptor gamma activation in mice. J Biol Chem. 2010;285:23711-23720.
-
(2010)
J Biol Chem.
, vol.285
, pp. 23711-23720
-
-
Guo, X.1
Xu, K.2
Zhang, J.3
Li, H.4
Zhang, W.5
Wang, H.6
Lange, A.J.7
Chen, Y.E.8
Huo, Y.9
Wu, C.10
-
15
-
-
77950484849
-
Disruption of inducible 6-phosphofructo-2-kinase ameliorates diet-induced adiposity but exacerbates systemic insulin resistance and adipose tissue inflammatory response
-
Huo Y, Guo X, Li H, Wang H, Zhang W, Wang Y, Zhou H, Gao Z, Telang S, Chesney J, Chen YE, Ye J, Chapkin RS, Wu C. Disruption of inducible 6-phosphofructo-2-kinase ameliorates diet-induced adiposity but exacerbates systemic insulin resistance and adipose tissue inflammatory response. J Biol Chem. 2010;285:3713-3721.
-
(2010)
J Biol Chem.
, vol.285
, pp. 3713-3721
-
-
Huo, Y.1
Guo, X.2
Li, H.3
Wang, H.4
Zhang, W.5
Wang, Y.6
Zhou, H.7
Gao, Z.8
Telang, S.9
Chesney, J.10
Chen, Y.E.11
Ye, J.12
Chapkin, R.S.13
Wu, C.14
-
16
-
-
23644446866
-
Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis
-
DOI 10.1172/JCI24726
-
Ackah E, Yu J, Zoellner S, Iwakiri Y, Skurk C, Shibata R, Ouchi N, Easton RM, Galasso G, Birnbaum MJ, Walsh K, Sessa WC. Akt1/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. J Clin Invest. 2005;115:2119-2127. (Pubitemid 41134153)
-
(2005)
Journal of Clinical Investigation
, vol.115
, Issue.8
, pp. 2119-2127
-
-
Ackah, E.1
Yu, J.2
Zoellner, S.3
Iwakiri, Y.4
Skurk, C.5
Shibata, R.6
Ouchi, N.7
Easton, R.M.8
Galasso, G.9
Birnbaum, M.J.10
Walsh, K.11
Sessa, W.C.12
-
17
-
-
30744432102
-
Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo
-
DOI 10.1038/nm1307, PII NM1307
-
Chen J, Somanath PR, Razorenova O, Chen WS, Hay N, Bornstein P, Byzova TV. Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med. 2005;11:1188-1196. (Pubitemid 43093666)
-
(2005)
Nature Medicine
, vol.11
, Issue.11
, pp. 1188-1196
-
-
Chen, J.1
Somanath, P.R.2
Razorenova, O.3
Chen, W.S.4
Hay, N.5
Bornstein, P.6
Byzova, T.V.7
-
18
-
-
84878408912
-
Adapting glycolysis to cancer cell proliferation: The MAPK pathway focuses on PFKFB3
-
Bolaños JP. Adapting glycolysis to cancer cell proliferation: the MAPK pathway focuses on PFKFB3. Biochem J. 2013;452:e7-e9.
-
(2013)
Biochem J.
, vol.452
-
-
Bolaños, J.P.1
-
19
-
-
80054046029
-
Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
-
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441-464.
-
(2011)
Annu Rev Cell Dev Biol.
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
20
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029-1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
21
-
-
78650491025
-
Anaphase-promoting complex/cyclosome-Cdh1 coordinates glycolysis and glutaminolysis with transition to S phase in human T lymphocytes
-
Colombo SL, Palacios-Callender M, Frakich N, De Leon J, Schmitt CA, Boorn L, Davis N, Moncada S. Anaphase-promoting complex/cyclosome-Cdh1 coordinates glycolysis and glutaminolysis with transition to S phase in human T lymphocytes. Proc Natl Acad Sci U S A. 2010;107:18868-18873.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 18868-18873
-
-
Colombo, S.L.1
Palacios-Callender, M.2
Frakich, N.3
De Leon, J.4
Schmitt, C.A.5
Boorn, L.6
Davis, N.7
Moncada, S.8
-
22
-
-
79955076736
-
Two ubiquitin ligases, APC/C-Cdh1 and SKP1-CUL1-F (SCF)-beta-TrCP, sequentially regulate glycolysis during the cell cycle
-
Tudzarova S, Colombo SL, Stoeber K, Carcamo S, Williams GH, Moncada S. Two ubiquitin ligases, APC/C-Cdh1 and SKP1-CUL1-F (SCF)-beta-TrCP, sequentially regulate glycolysis during the cell cycle. Proc Natl Acad Sci U S A. 2011;108:5278-5283.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 5278-5283
-
-
Tudzarova, S.1
Colombo, S.L.2
Stoeber, K.3
Carcamo, S.4
Williams, G.H.5
Moncada, S.6
-
23
-
-
69949122828
-
Nuclear targeting of 6- phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases
-
Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, Brock E, Siow D, Wattenberg B, Telang S, Chesney J. Nuclear targeting of 6- phosphofructo-2- kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem. 2009;284:24223-24232.
-
(2009)
J Biol Chem.
, vol.284
, pp. 24223-24232
-
-
Yalcin, A.1
Clem, B.F.2
Simmons, A.3
Lane, A.4
Nelson, K.5
Clem, A.L.6
Brock, E.7
Siow, D.8
Wattenberg, B.9
Telang, S.10
Chesney, J.11
-
24
-
-
34447536662
-
Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms
-
DOI 10.1089/ars.2007.1674
-
Hunt TK, Aslam RS, Beckert S, Wagner S, Ghani QP, Hussain MZ, Roy S, Sen CK. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal. 2007;9:1115-1124. (Pubitemid 47080823)
-
(2007)
Antioxidants and Redox Signaling
, vol.9
, Issue.8
, pp. 1115-1124
-
-
Hunt, T.K.1
Aslam, R.S.2
Beckert, S.3
Wagner, S.4
Ghani, Q.P.5
Hussain, M.Z.6
Roy, S.7
Sen, C.K.8
-
25
-
-
84884611017
-
Lactate dehydrogenase a expression is necessary to sustain rapid angiogenesis of pulmonary microvascular endothelium
-
Parra-Bonilla G, Alvarez DF, Alexeyev M, Vasauskas A, Stevens T. Lactate dehydrogenase a expression is necessary to sustain rapid angiogenesis of pulmonary microvascular endothelium. PLoS One. 2013;8:e75984.
-
(2013)
PLoS One.
, vol.8
-
-
Parra-Bonilla, G.1
Alvarez, D.F.2
Alexeyev, M.3
Vasauskas, A.4
Stevens, T.5
-
26
-
-
77957368245
-
Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation
-
Parra-Bonilla G, Alvarez DF, Al-Mehdi AB, Alexeyev M, Stevens T. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol. 2010;299:L513-L522.
-
(2010)
Am J Physiol Lung Cell Mol Physiol.
, vol.299
-
-
Parra-Bonilla, G.1
Alvarez, D.F.2
Al-Mehdi, A.B.3
Alexeyev, M.4
Stevens, T.5
-
27
-
-
84875053754
-
Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice
-
Porporato PE, Payen VL, De Saedeleer CJ, Préat V, Thissen JP, Feron O, Sonveaux P. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis. 2012;15:581-592.
-
(2012)
Angiogenesis.
, vol.15
, pp. 581-592
-
-
Porporato, P.E.1
Payen, V.L.2
De Saedeleer, C.J.3
Préat, V.4
Thissen, J.P.5
Feron, O.6
Sonveaux, P.7
-
28
-
-
84880525862
-
Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis
-
Ruan GX, Kazlauskas A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. J Biol Chem. 2013;288:21161-21172.
-
(2013)
J Biol Chem.
, vol.288
, pp. 21161-21172
-
-
Ruan, G.X.1
Kazlauskas, A.2
-
29
-
-
79953329777
-
Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κb/IL-8 pathway that drives tumor angiogenesis
-
Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κb/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011;71:2550-2560.
-
(2011)
Cancer Res.
, vol.71
, pp. 2550-2560
-
-
Vegran, F.1
Boidot, R.2
Michiels, C.3
Sonveaux, P.4
Feron, O.5
-
30
-
-
24644519938
-
Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization
-
DOI 10.1172/JCI23126
-
Potente M, Urbich C, Sasaki K, Hofmann WK, Heeschen C, Aicher A, Kollipara R, De Pinho RA, Zeiher AM, Dimmeler S. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest. 2005;115:2382-2392. (Pubitemid 41266200)
-
(2005)
Journal of Clinical Investigation
, vol.115
, Issue.9
, pp. 2382-2392
-
-
Potente, M.1
Urbich, C.2
Sasaki, K.-I.3
Hofmann, W.K.4
Heeschen, C.5
Aicher, A.6
Kollipara, R.7
DePinho, R.A.8
Zeiher, A.M.9
Dimmeler, S.10
-
31
-
-
2942525073
-
Identification of Flk-1 target genes in vasculogenesis: Pim-1 is required for endothelial and mural cell differentiation in vitro
-
DOI 10.1182/blood-2003-11-3827
-
Zippo A, De Robertis A, Bardelli M, Galvagni F, Oliviero S. Identification of Flk-1 target genes in vasculogenesis: Pim-1 is required for endothelial and mural cell differentiation in vitro. Blood. 2004;103:4536-4544. (Pubitemid 38745981)
-
(2004)
Blood
, vol.103
, Issue.12
, pp. 4536-4544
-
-
Zippo, A.1
De Robertis, A.2
Bardelli, M.3
Galvagni, F.4
Oliviero, S.5
-
32
-
-
84871733993
-
Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes
-
Katare R, Oikawa A, Cesselli D, Beltrami AP, Avolio E, Muthukrishnan D, Munasinghe PE, Angelini G, Emanueli C, Madeddu P. Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes. Cardiovasc Res. 2013;97:55-65.
-
(2013)
Cardiovasc Res.
, vol.97
, pp. 55-65
-
-
Katare, R.1
Oikawa, A.2
Cesselli, D.3
Beltrami, A.P.4
Avolio, E.5
Muthukrishnan, D.6
Munasinghe, P.E.7
Angelini, G.8
Emanueli, C.9
Madeddu, P.10
-
33
-
-
0041355256
-
Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis
-
DOI 10.1074/jbc.M301293200
-
Leopold JA, Walker J, Scribner AW, Voetsch B, Zhang YY, Loscalzo AJ, Stanton RC, Loscalzo J. Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. J Biol Chem. 2003;278:32100-32106. (Pubitemid 37048399)
-
(2003)
Journal of Biological Chemistry
, vol.278
, Issue.34
, pp. 32100-32106
-
-
Leopold, J.A.1
Walker, J.2
Scribner, A.W.3
Voetsch, B.4
Zhang, Y.-Y.5
Loscalzo, A.J.6
Stanton, R.C.7
Loscalzo, J.8
-
34
-
-
84891841003
-
Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis
-
Schoors S, De Bock K, Cantelmo AR, et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 2014;19:37-48.
-
(2014)
Cell Metab.
, vol.19
, pp. 37-48
-
-
Schoors, S.1
De Bock, K.2
Cantelmo, A.R.3
-
35
-
-
79957894276
-
Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases
-
Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10:417-427.
-
(2011)
Nat Rev Drug Discov.
, vol.10
, pp. 417-427
-
-
Carmeliet, P.1
Jain, R.K.2
-
36
-
-
33747408064
-
Angiogenesis in atherogenesis
-
DOI 10.1161/01.ATV.0000233387.90257.9b, PII 0004360520060900000005
-
Herrmann J, Lerman LO, Mukhopadhyay D, Napoli C, Lerman A. Angiogenesis in atherogenesis. Arterioscler Thromb Vasc Biol. 2006;26:1948-1957. (Pubitemid 44253775)
-
(2006)
Arteriosclerosis, Thrombosis, and Vascular Biology
, vol.26
, Issue.9
, pp. 1948-1957
-
-
Herrmann, J.1
Lerman, L.O.2
Mukhopadhyay, D.3
Napoli, C.4
Lerman, A.5
|