메뉴 건너뛰기




Volumn 23, Issue 2, 2017, Pages 116-134

Mitochondrial Dysfunction and Neurodegeneration in Lysosomal Storage Disorders

Author keywords

[No Author keywords available]

Indexed keywords

CALCIUM; LYSOSOMAL PROTEINS; PROTEIN;

EID: 85009818515     PISSN: 14714914     EISSN: 1471499X     Source Type: Journal    
DOI: 10.1016/j.molmed.2016.12.003     Document Type: Review
Times cited : (104)

References (131)
  • 1
    • 84871960929 scopus 로고    scopus 로고
    • Lysosomal storage disorders: the cellular impact of lysosomal dysfunction
    • 1 Platt, F.M., et al. Lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol 199 (2012), 723–734.
    • (2012) J Cell Biol , vol.199 , pp. 723-734
    • Platt, F.M.1
  • 2
    • 0033585476 scopus 로고    scopus 로고
    • Prevalence of lysosomal storage disorders
    • 2 Meikle, P.J., et al. Prevalence of lysosomal storage disorders. JAMA 281 (1999), 249–254.
    • (1999) JAMA , vol.281 , pp. 249-254
    • Meikle, P.J.1
  • 3
    • 77956060447 scopus 로고    scopus 로고
    • The birth prevalence of lysosomal storage disorders in the Czech Republic: comparison with data in different populations
    • 3 Poupětová, H., et al. The birth prevalence of lysosomal storage disorders in the Czech Republic: comparison with data in different populations. J Inherit Metab Dis 33 (2010), 387–396.
    • (2010) J Inherit Metab Dis , vol.33 , pp. 387-396
    • Poupětová, H.1
  • 4
    • 77953732520 scopus 로고    scopus 로고
    • The epidemiology of progressive intellectual and neurological deterioration in childhood
    • 4 Verity, C., et al. The epidemiology of progressive intellectual and neurological deterioration in childhood. Arch Dis Child 95 (2010), 361–364.
    • (2010) Arch Dis Child , vol.95 , pp. 361-364
    • Verity, C.1
  • 5
    • 84921324921 scopus 로고    scopus 로고
    • Lysosomal storage diseases: from pathophysiology to therapy
    • 5 Parenti, G., et al. Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med 66 (2015), 471–486.
    • (2015) Annu Rev Med , vol.66 , pp. 471-486
    • Parenti, G.1
  • 6
    • 84859554327 scopus 로고    scopus 로고
    • Lysosomal dysfunction in a mouse model of Sandhoff disease leads to accumulation of ganglioside-bound amyloid-beta peptide
    • 6 Keilani, S., et al. Lysosomal dysfunction in a mouse model of Sandhoff disease leads to accumulation of ganglioside-bound amyloid-beta peptide. J Neurosci 32 (2012), 5223–5236.
    • (2012) J Neurosci , vol.32 , pp. 5223-5236
    • Keilani, S.1
  • 7
    • 84996553998 scopus 로고    scopus 로고
    • The lysosomal storage disease continuum with ageing-related neurodegenerative disease
    • 7 Lloyd-Evans, E., Haslett, L.J., The lysosomal storage disease continuum with ageing-related neurodegenerative disease. Ageing Res Rev 32 (2016), 104–121.
    • (2016) Ageing Res Rev , vol.32 , pp. 104-121
    • Lloyd-Evans, E.1    Haslett, L.J.2
  • 8
    • 84908233895 scopus 로고    scopus 로고
    • Mutations in Niemann–Pick type C gene are risk factor for Alzheimer's disease
    • 8 Kresojevic, N., et al. Mutations in Niemann–Pick type C gene are risk factor for Alzheimer's disease. Med Hypotheses J 83 (2014), 559–562.
    • (2014) Med Hypotheses J , vol.83 , pp. 559-562
    • Kresojevic, N.1
  • 9
    • 84940796652 scopus 로고    scopus 로고
    • 2+ homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification
    • 2+ homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification. Cell Rep 12 (2015), 1430–1444.
    • (2015) Cell Rep , vol.12 , pp. 1430-1444
    • Lee, J.1
  • 10
    • 70350319531 scopus 로고    scopus 로고
    • Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease
    • 10 Sidransky, E., et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N Engl J Med 361 (2009), 1651–1661.
    • (2009) N Engl J Med , vol.361 , pp. 1651-1661
    • Sidransky, E.1
  • 11
    • 84878811164 scopus 로고    scopus 로고
    • Mitochondria and quality control defects in a mouse model of Gaucher disease—links to Parkinson's disease
    • 11 Osellame, L.D., et al. Mitochondria and quality control defects in a mouse model of Gaucher disease—links to Parkinson's disease. Cell Metab 17 (2013), 941–953.
    • (2013) Cell Metab , vol.17 , pp. 941-953
    • Osellame, L.D.1
  • 12
    • 79960009804 scopus 로고    scopus 로고
    • Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies
    • 12 Mazzulli, J.R., et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146 (2011), 37–52.
    • (2011) Cell , vol.146 , pp. 37-52
    • Mazzulli, J.R.1
  • 13
    • 84907360500 scopus 로고    scopus 로고
    • Glucocerebrosidase depletion enhances cell-to-cell transmission of α-synuclein
    • 13 Bae, E.-J., et al. Glucocerebrosidase depletion enhances cell-to-cell transmission of α-synuclein. Nat Commun, 5, 2014, 4755.
    • (2014) Nat Commun , vol.5 , pp. 4755
    • Bae, E.-J.1
  • 14
    • 79956199921 scopus 로고    scopus 로고
    • Acid β-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter α-synuclein processing
    • 14 Cullen, V., et al. Acid β-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter α-synuclein processing. Ann Neurol 69 (2011), 940–953.
    • (2011) Ann Neurol , vol.69 , pp. 940-953
    • Cullen, V.1
  • 15
    • 84894528843 scopus 로고    scopus 로고
    • Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson's disease
    • 15 Murphy, K.E., et al. Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson's disease. Brain 137 (2014), 834–848.
    • (2014) Brain , vol.137 , pp. 834-848
    • Murphy, K.E.1
  • 16
    • 84965185844 scopus 로고    scopus 로고
    • Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and α-synuclein aggregation
    • 16 Bae, E.-J., et al. Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and α-synuclein aggregation. Exp Mol Med, 47, 2015, e153.
    • (2015) Exp Mol Med , vol.47 , pp. e153
    • Bae, E.-J.1
  • 17
    • 0035909948 scopus 로고    scopus 로고
    • Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection
    • 17 Almeida, A., et al. Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci U S A 98 (2001), 15294–15299.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 15294-15299
    • Almeida, A.1
  • 18
    • 84856221632 scopus 로고    scopus 로고
    • A vesicular transport pathway shuttles cargo from mitochondria to lysosomes
    • 18 Soubannier, V., et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol 22 (2012), 135–141.
    • (2012) Curr Biol , vol.22 , pp. 135-141
    • Soubannier, V.1
  • 19
    • 84941795152 scopus 로고    scopus 로고
    • Mitochondrial quality control via the PGC1α–TFEB signaling pathway is compromised by parkin Q311X mutation but independently restored by rapamycin
    • 19 Siddiqui, A., et al. Mitochondrial quality control via the PGC1α–TFEB signaling pathway is compromised by parkin Q311X mutation but independently restored by rapamycin. J Neurosci 35 (2015), 12833–12844.
    • (2015) J Neurosci , vol.35 , pp. 12833-12844
    • Siddiqui, A.1
  • 20
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
    • 20 Settembre, C., et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 15 (2013), 647–658.
    • (2013) Nat Cell Biol , vol.15 , pp. 647-658
    • Settembre, C.1
  • 21
    • 79957960940 scopus 로고    scopus 로고
    • Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network
    • 21 Scarpulla, R.C., Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. BBA – Mol Cell Res 1813 (2011), 1269–1278.
    • (2011) BBA – Mol Cell Res , vol.1813 , pp. 1269-1278
    • Scarpulla, R.C.1
  • 22
    • 0033977890 scopus 로고    scopus 로고
    • The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
    • 22 Vega, R.B., et al. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20 (2000), 1868–1876.
    • (2000) Mol Cell Biol , vol.20 , pp. 1868-1876
    • Vega, R.B.1
  • 23
    • 84969761352 scopus 로고    scopus 로고
    • Mitochondrial respiration controls lysosomal function during inflammatory T cell responses article mitochondrial respiration controls lysosomal function during inflammatory T cell responses
    • 23 Baixauli, F., et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses article mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab 22 (2015), 485–498.
    • (2015) Cell Metab , vol.22 , pp. 485-498
    • Baixauli, F.1
  • 24
    • 84965107551 scopus 로고    scopus 로고
    • Loss of mitochondrial function impairs lysosomes
    • 24 Demers-Lamarche, J., Loss of mitochondrial function impairs lysosomes. J Biol Chem 291 (2016), 10263–10276.
    • (2016) J Biol Chem , vol.291 , pp. 10263-10276
    • Demers-Lamarche, J.1
  • 25
    • 84978708804 scopus 로고    scopus 로고
    • AMPK activators: mechanisms of action and physiological activities
    • 25 Kim, J., et al. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med 48 (2016), 1–12.
    • (2016) Exp Mol Med , vol.48 , pp. 1-12
    • Kim, J.1
  • 26
    • 80955177196 scopus 로고    scopus 로고
    • TFEB links autophagy to lysosomal biogenesis
    • 26 Settembre, C., et al. TFEB links autophagy to lysosomal biogenesis. Science 332 (2010), 1429–1433.
    • (2010) Science , vol.332 , pp. 1429-1433
    • Settembre, C.1
  • 27
    • 84857997408 scopus 로고    scopus 로고
    • A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB open
    • 27 Settembre, C., et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB open. EMBO J 31 (2012), 1095–1108.
    • (2012) EMBO J , vol.31 , pp. 1095-1108
    • Settembre, C.1
  • 28
    • 84864874958 scopus 로고    scopus 로고
    • MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
    • 28 Martina, J.A., et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8 (2012), 903–914.
    • (2012) Autophagy , vol.8 , pp. 903-914
    • Martina, J.A.1
  • 29
    • 84896899028 scopus 로고    scopus 로고
    • RAB26 coordinates lysosome traffic and mitochondrial localization
    • 29 Jin, R.U., Mills, J.C., RAB26 coordinates lysosome traffic and mitochondrial localization. J Cell Sci 127 (2014), 1018–1032.
    • (2014) J Cell Sci , vol.127 , pp. 1018-1032
    • Jin, R.U.1    Mills, J.C.2
  • 30
    • 84979623365 scopus 로고    scopus 로고
    • Accumulated α-synuclein affects the progression of GM2 gangliosidoses
    • 30 Suzuki, K., et al. Accumulated α-synuclein affects the progression of GM2 gangliosidoses. Exp Neurol 284 (2016), 38–49.
    • (2016) Exp Neurol , vol.284 , pp. 38-49
    • Suzuki, K.1
  • 31
    • 84930685986 scopus 로고    scopus 로고
    • Pharmacological chaperones and coenzyme Q10 treatment improves mutant β-glucocerebrosidase activity and mitochondrial function in neuronopathic forms of Gaucher disease
    • 31 de la Mata, M., et al. Pharmacological chaperones and coenzyme Q10 treatment improves mutant β-glucocerebrosidase activity and mitochondrial function in neuronopathic forms of Gaucher disease. Sci Rep 5 (2015), 1–18.
    • (2015) Sci Rep , vol.5 , pp. 1-18
    • de la Mata, M.1
  • 32
    • 84908101723 scopus 로고    scopus 로고
    • Sphingolipid signalling mediates mitochondrial dysfunctions and reduced chronological lifespan in the yeast model of Niemann–Pick type C1
    • 32 Vilaca, R., et al. Sphingolipid signalling mediates mitochondrial dysfunctions and reduced chronological lifespan in the yeast model of Niemann–Pick type C1. Mol Microbiol 91 (2014), 438–451.
    • (2014) Mol Microbiol , vol.91 , pp. 438-451
    • Vilaca, R.1
  • 33
    • 84958092486 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in fibroblasts derived from patients with Niemann–Pick type C disease
    • 33 Woś, M., et al. Mitochondrial dysfunction in fibroblasts derived from patients with Niemann–Pick type C disease. Arch Biochem Biophys 593 (2016), 50–59.
    • (2016) Arch Biochem Biophys , vol.593 , pp. 50-59
    • Woś, M.1
  • 34
    • 84884574720 scopus 로고    scopus 로고
    • The stimulation of adenosine A2A receptors ameliorates the pathological phenotype of fibroblasts from Niemann–Pick type C patients
    • 34 Visentin, S., et al. The stimulation of adenosine A2A receptors ameliorates the pathological phenotype of fibroblasts from Niemann–Pick type C patients. J Neurosci 33 (2013), 15388–15393.
    • (2013) J Neurosci , vol.33 , pp. 15388-15393
    • Visentin, S.1
  • 35
    • 84861726112 scopus 로고    scopus 로고
    • Disruption and therapeutic rescue of autophagy in a human neuronal model of Niemann–Pick type C1
    • 35 Ordonez, M.P., et al. Disruption and therapeutic rescue of autophagy in a human neuronal model of Niemann–Pick type C1. Hum Mol Genet 21 (2012), 2651–2662.
    • (2012) Hum Mol Genet , vol.21 , pp. 2651-2662
    • Ordonez, M.P.1
  • 36
    • 15744378799 scopus 로고    scopus 로고
    • Altered cholesterol metabolism in Niemann–Pick type C1 mouse brains affects mitochondrial function
    • 36 Yu, W., et al. Altered cholesterol metabolism in Niemann–Pick type C1 mouse brains affects mitochondrial function. J Biol Chem 280 (2005), 11731–11739.
    • (2005) J Biol Chem , vol.280 , pp. 11731-11739
    • Yu, W.1
  • 37
    • 37549066697 scopus 로고    scopus 로고
    • A block of autophagy in lysosomal storage disorders
    • 37 Settembre, C., et al. A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17 (2008), 119–129.
    • (2008) Hum Mol Genet , vol.17 , pp. 119-129
    • Settembre, C.1
  • 38
    • 84859262478 scopus 로고    scopus 로고
    • Impaired parkin-mediated mitochondrial targeting to autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases
    • 38 de Pablo-Latorre, R., Impaired parkin-mediated mitochondrial targeting to autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases. Hum Mol Genet 21 (2012), 1770–1781.
    • (2012) Hum Mol Genet , vol.21 , pp. 1770-1781
    • de Pablo-Latorre, R.1
  • 39
    • 38649117272 scopus 로고    scopus 로고
    • Enhanced autophagy and mitochondrial aberrations in murine GM1-gangliosidosis
    • 39 Takamura, A., et al. Enhanced autophagy and mitochondrial aberrations in murine GM1-gangliosidosis. Biochem Biophys Res Commun 367 (2008), 616–622.
    • (2008) Biochem Biophys Res Commun , vol.367 , pp. 616-622
    • Takamura, A.1
  • 40
    • 84922373734 scopus 로고    scopus 로고
    • Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model
    • 40 Martins, C., et al. Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model. Brain 138 (2015), 336–355.
    • (2015) Brain , vol.138 , pp. 336-355
    • Martins, C.1
  • 41
    • 0032811447 scopus 로고    scopus 로고
    • Anomalies of mitochondrial ATP synthase regulation in four different types of neuronal ceroid lipofuscinosis
    • 41 Das, A.M., et al. Anomalies of mitochondrial ATP synthase regulation in four different types of neuronal ceroid lipofuscinosis. Mol Genet Metab 66 (1999), 349–355.
    • (1999) Mol Genet Metab , vol.66 , pp. 349-355
    • Das, A.M.1
  • 42
    • 0036176571 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in the neuronal ceroid-lipofuscinoses (Batten disease)
    • 42 Jolly, R.D., et al. Mitochondrial dysfunction in the neuronal ceroid-lipofuscinoses (Batten disease). Neurochem Int 40 (2002), 565–571.
    • (2002) Neurochem Int , vol.40 , pp. 565-571
    • Jolly, R.D.1
  • 43
    • 84897873387 scopus 로고    scopus 로고
    • Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway
    • 43 Lojewski, X., et al. Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum Mol Genet 23 (2014), 2005–2022.
    • (2014) Hum Mol Genet , vol.23 , pp. 2005-2022
    • Lojewski, X.1
  • 44
    • 12944291307 scopus 로고    scopus 로고
    • Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis
    • 44 Fossale, E., et al. Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis. BMC Neurosci, 5, 2004, 57.
    • (2004) BMC Neurosci , vol.5 , pp. 57
    • Fossale, E.1
  • 45
    • 33749495207 scopus 로고    scopus 로고
    • Batten disease (JNCL) is linked to disturbances in mitochondrial, cytoskeletal, and synaptic compartments
    • 45 Luiro, K., et al. Batten disease (JNCL) is linked to disturbances in mitochondrial, cytoskeletal, and synaptic compartments. J Neurosci Res 84 (2006), 1124–1138.
    • (2006) J Neurosci Res , vol.84 , pp. 1124-1138
    • Luiro, K.1
  • 46
    • 84875930662 scopus 로고    scopus 로고
    • Batten disease is linked to altered expression of mitochondria-related metabolic molecules
    • 46 Kang, S., et al. Batten disease is linked to altered expression of mitochondria-related metabolic molecules. Neurochem Int 62 (2013), 931–935.
    • (2013) Neurochem Int , vol.62 , pp. 931-935
    • Kang, S.1
  • 47
    • 83055182178 scopus 로고    scopus 로고
    • Involvement of the mitochondrial compartment in human NCL fibroblasts
    • 47 Pezzini, F., et al. Involvement of the mitochondrial compartment in human NCL fibroblasts. Biochem Biophys Res Commun 416 (2011), 159–164.
    • (2011) Biochem Biophys Res Commun , vol.416 , pp. 159-164
    • Pezzini, F.1
  • 48
    • 77952106962 scopus 로고    scopus 로고
    • Acute progression of neuromuscular findings in infantile Pompe disease
    • 48 Burrow, T.A., et al. Acute progression of neuromuscular findings in infantile Pompe disease. Pediatr Neurol 42 (2010), 455–458.
    • (2010) Pediatr Neurol , vol.42 , pp. 455-458
    • Burrow, T.A.1
  • 50
    • 84856213604 scopus 로고    scopus 로고
    • Autophagy and mitochondria in Pompe disease: nothing is so new as what has long been forgotten
    • 50 Raben, N., et al. Autophagy and mitochondria in Pompe disease: nothing is so new as what has long been forgotten. Am J Med Genet Part C Semin Med Genet 160C (2012), 13–21.
    • (2012) Am J Med Genet Part C Semin Med Genet , vol.160C , pp. 13-21
    • Raben, N.1
  • 51
    • 85012111453 scopus 로고    scopus 로고
    • Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease
    • 51 Lim, J.A., et al. Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease. Autophagy 8627 (2015), 37–41.
    • (2015) Autophagy , vol.8627 , pp. 37-41
    • Lim, J.A.1
  • 52
    • 0037286364 scopus 로고    scopus 로고
    • Imaging mitochondrial function in intact cells
    • 52 Duchen, B.M.R., et al. Imaging mitochondrial function in intact cells. Methods Enzymol 361 (2003), 353–389.
    • (2003) Methods Enzymol , vol.361 , pp. 353-389
    • Duchen, B.M.R.1
  • 53
    • 79151485570 scopus 로고    scopus 로고
    • Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses
    • 53 MacAskill, A.F., et al. Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur J Neurosci 32 (2010), 231–240.
    • (2010) Eur J Neurosci , vol.32 , pp. 231-240
    • MacAskill, A.F.1
  • 54
    • 84862870271 scopus 로고    scopus 로고
    • The axonal transport of mitochondria
    • 54 Saxton, W.M., Hollenbeck, P.J., The axonal transport of mitochondria. J Cell Sci 125 (2012), 2095–2104.
    • (2012) J Cell Sci , vol.125 , pp. 2095-2104
    • Saxton, W.M.1    Hollenbeck, P.J.2
  • 55
    • 84878890357 scopus 로고    scopus 로고
    • The sphingolipid psychosine inhibits fast axonal transport in Krabbe disease by activation of GSK3β and deregulation of molecular motors
    • 55 Cantuti Castelvetri, L., The sphingolipid psychosine inhibits fast axonal transport in Krabbe disease by activation of GSK3β and deregulation of molecular motors. J Neurosci 33 (2013), 10048–10056.
    • (2013) J Neurosci , vol.33 , pp. 10048-10056
    • Cantuti Castelvetri, L.1
  • 56
    • 33745976466 scopus 로고    scopus 로고
    • Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis
    • 56 Cao, Y., et al. Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem 281 (2006), 20483–20493.
    • (2006) J Biol Chem , vol.281 , pp. 20483-20493
    • Cao, Y.1
  • 57
    • 84873578783 scopus 로고    scopus 로고
    • Alterations in ROS activity and lysosomal pH account for distinct patterns of macroautophagy in LINCL and JNCL fibroblasts
    • 57 Vidal-Donet, J.M., Alterations in ROS activity and lysosomal pH account for distinct patterns of macroautophagy in LINCL and JNCL fibroblasts. PLoS One, 8, 2013, e55526.
    • (2013) PLoS One , vol.8 , pp. e55526
    • Vidal-Donet, J.M.1
  • 58
    • 33846022005 scopus 로고    scopus 로고
    • Mitochondrial aberrations in mucolipidosis type IV
    • 58 Jennings, J.J., et al. Mitochondrial aberrations in mucolipidosis type IV. J Biol Chem 281 (2006), 39041–39050.
    • (2006) J Biol Chem , vol.281 , pp. 39041-39050
    • Jennings, J.J.1
  • 59
    • 78650785696 scopus 로고    scopus 로고
    • Fiber type conversion by PGC-1alpha activates lysosomal and autophagosomal biogenesis in both unaffected and pompe skeletal muscle
    • 59 Takikita, S., et al. Fiber type conversion by PGC-1alpha activates lysosomal and autophagosomal biogenesis in both unaffected and pompe skeletal muscle. PLoS One, 5, 2010, e15239.
    • (2010) PLoS One , vol.5 , pp. e15239
    • Takikita, S.1
  • 60
    • 38549110110 scopus 로고    scopus 로고
    • Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
    • 60 Twig, G., et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27 (2008), 433–446.
    • (2008) EMBO J , vol.27 , pp. 433-446
    • Twig, G.1
  • 61
    • 27944482199 scopus 로고    scopus 로고
    • Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast
    • 61 Priault, M., et al. Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ 12 (2005), 1613–1621.
    • (2005) Cell Death Differ , vol.12 , pp. 1613-1621
    • Priault, M.1
  • 62
    • 58149314211 scopus 로고    scopus 로고
    • Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
    • 62 Narendra, D., et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183 (2008), 795–803.
    • (2008) J Cell Biol , vol.183 , pp. 795-803
    • Narendra, D.1
  • 63
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate parkin
    • 63 Narendra, D.P., et al. PINK1 is selectively stabilized on impaired mitochondria to activate parkin. Plos Biol, 8, 2010, e1000298.
    • (2010) Plos Biol , vol.8 , pp. e1000298
    • Narendra, D.P.1
  • 64
    • 84908065760 scopus 로고    scopus 로고
    • Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation
    • 64 Wong, Y.C., Holzbaur, E.L.F., Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci U S A 111 (2014), e4439–4448.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. e4439-4448
    • Wong, Y.C.1    Holzbaur, E.L.F.2
  • 65
    • 84957432947 scopus 로고    scopus 로고
    • Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy
    • 65 Hamacher-Brady, A., Brady, N.R., Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci 73 (2016), 775–795.
    • (2016) Cell Mol Life Sci , vol.73 , pp. 775-795
    • Hamacher-Brady, A.1    Brady, N.R.2
  • 66
    • 65449144411 scopus 로고    scopus 로고
    • o-ATP synthase, defines mitochondrial volume fraction in HeLa cells by regulating autophagy
    • o-ATP synthase, defines mitochondrial volume fraction in HeLa cells by regulating autophagy. BBA – Bioenerg 1787 (2009), 393–401.
    • (2009) BBA – Bioenerg , vol.1787 , pp. 393-401
    • Campanella, M.1
  • 67
    • 84923276561 scopus 로고    scopus 로고
    • Oxidative stress and inflammation in mucopolysaccharidosis type IVA patients treated with enzyme replacement therapy
    • 67 Donida, B., et al. Oxidative stress and inflammation in mucopolysaccharidosis type IVA patients treated with enzyme replacement therapy. Biochim Biophys Acta 1852 (2015), 1012–1019.
    • (2015) Biochim Biophys Acta , vol.1852 , pp. 1012-1019
    • Donida, B.1
  • 68
    • 71549134227 scopus 로고    scopus 로고
    • Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone
    • 68 Zampieri, S., et al. Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone. J Cell Mol Med 13 (2009), 3786–3796.
    • (2009) J Cell Mol Med , vol.13 , pp. 3786-3796
    • Zampieri, S.1
  • 69
    • 84055172758 scopus 로고    scopus 로고
    • Alteration of gene expression profile in Niemann–Pick type C mice correlates with tissue damage and oxidative stress
    • 69 Vazquez, M.C., et al. Alteration of gene expression profile in Niemann–Pick type C mice correlates with tissue damage and oxidative stress. PLoS One, 6, 2011, e28777.
    • (2011) PLoS One , vol.6 , pp. e28777
    • Vazquez, M.C.1
  • 70
    • 33646202155 scopus 로고    scopus 로고
    • Mechanisms of neurodegeneration in neuronal ceroid-lipofuscinoses
    • 70 Hachiya, Y., et al. Mechanisms of neurodegeneration in neuronal ceroid-lipofuscinoses. Acta Neuropathol 111 (2006), 168–177.
    • (2006) Acta Neuropathol , vol.111 , pp. 168-177
    • Hachiya, Y.1
  • 71
    • 84959240661 scopus 로고    scopus 로고
    • NRF2 orchestrates the metabolic shift during induced pluripotent stem cell reprogramming
    • 71 Hawkins, K.E., et al. NRF2 orchestrates the metabolic shift during induced pluripotent stem cell reprogramming. Cell Rep 14 (2016), 1883–1891.
    • (2016) Cell Rep , vol.14 , pp. 1883-1891
    • Hawkins, K.E.1
  • 72
    • 84927914934 scopus 로고    scopus 로고
    • Role of extracellular calcium and mitochondrial oxygen species in psychosine-induced oligodendrocyte cell death
    • 72 Voccoli, V., et al. Role of extracellular calcium and mitochondrial oxygen species in psychosine-induced oligodendrocyte cell death. Cell Death Dis 5 (2014), e1529–10.
    • (2014) Cell Death Dis , vol.5 , pp. e1529-10
    • Voccoli, V.1
  • 73
    • 84893192165 scopus 로고    scopus 로고
    • Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in Niemann–Pick type C1-deficient murine brain
    • 73 Kennedy, B.E., et al. Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in Niemann–Pick type C1-deficient murine brain. PLoS One, 8, 2013, e82685.
    • (2013) PLoS One , vol.8 , pp. e82685
    • Kennedy, B.E.1
  • 74
    • 84868124278 scopus 로고    scopus 로고
    • Quantitative proteomic analysis of Niemann-Pick disease, type C1 cerebellum identifies protein biomarkers and provides pathological insight
    • 74 Cologna, S.M., et al. Quantitative proteomic analysis of Niemann-Pick disease, type C1 cerebellum identifies protein biomarkers and provides pathological insight. PLoS One, 7, 2012, e47845.
    • (2012) PLoS One , vol.7 , pp. e47845
    • Cologna, S.M.1
  • 75
    • 84938920704 scopus 로고    scopus 로고
    • The regulation of neuronal mitochondrial metabolism by calcium
    • 75 Llorente-Folch, I., The regulation of neuronal mitochondrial metabolism by calcium. J Physiol 593 (2015), 3447–3462.
    • (2015) J Physiol , vol.593 , pp. 3447-3462
    • Llorente-Folch, I.1
  • 76
    • 84975230128 scopus 로고    scopus 로고
    • The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes
    • 76 Garrity, A.G., et al. The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes. Elife 5 (2016), 1–18.
    • (2016) Elife , vol.5 , pp. 1-18
    • Garrity, A.G.1
  • 77
    • 11844278539 scopus 로고    scopus 로고
    • Enhanced calcium release in the acute neuronopathic form of Gaucher disease
    • 77 Pelled, D., et al. Enhanced calcium release in the acute neuronopathic form of Gaucher disease. Neurobiol Dis 18 (2005), 83–88.
    • (2005) Neurobiol Dis , vol.18 , pp. 83-88
    • Pelled, D.1
  • 78
    • 0043032816 scopus 로고    scopus 로고
    • 2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with n-butyldeoxynojirimycin
    • 2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with n-butyldeoxynojirimycin. J Biol Chem 278 (2003), 29496–29501.
    • (2003) J Biol Chem , vol.278 , pp. 29496-29501
    • Pelled, D.1
  • 79
    • 84958110808 scopus 로고    scopus 로고
    • 2+ stores are remodelled in GBA1-linked Parkinson disease patient fibroblasts
    • 2+ stores are remodelled in GBA1-linked Parkinson disease patient fibroblasts. Cell Calcium 59 (2015), 12–20.
    • (2015) Cell Calcium , vol.59 , pp. 12-20
    • Kilpatrick, B.S.1
  • 80
    • 82855165086 scopus 로고    scopus 로고
    • mnd mouse model of neuronal ceroid lipofuscinosis
    • mnd mouse model of neuronal ceroid lipofuscinosis. Cell Calcium 50 (2011), 491–501.
    • (2011) Cell Calcium , vol.50 , pp. 491-501
    • Kolikova, J.1
  • 81
    • 0033618336 scopus 로고    scopus 로고
    • Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons
    • 81 Korkotian, E., et al. Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons. J Biol Chem 274 (1999), 21673–21678.
    • (1999) J Biol Chem , vol.274 , pp. 21673-21678
    • Korkotian, E.1
  • 82
    • 84879627185 scopus 로고    scopus 로고
    • Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals
    • 82 Qiu, J., et al. Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals. Nat Commun 4 (2013), 1–12.
    • (2013) Nat Commun , vol.4 , pp. 1-12
    • Qiu, J.1
  • 83
    • 70449088871 scopus 로고    scopus 로고
    • 2+-dependent mitochondrial apoptosis
    • 2+-dependent mitochondrial apoptosis. Mol Cell 36 (2009), 500–511.
    • (2009) Mol Cell , vol.36 , pp. 500-511
    • Sano, R.1
  • 84
    • 84977119521 scopus 로고    scopus 로고
    • MCOLN1 is a ROS sensor in lysosomes that regulates autophagy
    • 84 Zhang, X., et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun 7 (2016), 1–12.
    • (2016) Nat Commun , vol.7 , pp. 1-12
    • Zhang, X.1
  • 85
    • 84925324770 scopus 로고    scopus 로고
    • Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation
    • 85 Wang, W., et al. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proc Natl Acad Sci 112 (2015), E1373–E1381.
    • (2015) Proc Natl Acad Sci , vol.112 , pp. E1373-E1381
    • Wang, W.1
  • 87
    • 55549134611 scopus 로고    scopus 로고
    • Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium
    • 87 Lloyd-evans, E., et al. Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14 (2010), 1247–1256.
    • (2010) Nat Med , vol.14 , pp. 1247-1256
    • Lloyd-evans, E.1
  • 88
    • 84957895369 scopus 로고    scopus 로고
    • Intracellular sphingosine releases calcium from lysosomes
    • 88 Hoglinger, D., et al. Intracellular sphingosine releases calcium from lysosomes. Elife 4 (2015), 1–20.
    • (2015) Elife , vol.4 , pp. 1-20
    • Hoglinger, D.1
  • 89
    • 36549035313 scopus 로고    scopus 로고
    • Lipofuscin formation, distribution, and metabolic consequences
    • 89 Jung, T., et al. Lipofuscin formation, distribution, and metabolic consequences. Ann N Y Acad Sci 1119 (2007), 97–111.
    • (2007) Ann N Y Acad Sci , vol.1119 , pp. 97-111
    • Jung, T.1
  • 90
    • 0030951610 scopus 로고    scopus 로고
    • Follow-up study of subunit c of mitochondrial ATP synthase (SCMAS) in Batten disease and in unrelated lysosomal disorders
    • 90 Elleder, M., et al. Follow-up study of subunit c of mitochondrial ATP synthase (SCMAS) in Batten disease and in unrelated lysosomal disorders. Acta Neuropathol 93 (1997), 379–390.
    • (1997) Acta Neuropathol , vol.93 , pp. 379-390
    • Elleder, M.1
  • 91
    • 0026539541 scopus 로고
    • Mitochondrial ATP synthase subunit c storage in the ceroid-lipofuscinoses (Batten disease)
    • 91 Palmer, D.N., et al. Mitochondrial ATP synthase subunit c storage in the ceroid-lipofuscinoses (Batten disease). Am J Med Genet 42 (1992), 561–567.
    • (1992) Am J Med Genet , vol.42 , pp. 561-567
    • Palmer, D.N.1
  • 92
    • 0033215063 scopus 로고    scopus 로고
    • Synucleins in synaptic plasticity and neurodegenerative disorders
    • 92 Clayton, D.F., George, J.M., Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res 58 (1999), 120–129.
    • (1999) J Neurosci Res , vol.58 , pp. 120-129
    • Clayton, D.F.1    George, J.M.2
  • 93
    • 84898665782 scopus 로고    scopus 로고
    • Biophysical groundwork as a hinge to unravel the biology of α-synuclein aggregation and toxicity
    • 93 Plotegher, N., et al. Biophysical groundwork as a hinge to unravel the biology of α-synuclein aggregation and toxicity. Q Rev Biophys 1 (2014), 1–48.
    • (2014) Q Rev Biophys , vol.1 , pp. 1-48
    • Plotegher, N.1
  • 94
    • 84897372532 scopus 로고    scopus 로고
    • Number and brightness analysis of alpha-synuclein oligomerization and the associated mitochondrial morphology alterations in live cells
    • 94 Plotegher, N., et al. Number and brightness analysis of alpha-synuclein oligomerization and the associated mitochondrial morphology alterations in live cells. Biochim Biophys Acta – Gen Subj 1840 (2014), 2014–2024.
    • (2014) Biochim Biophys Acta – Gen Subj , vol.1840 , pp. 2014-2024
    • Plotegher, N.1
  • 95
    • 79957974579 scopus 로고    scopus 로고
    • Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein
    • 95 Nakamura, K., et al. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein. J Biol Chem 286 (2011), 20710–20726.
    • (2011) J Biol Chem , vol.286 , pp. 20710-20726
    • Nakamura, K.1
  • 96
    • 84893521264 scopus 로고    scopus 로고
    • Human A53T α-synuclein causes reversible deficits in mitochondrial function and dynamics in primary mouse cortical neurons
    • 96 Li, L., et al. Human A53T α-synuclein causes reversible deficits in mitochondrial function and dynamics in primary mouse cortical neurons. PLoS One 8 (2013), 1–14.
    • (2013) PLoS One , vol.8 , pp. 1-14
    • Li, L.1
  • 97
    • 58149379599 scopus 로고    scopus 로고
    • Optical reporters for the conformation of alpha-synuclein reveal a specific interaction with mitochondria
    • 97 Nakamura, K., et al. Optical reporters for the conformation of alpha-synuclein reveal a specific interaction with mitochondria. J Neurosci 28 (2008), 12305–12317.
    • (2008) J Neurosci , vol.28 , pp. 12305-12317
    • Nakamura, K.1
  • 98
    • 84968831207 scopus 로고    scopus 로고
    • 2+ is a key factor in α-synuclein-induced neurotoxicity
    • 2+ is a key factor in α-synuclein-induced neurotoxicity. J Cell Sci 129 (2016), 1792–1801.
    • (2016) J Cell Sci , vol.129 , pp. 1792-1801
    • Angelova, P.R.1
  • 99
    • 84894350781 scopus 로고    scopus 로고
    • HMGB1 is involved in autophagy inhibition caused by SNCA/alpha-synuclein overexpression
    • 99 Song, J., et al. HMGB1 is involved in autophagy inhibition caused by SNCA/alpha-synuclein overexpression. Autophagy 10 (2014), 144–154.
    • (2014) Autophagy , vol.10 , pp. 144-154
    • Song, J.1
  • 100
    • 77957189194 scopus 로고    scopus 로고
    • Alpha-synuclein impairs macroautophagy: implications for Parkinson's disease
    • 100 Winslow, A.R., et al. Alpha-synuclein impairs macroautophagy: implications for Parkinson's disease. J Cell Biol 190 (2010), 1023–1037.
    • (2010) J Cell Biol , vol.190 , pp. 1023-1037
    • Winslow, A.R.1
  • 101
    • 80052538221 scopus 로고    scopus 로고
    • Aggregation of alpha-synuclein in brain samples from subjects with glucocerebrosidase mutations
    • 101 Choi, J.H., et al. Aggregation of alpha-synuclein in brain samples from subjects with glucocerebrosidase mutations. Mol Genet Metab 104 (2011), 185–188.
    • (2011) Mol Genet Metab , vol.104 , pp. 185-188
    • Choi, J.H.1
  • 102
    • 34948881759 scopus 로고    scopus 로고
    • Neuronal and glial accumulation of alpha- and beta-synucleins in human lipidoses
    • 102 Suzuki, K., et al. Neuronal and glial accumulation of alpha- and beta-synucleins in human lipidoses. Acta Neuropathol 114 (2007), 481–489.
    • (2007) Acta Neuropathol , vol.114 , pp. 481-489
    • Suzuki, K.1
  • 103
    • 0032923260 scopus 로고    scopus 로고
    • Microtubule-associated protein tau, heparan sulphate and α-synuclein in several neurodegenerative diseases with dementia
    • 103 Tolnay, M.G.S.M., Goedert, S.L.M., Microtubule-associated protein tau, heparan sulphate and α-synuclein in several neurodegenerative diseases with dementia. Acta Neuropathol 97 (1999), 585–594.
    • (1999) Acta Neuropathol , vol.97 , pp. 585-594
    • Tolnay, M.G.S.M.1    Goedert, S.L.M.2
  • 104
    • 41949126259 scopus 로고    scopus 로고
    • Mechanisms of neurodegeneration in mucopolysaccharidoses II and IIIB: analysis of human brain tissue
    • 104 Hamano, K., et al. Mechanisms of neurodegeneration in mucopolysaccharidoses II and IIIB: analysis of human brain tissue. Acta Neuropathol 115 (2008), 547–559.
    • (2008) Acta Neuropathol , vol.115 , pp. 547-559
    • Hamano, K.1
  • 105
    • 84908310492 scopus 로고    scopus 로고
    • Increased plasma oligomeric alpha-synuclein in patients with lysosomal storage diseases
    • 105 Pchelina, S.N., et al. Increased plasma oligomeric alpha-synuclein in patients with lysosomal storage diseases. Neurosci Lett 583 (2014), 188–193.
    • (2014) Neurosci Lett , vol.583 , pp. 188-193
    • Pchelina, S.N.1
  • 106
    • 84896738808 scopus 로고    scopus 로고
    • Altered levels of α-synuclein and sphingolipids in Batten disease lymphoblast cells
    • 106 Kang, S., et al. Altered levels of α-synuclein and sphingolipids in Batten disease lymphoblast cells. Gene 539 (2014), 181–185.
    • (2014) Gene , vol.539 , pp. 181-185
    • Kang, S.1
  • 107
    • 84994417460 scopus 로고    scopus 로고
    • Emerging therapies for neuropathic lysosomal storage disorders
    • Published online October 8
    • 107 Kelly, J.M., et al. Emerging therapies for neuropathic lysosomal storage disorders. Prog Neurobiol, 2016, 2016, 10.1016/j.pneurobio.2016.10.002 Published online October 8.
    • (2016) Prog Neurobiol , pp. 2016
    • Kelly, J.M.1
  • 108
    • 84969199737 scopus 로고    scopus 로고
    • Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration
    • 108 Zheng, X., et al. Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration. Elife 5 (2016), 1–23.
    • (2016) Elife , vol.5 , pp. 1-23
    • Zheng, X.1
  • 109
    • 67749122634 scopus 로고    scopus 로고
    • A gene network regulating lysosomal biogenesis and function
    • 109 Sardiello, M., et al. A gene network regulating lysosomal biogenesis and function. Science 325 (2009), 473–477.
    • (2009) Science , vol.325 , pp. 473-477
    • Sardiello, M.1
  • 110
    • 84953856105 scopus 로고    scopus 로고
    • GBA deficiency promotes SNCA/alpha-synuclein accumulation through autophagic inhibition by inactivated PPP2A
    • 110 Du, T.T., et al. GBA deficiency promotes SNCA/alpha-synuclein accumulation through autophagic inhibition by inactivated PPP2A. Autophagy 11 (2015), 1803–1820.
    • (2015) Autophagy , vol.11 , pp. 1803-1820
    • Du, T.T.1
  • 111
    • 34247161367 scopus 로고    scopus 로고
    • Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein
    • 111 Sarkar, S., et al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282 (2007), 5641–5652.
    • (2007) J Biol Chem , vol.282 , pp. 5641-5652
    • Sarkar, S.1
  • 112
    • 84902177925 scopus 로고    scopus 로고
    • Immunotherapy targeting α-synuclein protofibrils reduced pathology in (Thy-1)–h[A30P] α-synuclein mice
    • 112 Lindström, V., et al. Immunotherapy targeting α-synuclein protofibrils reduced pathology in (Thy-1)–h[A30P] α-synuclein mice. Neurobiol Dis 69 (2014), 134–143.
    • (2014) Neurobiol Dis , vol.69 , pp. 134-143
    • Lindström, V.1
  • 113
    • 84903971406 scopus 로고    scopus 로고
    • Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson's disease-like models
    • 113 Games, D., et al. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson's disease-like models. Proc Natl Acad Sci U S A 34 (2014), 9441–9454.
    • (2014) Proc Natl Acad Sci U S A , vol.34 , pp. 9441-9454
    • Games, D.1
  • 114
    • 84857260144 scopus 로고    scopus 로고
    • Lysosomal acidification mechanisms
    • 114 Mindell, J.A., Lysosomal acidification mechanisms. Annu Rev Physiol 74 (2012), 69–86.
    • (2012) Annu Rev Physiol , vol.74 , pp. 69-86
    • Mindell, J.A.1
  • 115
    • 0000313492 scopus 로고
    • Identification and characterization of a proton pump on lysosomes by fluorescein isothiocyanate-dextran fluorescence
    • 115 Ohkuma, S., et al. Identification and characterization of a proton pump on lysosomes by fluorescein isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A 79 (1982), 2758–2762.
    • (1982) Proc Natl Acad Sci U S A , vol.79 , pp. 2758-2762
    • Ohkuma, S.1
  • 116
    • 44849107047 scopus 로고    scopus 로고
    • + antiporter ClC-7 is the primary chloride permeation pathway in lysosomes
    • + antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453 (2008), 788–792.
    • (2008) Nature , vol.453 , pp. 788-792
    • Graves, A.R.1
  • 117
    • 84940392948 scopus 로고    scopus 로고
    • + channel regulating lysosomal function
    • + channel regulating lysosomal function. Cell 162 (2015), 1101–1112.
    • (2015) Cell , vol.162 , pp. 1101-1112
    • Cang, C.1
  • 118
    • 84874105202 scopus 로고    scopus 로고
    • + channels to adapt to metabolic state
    • + channels to adapt to metabolic state. Cell 152 (2013), 778–790.
    • (2013) Cell , vol.152 , pp. 778-790
    • Cang, C.1
  • 119
    • 33646344988 scopus 로고    scopus 로고
    • TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity
    • 119 Soyombo, A.A., et al. TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J Biol Chem 281 (2006), 7294–7301.
    • (2006) J Biol Chem , vol.281 , pp. 7294-7301
    • Soyombo, A.A.1
  • 120
    • 84882362568 scopus 로고    scopus 로고
    • Two pore channel 2 (TPC2) inhibits autophagosomal–lysosomal fusion by alkalinizing lysosomal pH
    • 120 Lu, Y., et al. Two pore channel 2 (TPC2) inhibits autophagosomal–lysosomal fusion by alkalinizing lysosomal pH. J Biol Chem 288 (2013), 24247–24263.
    • (2013) J Biol Chem , vol.288 , pp. 24247-24263
    • Lu, Y.1
  • 122
    • 84876812269 scopus 로고    scopus 로고
    • Signals from the lysosome: a control centre for cellular clearance and energy metabolism
    • 122 Settembre, C., et al. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nature 14 (2013), 283–296.
    • (2013) Nature , vol.14 , pp. 283-296
    • Settembre, C.1
  • 123
    • 84923820926 scopus 로고    scopus 로고
    • Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB
    • 123 Medina, D.L., et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 17 (2015), 288–299.
    • (2015) Nat Cell Biol , vol.17 , pp. 288-299
    • Medina, D.L.1
  • 124
    • 80051936634 scopus 로고    scopus 로고
    • A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter
    • 124 De Stefani, D., et al. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476 (2011), 336–340.
    • (2011) Nature , vol.476 , pp. 336-340
    • De Stefani, D.1
  • 125
    • 84939248947 scopus 로고    scopus 로고
    • The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction and role in pathophysiology
    • 125 Bernardi, P., et al. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction and role in pathophysiology. Physiol Rev 95 (2015), 1111–1155.
    • (2015) Physiol Rev , vol.95 , pp. 1111-1155
    • Bernardi, P.1
  • 126
    • 84994082431 scopus 로고    scopus 로고
    • The m-AAA protease associated with neurodegeneration limits MCU activity in mitochondria
    • 126 Konig, T., et al. The m-AAA protease associated with neurodegeneration limits MCU activity in mitochondria. Mol Cell 64 (2016), 148–162.
    • (2016) Mol Cell , vol.64 , pp. 148-162
    • Konig, T.1
  • 127
    • 84891011448 scopus 로고    scopus 로고
    • MICU1 motifs define mitochondrial calcium uniporter binding and activity
    • 127 Hoffman, N.E., et al. MICU1 motifs define mitochondrial calcium uniporter binding and activity. Cell Rep 5 (2013), 1576–1588.
    • (2013) Cell Rep , vol.5 , pp. 1576-1588
    • Hoffman, N.E.1
  • 128
    • 84966652095 scopus 로고    scopus 로고
    • MCUR1 is a scaffold factor for the MCU complex function and promotes mitochondrial bioenergetics
    • 128 Tomar, D., et al. MCUR1 is a scaffold factor for the MCU complex function and promotes mitochondrial bioenergetics. Cell Rep 15 (2016), 1673–1685.
    • (2016) Cell Rep , vol.15 , pp. 1673-1685
    • Tomar, D.1
  • 129
    • 84961774765 scopus 로고    scopus 로고
    • On the linkage between the ubiquitin-proteasome system and the mitochondria
    • 129 Lehmann, G., et al. On the linkage between the ubiquitin-proteasome system and the mitochondria. Biochem Biophys Res Commun 473 (2016), 80–86.
    • (2016) Biochem Biophys Res Commun , vol.473 , pp. 80-86
    • Lehmann, G.1
  • 130
    • 16844366524 scopus 로고    scopus 로고
    • Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
    • 130 Lemasters, J.J., Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8 (2005), 3–5.
    • (2005) Rejuvenation Res , vol.8 , pp. 3-5
    • Lemasters, J.J.1
  • 131
    • 84958605395 scopus 로고    scopus 로고
    • High-throughput real-time analysis of cell oxygenation using intracellular oxygen-sensitive probes
    • 131 Hynes, J., Carey, C., High-throughput real-time analysis of cell oxygenation using intracellular oxygen-sensitive probes. Methods Mol Biol 1264 (2015), 203–217.
    • (2015) Methods Mol Biol , vol.1264 , pp. 203-217
    • Hynes, J.1    Carey, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.