메뉴 건너뛰기




Volumn 127, Issue , 2016, Pages 23-36

The effect of immunosuppressive molecules on T-cell metabolic reprogramming

Author keywords

Aerobic glycolysis; Energetic metabolism; Immunosuppressive drugs; Metabolic reprogramming; Oxidative phosphorylation; T lymphocytes

Indexed keywords

ADENYLATE KINASE; CALCINEURIN INHIBITOR; CYCLOSPORIN A; HYPOXIA INDUCIBLE FACTOR 1ALPHA; IMMUNOSUPPRESSIVE AGENT; MAMMALIAN TARGET OF RAPAMYCIN; MERCAPTOPURINE; METHOTREXATE; MYC PROTEIN; MYCOPHENOLIC ACID; NUCLEOTIDE; PENTOSE PHOSPHATE; PURINE; RAPAMYCIN; TACROLIMUS;

EID: 84975885917     PISSN: 03009084     EISSN: 61831638     Source Type: Journal    
DOI: 10.1016/j.biochi.2016.04.016     Document Type: Review
Times cited : (51)

References (131)
  • 1
    • 84885670616 scopus 로고    scopus 로고
    • Fueling immunity: insights into metabolism and lymphocyte function
    • [1] Pearce, E.L., Poffenberger, M.C., Chang, C.H., Jones, R.G., Fueling immunity: insights into metabolism and lymphocyte function. Science, 342(6155), 2013, 1242454.
    • (2013) Science , vol.342 , Issue.6155 , pp. 1242454
    • Pearce, E.L.1    Poffenberger, M.C.2    Chang, C.H.3    Jones, R.G.4
  • 2
    • 84885377829 scopus 로고    scopus 로고
    • The Warburg effect then and now: from cancer to inflammatory diseases
    • [2] Palsson-McDermott, E.M., O'Neill, L.A., The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays 35:11 (2013), 965–973.
    • (2013) BioEssays , vol.35 , Issue.11 , pp. 965-973
    • Palsson-McDermott, E.M.1    O'Neill, L.A.2
  • 3
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: the metabolic requirements of cell proliferation
    • [3] Vander-Heiden, M.G., Cantley, L., Thompson, C.B., Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324 (2009), 1029–1033.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander-Heiden, M.G.1    Cantley, L.2    Thompson, C.B.3
  • 4
    • 84876758617 scopus 로고    scopus 로고
    • Metabolic pathways in immune cell activation and quiescence
    • [4] Pearce, E.L., Pearce, E.J., Metabolic pathways in immune cell activation and quiescence. Immunity 38:4 (2013), 633–643.
    • (2013) Immunity , vol.38 , Issue.4 , pp. 633-643
    • Pearce, E.L.1    Pearce, E.J.2
  • 5
    • 8144228566 scopus 로고    scopus 로고
    • Why do cancers have high aerobic glycolysis?
    • [5] Gatenby, R.A., Gillies, R.J., Why do cancers have high aerobic glycolysis?. Nat. Rev. Cancer 4 (2004), 891–899.
    • (2004) Nat. Rev. Cancer , vol.4 , pp. 891-899
    • Gatenby, R.A.1    Gillies, R.J.2
  • 6
    • 84865976786 scopus 로고    scopus 로고
    • Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review
    • [6] Porporato, P.E., Dhup, S., Dadhich, R.K., Copetti, T., Sonvenaux, P., Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front. Pharmacol. 2:49 (2011), 1–18.
    • (2011) Front. Pharmacol. , vol.2 , Issue.49 , pp. 1-18
    • Porporato, P.E.1    Dhup, S.2    Dadhich, R.K.3    Copetti, T.4    Sonvenaux, P.5
  • 7
    • 0016300146 scopus 로고
    • History of the Pasteur effect and its pathobiology
    • [7] Racker, E., History of the Pasteur effect and its pathobiology. Mol. Cell Biochem. 5 (1974), 17–23.
    • (1974) Mol. Cell Biochem. , vol.5 , pp. 17-23
    • Racker, E.1
  • 9
    • 84893190179 scopus 로고    scopus 로고
    • Activated lymphocytes as a metabolic model for carcinogenesis
    • [9] Macintyre, A.N., Rathmell, J.C., Activated lymphocytes as a metabolic model for carcinogenesis. Cancer Metab. 1 (2013), 1–12.
    • (2013) Cancer Metab. , vol.1 , pp. 1-12
    • Macintyre, A.N.1    Rathmell, J.C.2
  • 10
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • [10] Warburg, O., On the origin of cancer cells. Science 123:3191 (1956), 309–314.
    • (1956) Science , vol.123 , Issue.3191 , pp. 309-314
    • Warburg, O.1
  • 11
    • 84901428396 scopus 로고    scopus 로고
    • Regulation of cancer metabolism by oncogenes and tumor suppressors
    • [11] Iurlaro, R., León-Annicchiarico, C.L., Muñoz-Pinedo, C., Regulation of cancer metabolism by oncogenes and tumor suppressors. Methods Enzymol. 542 (2014), 59–80.
    • (2014) Methods Enzymol. , vol.542 , pp. 59-80
    • Iurlaro, R.1    León-Annicchiarico, C.L.2    Muñoz-Pinedo, C.3
  • 13
    • 78049295120 scopus 로고    scopus 로고
    • Aerobic glycolysis suppresses p53 activity to provide selective protection from apoptosis upon loss of growth signals or inhibition of BCR-AbI
    • [13] Mason, E.F., Zhao, Y., Goraksha-Hicks, P., Coloff, J.L., Gannon, H., Jones, S.N., et al. Aerobic glycolysis suppresses p53 activity to provide selective protection from apoptosis upon loss of growth signals or inhibition of BCR-AbI. Cancer Res. 70:20 (2010), 8066–8076.
    • (2010) Cancer Res. , vol.70 , Issue.20 , pp. 8066-8076
    • Mason, E.F.1    Zhao, Y.2    Goraksha-Hicks, P.3    Coloff, J.L.4    Gannon, H.5    Jones, S.N.6
  • 14
    • 84865294745 scopus 로고    scopus 로고
    • Metabolic reprogramming and metabolic dependency in T cells
    • [14] Wang, R., Green, D.R., Metabolic reprogramming and metabolic dependency in T cells. Immunol. Rev. 249 (2012), 14–26.
    • (2012) Immunol. Rev. , vol.249 , pp. 14-26
    • Wang, R.1    Green, D.R.2
  • 15
    • 84922468705 scopus 로고    scopus 로고
    • Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport
    • [15] Yang, C., Ko, B., Hensley, C.T., Jiang, L., Wasti, A.T., Kim, J., et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell. 56:3 (2014), 414–424.
    • (2014) Mol. Cell. , vol.56 , Issue.3 , pp. 414-424
    • Yang, C.1    Ko, B.2    Hensley, C.T.3    Jiang, L.4    Wasti, A.T.5    Kim, J.6
  • 17
    • 84881177291 scopus 로고    scopus 로고
    • Serine, glycine and one-carbon units: cancer metabolism in full circle
    • [17] Locasale, J.W., Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13 (2013), 572–583.
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 572-583
    • Locasale, J.W.1
  • 18
    • 84947591002 scopus 로고    scopus 로고
    • T cell metabolism drives immunity
    • [18] Buck, M.D., O'Sullivan, D., Pearce, E.L., T cell metabolism drives immunity. J. Exp. Med. 212:9 (2015), 1345–1360.
    • (2015) J. Exp. Med. , vol.212 , Issue.9 , pp. 1345-1360
    • Buck, M.D.1    O'Sullivan, D.2    Pearce, E.L.3
  • 19
    • 84907212907 scopus 로고    scopus 로고
    • Metabolic control of cell death
    • [19] Green, D.R., Galluzzi, L., Kroemer, G., Metabolic control of cell death. Science, 345(6203), 2014, 1250256.
    • (2014) Science , vol.345 , Issue.6203 , pp. 1250256
    • Green, D.R.1    Galluzzi, L.2    Kroemer, G.3
  • 20
    • 0035795985 scopus 로고    scopus 로고
    • An overview of the immune system
    • [20] Parkin, J., Cohen, B., An overview of the immune system. Lancet 357 (2001), 1777–1789.
    • (2001) Lancet , vol.357 , pp. 1777-1789
    • Parkin, J.1    Cohen, B.2
  • 21
    • 77953534607 scopus 로고    scopus 로고
    • Metabolism in T cell activation and differentiation
    • [21] Pearce, E.L., Metabolism in T cell activation and differentiation. Curr. Opin. Immunol. 22:3 (2010), 314–320.
    • (2010) Curr. Opin. Immunol. , vol.22 , Issue.3 , pp. 314-320
    • Pearce, E.L.1
  • 22
    • 84961290082 scopus 로고    scopus 로고
    • Targeting T cell metabolism for therapy
    • [22] O'Sullivan, D., Pearce, E.L., Targeting T cell metabolism for therapy. Trends Immunol. 36 (2015), 71–80.
    • (2015) Trends Immunol. , vol.36 , pp. 71-80
    • O'Sullivan, D.1    Pearce, E.L.2
  • 23
    • 84903277871 scopus 로고    scopus 로고
    • Integrating canonical and metabolic signalling programmes in the regulation of T cell responses
    • [23] Pollizzi, K.N., Powell, J.D., Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat. Rev. Immunol. 14:7 (2014), 435–446.
    • (2014) Nat. Rev. Immunol. , vol.14 , Issue.7 , pp. 435-446
    • Pollizzi, K.N.1    Powell, J.D.2
  • 24
    • 0032502801 scopus 로고    scopus 로고
    • Homeostasis and self-tolerance in the immune system: turning lymphocytes off
    • [24] Parijs, L.V., Abbas, A.K., Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280 (1998), 243–248.
    • (1998) Science , vol.280 , pp. 243-248
    • Parijs, L.V.1    Abbas, A.K.2
  • 25
    • 84904392273 scopus 로고    scopus 로고
    • Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development
    • [25] O'Sullivan, D., van der Windt, G.J., Huang, S.C., Curtis, J.D., Chang, C.H., Buck, M.D., et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41:1 (2014), 75–88.
    • (2014) Immunity , vol.41 , Issue.1 , pp. 75-88
    • O'Sullivan, D.1    van der Windt, G.J.2    Huang, S.C.3    Curtis, J.D.4    Chang, C.H.5    Buck, M.D.6
  • 26
    • 84905510173 scopus 로고    scopus 로고
    • Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells
    • [26] Cao, Y., Rathmell, J.C., Macintyre, A.N., Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS One, 9(8), 2014, e104104.
    • (2014) PLoS One , vol.9 , Issue.8 , pp. e104104
    • Cao, Y.1    Rathmell, J.C.2    Macintyre, A.N.3
  • 27
    • 70249099576 scopus 로고    scopus 로고
    • Interdependence of hypoxic and innate immune responses
    • [27] Nizet, V., Johnson, R.S., Interdependence of hypoxic and innate immune responses. Nat. Rev. Immunol. 9 (2009), 609–617.
    • (2009) Nat. Rev. Immunol. , vol.9 , pp. 609-617
    • Nizet, V.1    Johnson, R.S.2
  • 28
    • 0038326642 scopus 로고    scopus 로고
    • Differential control of cell cycle, proliferation, and survival of primary T lymphocytes by purine and pyrimidine nucleotides
    • [28] Quemeneur, L., Gerland, L.M., Flacher, M., Ffrench, M., Revillard, J.P., Genestier, L., Differential control of cell cycle, proliferation, and survival of primary T lymphocytes by purine and pyrimidine nucleotides. J. Immunol. 170:10 (2003), 4986–4995.
    • (2003) J. Immunol. , vol.170 , Issue.10 , pp. 4986-4995
    • Quemeneur, L.1    Gerland, L.M.2    Flacher, M.3    Ffrench, M.4    Revillard, J.P.5    Genestier, L.6
  • 29
    • 84922326745 scopus 로고    scopus 로고
    • Purinosome formation as a function of the cell cycle
    • [29] Chan, C.Y., Zhao, H., Pugh, R.J., et al. Purinosome formation as a function of the cell cycle. PNAS 112:5 (2015), 1368–1373.
    • (2015) PNAS , vol.112 , Issue.5 , pp. 1368-1373
    • Chan, C.Y.1    Zhao, H.2    Pugh, R.J.3
  • 30
    • 0003308915 scopus 로고    scopus 로고
    • Purine and pyrimidine nucleotide synthesis and metabolism
    • e0018. doi: 10.1199/tab.0018
    • [30] Moffatt, B.A., Ashihara, H., Purine and pyrimidine nucleotide synthesis and metabolism. Arab. Book, 1, 2002, e0018. doi: 10.1199/tab.0018.
    • (2002) Arab. Book, 1
    • Moffatt, B.A.1    Ashihara, H.2
  • 31
    • 84905187426 scopus 로고    scopus 로고
    • Regulation of the pentose phosphate pathway in cancer
    • [31] Jiang, P., Du, W., Wu, M., Regulation of the pentose phosphate pathway in cancer. Protein Cell. 5:8 (2014), 592–602.
    • (2014) Protein Cell. , vol.5 , Issue.8 , pp. 592-602
    • Jiang, P.1    Du, W.2    Wu, M.3
  • 32
    • 60949083613 scopus 로고    scopus 로고
    • The molecular determinants of de novo nucleotide biosynthesis in cancer cells
    • [32] Tong, X., Zhao, F., Thompson, C.B., The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr. Opin. Genet. Dev. 19:1 (2009), 32–37.
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , Issue.1 , pp. 32-37
    • Tong, X.1    Zhao, F.2    Thompson, C.B.3
  • 33
    • 84897935083 scopus 로고    scopus 로고
    • Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies
    • [33] Phan, L.M., Yeung, S.C.J., Lee, M.H., Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med. 11 (2014), 1–19.
    • (2014) Cancer Biol. Med. , vol.11 , pp. 1-19
    • Phan, L.M.1    Yeung, S.C.J.2    Lee, M.H.3
  • 34
    • 84866562625 scopus 로고    scopus 로고
    • Metabolic checkpoints in activated T cells
    • [34] Wang, R., Green, D.R., Metabolic checkpoints in activated T cells. Nat. Immunol. 13:10 (2012), 907–915.
    • (2012) Nat. Immunol. , vol.13 , Issue.10 , pp. 907-915
    • Wang, R.1    Green, D.R.2
  • 35
    • 0033930340 scopus 로고    scopus 로고
    • The rate of cell growth is regulated by purine biosynthesis via ATP production and G1 to S phase transition
    • [35] Kondo, M., Yamaoka, T., Honda, S., Miwa, Y., Katashima, R., Moritani, M., et al. The rate of cell growth is regulated by purine biosynthesis via ATP production and G1 to S phase transition. J. Biochem. 128 (2000), 57–64.
    • (2000) J. Biochem. , vol.128 , pp. 57-64
    • Kondo, M.1    Yamaoka, T.2    Honda, S.3    Miwa, Y.4    Katashima, R.5    Moritani, M.6
  • 36
    • 30044432116 scopus 로고    scopus 로고
    • Nucleotide Biosynthesis
    • W. Freeman sixth ed. New York
    • [36] Stryer, L., Berg, J.M., Tymoczko, J.L., Nucleotide Biosynthesis. Freeman, W., (eds.) Biochemistry, sixth ed., 2007 New York.
    • (2007) Biochemistry
    • Stryer, L.1    Berg, J.M.2    Tymoczko, J.L.3
  • 37
    • 0034045586 scopus 로고    scopus 로고
    • Mycophenolate mofetil and its mechanisms of action
    • [37] Allison, A.C., Eugui, E.M., Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 47 (2000), 85–118.
    • (2000) Immunopharmacology , vol.47 , pp. 85-118
    • Allison, A.C.1    Eugui, E.M.2
  • 38
    • 0027189955 scopus 로고
    • The design and development of an immunosuppressive drug, mycophenolate mofetil
    • [38] Allison, A.C., Eugui, E.M., The design and development of an immunosuppressive drug, mycophenolate mofetil. Springer Semin. Immunopathol. 14 (1993), 353–380.
    • (1993) Springer Semin. Immunopathol. , vol.14 , pp. 353-380
    • Allison, A.C.1    Eugui, E.M.2
  • 39
    • 0032523010 scopus 로고    scopus 로고
    • Effects of guanine nucleotide depletion on cell cycle progression in human T lymphocytes
    • [39] Laliberté, J., Yee, A., Xiong, Y., Mitchell, B.S., Effects of guanine nucleotide depletion on cell cycle progression in human T lymphocytes. Blood 91:8 (1998), 2896–2904.
    • (1998) Blood , vol.91 , Issue.8 , pp. 2896-2904
    • Laliberté, J.1    Yee, A.2    Xiong, Y.3    Mitchell, B.S.4
  • 40
    • 0036721788 scopus 로고    scopus 로고
    • Mycophenolic acid inhibits IL-2-Dependent T cell proliferation, But Not IL-2-dependent survival and sensitization to apoptosis
    • [40] Quemeneur, L., Flacher, M., Gerland, L.M., Ffrench, M., Revillard, J.P., Bonnefoy-Berard, N., Mycophenolic acid inhibits IL-2-Dependent T cell proliferation, But Not IL-2-dependent survival and sensitization to apoptosis. J. Immunol. 169:5 (2002), 2747–2755.
    • (2002) J. Immunol. , vol.169 , Issue.5 , pp. 2747-2755
    • Quemeneur, L.1    Flacher, M.2    Gerland, L.M.3    Ffrench, M.4    Revillard, J.P.5    Bonnefoy-Berard, N.6
  • 41
    • 24644461627 scopus 로고    scopus 로고
    • Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy
    • [41] Taylor, A.L., Watson, C.J., Bradley, J.A., Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy. Crit. Rev. Oncol. Hematol. 56:1 (2005), 23–46.
    • (2005) Crit. Rev. Oncol. Hematol. , vol.56 , Issue.1 , pp. 23-46
    • Taylor, A.L.1    Watson, C.J.2    Bradley, J.A.3
  • 43
    • 84872159532 scopus 로고    scopus 로고
    • AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo
    • [43] Faubert, B., Boily, G., Izreig, S., Griss, T., Samborska, B., Dong, Z., et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 17 (2013), 113–124.
    • (2013) Cell Metab. , vol.17 , pp. 113-124
    • Faubert, B.1    Boily, G.2    Izreig, S.3    Griss, T.4    Samborska, B.5    Dong, Z.6
  • 44
    • 84862908818 scopus 로고    scopus 로고
    • AMPK and mTOR in cellular energy homeostasis and drug targets
    • [44] Inoki, K., Kim, J., Guan, K.L., AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52 (2012), 381–400.
    • (2012) Annu. Rev. Pharmacol. Toxicol. , vol.52 , pp. 381-400
    • Inoki, K.1    Kim, J.2    Guan, K.L.3
  • 45
    • 84921309472 scopus 로고    scopus 로고
    • The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo
    • [45] Blagih, J., Coulombe, F., Vincent, E.E., Dupuy, F., Galicia-Vazquez, G., Yurchenko, E., et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42:1 (2015), 41–54.
    • (2015) Immunity , vol.42 , Issue.1 , pp. 41-54
    • Blagih, J.1    Coulombe, F.2    Vincent, E.E.3    Dupuy, F.4    Galicia-Vazquez, G.5    Yurchenko, E.6
  • 48
    • 84890353160 scopus 로고    scopus 로고
    • Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer
    • [48] Marini, C., Salani, B., Massollo, M., Amaro, A., Esposito, A.I., Orengo, A.M., et al. Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle 12:22 (2013), 3490–3499.
    • (2013) Cell Cycle , vol.12 , Issue.22 , pp. 3490-3499
    • Marini, C.1    Salani, B.2    Massollo, M.3    Amaro, A.4    Esposito, A.I.5    Orengo, A.M.6
  • 49
    • 77952116629 scopus 로고    scopus 로고
    • Metformin in cancer therapy: a new perspective for an old antidiabetic drug?
    • [49] Sahra, I.B., Marchand-Brustel, Y.L., Tanti, J.-F., Bost, F., Metformin in cancer therapy: a new perspective for an old antidiabetic drug?. Mol. Cancer Ther. 9:5 (2010), 1092–1099.
    • (2010) Mol. Cancer Ther. , vol.9 , Issue.5 , pp. 1092-1099
    • Sahra, I.B.1    Marchand-Brustel, Y.L.2    Tanti, J.-F.3    Bost, F.4
  • 50
    • 84865301337 scopus 로고    scopus 로고
    • mTOR, metabolism, and the regulation of T-cell differentiation and function
    • [50] Waickman, A.T., Powell, J.D., mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol. Rev. 249 (2012), 43–58.
    • (2012) Immunol. Rev. , vol.249 , pp. 43-58
    • Waickman, A.T.1    Powell, J.D.2
  • 51
    • 84860237060 scopus 로고    scopus 로고
    • Regulation and function of mTOR signalling in T cell fate decisions
    • [51] Chi, H., Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12:5 (2012), 325–338.
    • (2012) Nat. Rev. Immunol. , vol.12 , Issue.5 , pp. 325-338
    • Chi, H.1
  • 52
    • 54549089738 scopus 로고    scopus 로고
    • Hypoxia signaling through mTOR and the unfolded protein response in cancer
    • [52] Wouters, B.G., Koritzinsky, M., Hypoxia signaling through mTOR and the unfolded protein response in cancer. Nat. Rev. Cancer 8 (2008), 851–864.
    • (2008) Nat. Rev. Cancer , vol.8 , pp. 851-864
    • Wouters, B.G.1    Koritzinsky, M.2
  • 54
    • 84894105147 scopus 로고    scopus 로고
    • Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition
    • [54] Roberts, D.J., Tan-Sah, V.P., Ding, E.Y., Smith, J.M., Miyamoto, S., Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol. Cell. 53 (2014), 521–533.
    • (2014) Mol. Cell. , vol.53 , pp. 521-533
    • Roberts, D.J.1    Tan-Sah, V.P.2    Ding, E.Y.3    Smith, J.M.4    Miyamoto, S.5
  • 55
    • 46149092748 scopus 로고    scopus 로고
    • Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment
    • [55] Jiang, B.-H., Liu, L.-Z., Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist. Uptdate 11 (2008), 63–76.
    • (2008) Drug Resist. Uptdate , vol.11 , pp. 63-76
    • Jiang, B.-H.1    Liu, L.-Z.2
  • 56
    • 84916898065 scopus 로고    scopus 로고
    • Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling
    • [56] Zhdanov, A.V., Waters, A.H., Golubeva, A.V., Papkovsky, D.B., Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling. Exp. Cell Res. 330:1 (2015), 13–28.
    • (2015) Exp. Cell Res. , vol.330 , Issue.1 , pp. 13-28
    • Zhdanov, A.V.1    Waters, A.H.2    Golubeva, A.V.3    Papkovsky, D.B.4
  • 57
    • 19944433653 scopus 로고    scopus 로고
    • Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-1a prolyl hydroxylase
    • [57] Selak, M.A., Armour, S.M., MacKenzie, E.D., Boulahbel, H., Watson, D.G., Mansfield, K.D., et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-1a prolyl hydroxylase. Cancer Cell 7 (2005), 77–85.
    • (2005) Cancer Cell , vol.7 , pp. 77-85
    • Selak, M.A.1    Armour, S.M.2    MacKenzie, E.D.3    Boulahbel, H.4    Watson, D.G.5    Mansfield, K.D.6
  • 58
    • 79951829343 scopus 로고    scopus 로고
    • Hypoxia and inflammation
    • [58] Eltzschig, H.K., Carmeliet, P., Hypoxia and inflammation. NEJM 364 (2011), 656–665.
    • (2011) NEJM , vol.364 , pp. 656-665
    • Eltzschig, H.K.1    Carmeliet, P.2
  • 60
    • 84920591180 scopus 로고    scopus 로고
    • Pyruvate kinase M2 regulates Hif-1a activity and IL-1B induction and is a critical determinant of the Warburg effect in LPS-activated macrophages
    • [60] Palsson-McDermott, E.M., Curtis, A.M., Goel, G., Lauterbach, M.A., Sheedy, F.J., Gleeson, L.E., et al. Pyruvate kinase M2 regulates Hif-1a activity and IL-1B induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21 (2015), 65–80.
    • (2015) Cell Metab. , vol.21 , pp. 65-80
    • Palsson-McDermott, E.M.1    Curtis, A.M.2    Goel, G.3    Lauterbach, M.A.4    Sheedy, F.J.5    Gleeson, L.E.6
  • 62
    • 84255199079 scopus 로고    scopus 로고
    • The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
    • [62] Wang, R., Dillon, C.P., Shi, L.Z., Milasta, S., Carter, R., Finkelstein, D., et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:6 (2011), 871–882.
    • (2011) Immunity , vol.35 , Issue.6 , pp. 871-882
    • Wang, R.1    Dillon, C.P.2    Shi, L.Z.3    Milasta, S.4    Carter, R.5    Finkelstein, D.6
  • 64
    • 84904057246 scopus 로고    scopus 로고
    • The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function
    • [64] Macintyre, A.N., Gerriets, V.A., Nichols, A.G., Michalek, R.D., Rudolph, M.C., Deoliveira, D., et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20:1 (2014), 61–72.
    • (2014) Cell Metab. , vol.20 , Issue.1 , pp. 61-72
    • Macintyre, A.N.1    Gerriets, V.A.2    Nichols, A.G.3    Michalek, R.D.4    Rudolph, M.C.5    Deoliveira, D.6
  • 65
    • 84876514626 scopus 로고    scopus 로고
    • Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation
    • [65] Sinclair, L.V., Rolf, J., Emslie, E., Shi, Y.B., Taylor, P.M., Cantrell, D.A., Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14:5 (2013), 500–508.
    • (2013) Nat. Immunol. , vol.14 , Issue.5 , pp. 500-508
    • Sinclair, L.V.1    Rolf, J.2    Emslie, E.3    Shi, Y.B.4    Taylor, P.M.5    Cantrell, D.A.6
  • 66
    • 84929008302 scopus 로고    scopus 로고
    • + T cell differentiation
    • + T cell differentiation. J. Clin. Investig., 125(5), 2015, 2090–2108.
    • (2015) J. Clin. Investig. , vol.125 , Issue.5 , pp. 2090-2108
    • Pollizzi, K.N.1
  • 67
    • 84890137621 scopus 로고    scopus 로고
    • T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming
    • [67] Yang, K., Shrestha, S., Zeng, H., Karmaus, P.W., Neale, G., Vogel, P., et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39:6 (2013), 1043–1056.
    • (2013) Immunity , vol.39 , Issue.6 , pp. 1043-1056
    • Yang, K.1    Shrestha, S.2    Zeng, H.3    Karmaus, P.W.4    Neale, G.5    Vogel, P.6
  • 68
    • 80052277906 scopus 로고    scopus 로고
    • Control of TH17/Treg balance by hypoxia-inducible factor 1
    • [68] Dang, E.V., Barbi, J., Yang, H.Y., Jinasena, D., Yu, H., Zheng, Y., et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell Metab. 146 (2011), 772–784.
    • (2011) Cell Metab. , vol.146 , pp. 772-784
    • Dang, E.V.1    Barbi, J.2    Yang, H.Y.3    Jinasena, D.4    Yu, H.5    Zheng, Y.6
  • 69
    • 79960369458 scopus 로고    scopus 로고
    • HIF1a-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of Th17 and Treg cells
    • [69] Shi, L.Z., Wang, R., Huang, G., Vogel, P., Neale, G., Green, D.R., et al. HIF1a-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of Th17 and Treg cells. JEM 208 (2011), 1367–1376.
    • (2011) JEM , vol.208 , pp. 1367-1376
    • Shi, L.Z.1    Wang, R.2    Huang, G.3    Vogel, P.4    Neale, G.5    Green, D.R.6
  • 70
    • 84867381718 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hpoxia of the mucosa
    • [70] Clambey, E.T., McNamee, E.N., Westrich, J.A., Glover, L.E., Campbell, E.L., Jedlicka, P., et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hpoxia of the mucosa. PNAS 17 (2012), 2784–2793.
    • (2012) PNAS , vol.17 , pp. 2784-2793
    • Clambey, E.T.1    McNamee, E.N.2    Westrich, J.A.3    Glover, L.E.4    Campbell, E.L.5    Jedlicka, P.6
  • 71
    • 84925688346 scopus 로고    scopus 로고
    • PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation
    • [71] Patsoukis, N., Bardhan, K., Chatterjee, P., Sari, D., Liu, B., Bell, L.N., et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun., 6, 2015, 6692.
    • (2015) Nat. Commun. , vol.6 , pp. 6692
    • Patsoukis, N.1    Bardhan, K.2    Chatterjee, P.3    Sari, D.4    Liu, B.5    Bell, L.N.6
  • 73
    • 84957080574 scopus 로고    scopus 로고
    • Immunosuppressive medications
    • [73] Wiseman, A.C., Immunosuppressive medications. CJASN, 11(2), 2016, 332-343.
    • (2016) CJASN , vol.11 , Issue.2 , pp. 332-343
    • Wiseman, A.C.1
  • 74
    • 10844292763 scopus 로고    scopus 로고
    • Immunosuppressive drugs fot kidney transplantation
    • [74] Halloran, P.F., Immunosuppressive drugs fot kidney transplantation. NEJM 351:26 (2004), 2715–2729.
    • (2004) NEJM , vol.351 , Issue.26 , pp. 2715-2729
    • Halloran, P.F.1
  • 75
    • 40549094648 scopus 로고    scopus 로고
    • Interleukin-2 receptor downstream events in regulatory T cells: implications for the choice of immunosuppressive drug therapy
    • [75] Zeiser, R., Negrin, R.S., Interleukin-2 receptor downstream events in regulatory T cells: implications for the choice of immunosuppressive drug therapy. Cell Cycle 7:4 (2008), 458–462.
    • (2008) Cell Cycle , vol.7 , Issue.4 , pp. 458-462
    • Zeiser, R.1    Negrin, R.S.2
  • 76
    • 0034098326 scopus 로고    scopus 로고
    • Immunosuppressive drugs: the first 50 years and a glance forward
    • [76] Allison, A.C., Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology 47 (2000), 63–83.
    • (2000) Immunopharmacology , vol.47 , pp. 63-83
    • Allison, A.C.1
  • 77
    • 84863078767 scopus 로고    scopus 로고
    • Everolimus in Postmenopausal Hormone-Receptor-Positive Advanced Breast Cancer
    • [77] Baselga, J., Campone, M., Piccart, M., Burris, H.A., Rugo, H.S., Sahmoud, T., et al. Everolimus in Postmenopausal Hormone-Receptor-Positive Advanced Breast Cancer. NEJM 366:6 (2012), 520–529.
    • (2012) NEJM , vol.366 , Issue.6 , pp. 520-529
    • Baselga, J.1    Campone, M.2    Piccart, M.3    Burris, H.A.4    Rugo, H.S.5    Sahmoud, T.6
  • 78
    • 84959209910 scopus 로고    scopus 로고
    • Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases
    • [78] Perl, A., Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat. Rev. Rheumatol. 12 (2016), 169–182.
    • (2016) Nat. Rev. Rheumatol. , vol.12 , pp. 169-182
    • Perl, A.1
  • 79
    • 84927626238 scopus 로고    scopus 로고
    • A translational, pharmacodynamic, and pharmacokinetic phase IB clinical study of Everolimus in resectable non-small cell lung cancer
    • [79] Owonikoko, T.K., Ramalingam, S.S., Miller, D.L., A translational, pharmacodynamic, and pharmacokinetic phase IB clinical study of Everolimus in resectable non-small cell lung cancer. Clin. Cancer Res. 21 (2015), 1859–1868.
    • (2015) Clin. Cancer Res. , vol.21 , pp. 1859-1868
    • Owonikoko, T.K.1    Ramalingam, S.S.2    Miller, D.L.3
  • 80
    • 34447570485 scopus 로고    scopus 로고
    • Everolimus: an immunosuppressive agent in transplantation
    • [80] Patel, J.K., Kobashigawa, J.A., Everolimus: an immunosuppressive agent in transplantation. Expert Opin. Pharmacother. 7:10 (2006), 1347–1355.
    • (2006) Expert Opin. Pharmacother. , vol.7 , Issue.10 , pp. 1347-1355
    • Patel, J.K.1    Kobashigawa, J.A.2
  • 81
    • 77957054466 scopus 로고    scopus 로고
    • The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism
    • [81] Powell, J.D., Delgoffe, G.M., The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immun. Rev. 33 (2010), 301–311.
    • (2010) Immun. Rev. , vol.33 , pp. 301-311
    • Powell, J.D.1    Delgoffe, G.M.2
  • 82
    • 84899562139 scopus 로고    scopus 로고
    • Mechanistic target of rapamycin complex 1 expands Th17 and IL4+ CD4-CD8- double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus
    • [82] Kato, H., Perl, A., Mechanistic target of rapamycin complex 1 expands Th17 and IL4+ CD4-CD8- double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus. J. Immunol. 192 (2014), 4134–4144.
    • (2014) J. Immunol. , vol.192 , pp. 4134-4144
    • Kato, H.1    Perl, A.2
  • 83
    • 84938927002 scopus 로고    scopus 로고
    • Persistent antigen and prolonged AKT-mTORC1 activation underlie memory CD8 T cell impairment in the absence of CD4 T cells
    • [83] Li, Y., Shen, C., Zhu, B., Shi, F., Eisen, H.N., Chen, J., Persistent antigen and prolonged AKT-mTORC1 activation underlie memory CD8 T cell impairment in the absence of CD4 T cells. J. Immunol. 195 (2015), 1591–1598.
    • (2015) J. Immunol. , vol.195 , pp. 1591-1598
    • Li, Y.1    Shen, C.2    Zhu, B.3    Shi, F.4    Eisen, H.N.5    Chen, J.6
  • 84
    • 84908432145 scopus 로고    scopus 로고
    • The effects of rapamycin on regulatory T cells: its potential time-dependent role in inducing transplant tolerance
    • [84] Shan, J., Feng, L., Li, Y., Sun, G., Chen, X., Chen, P., The effects of rapamycin on regulatory T cells: its potential time-dependent role in inducing transplant tolerance. Immunol. Lett. 162 (2014), 74–86.
    • (2014) Immunol. Lett. , vol.162 , pp. 74-86
    • Shan, J.1    Feng, L.2    Li, Y.3    Sun, G.4    Chen, X.5    Chen, P.6
  • 85
    • 19944427094 scopus 로고    scopus 로고
    • Tacrolimus suppresses glucose-induced release from pancreatic islets by reducing glucokinase activity
    • [85] Radu, R.G., Fujimoto, S., Mukai, E., Takehiro, M., Shimono, D., Nabe, K., et al. Tacrolimus suppresses glucose-induced release from pancreatic islets by reducing glucokinase activity. Am. J. Physiol. Endocrinol. Metab. 288 (2004), E365–E371.
    • (2004) Am. J. Physiol. Endocrinol. Metab. , vol.288 , pp. E365-E371
    • Radu, R.G.1    Fujimoto, S.2    Mukai, E.3    Takehiro, M.4    Shimono, D.5    Nabe, K.6
  • 88
    • 84907677279 scopus 로고    scopus 로고
    • Cyclosporine A and Tacrolimus reduce the amount of GLUT4 at the cell surface in human adipocytes: increased endocytosis as a potential mechanism for the diabetogenic effects of immunosuppressive agents
    • [88] Pereira, M.J., Palming, J., Rizell, M., Aureliano, M., Carvalho, E., Svensson, M.K., et al. Cyclosporine A and Tacrolimus reduce the amount of GLUT4 at the cell surface in human adipocytes: increased endocytosis as a potential mechanism for the diabetogenic effects of immunosuppressive agents. J. Clin. Endocrinol. Metab. 99:10 (2014), E1885–E1894.
    • (2014) J. Clin. Endocrinol. Metab. , vol.99 , Issue.10 , pp. E1885-E1894
    • Pereira, M.J.1    Palming, J.2    Rizell, M.3    Aureliano, M.4    Carvalho, E.5    Svensson, M.K.6
  • 89
    • 0034124993 scopus 로고    scopus 로고
    • Applications of tacrolimus for the treatment of skin disorders
    • [89] Assmann, T., Homey, B., Ruzicka, T., Applications of tacrolimus for the treatment of skin disorders. Immunopharmacology 47 (2000), 203–213.
    • (2000) Immunopharmacology , vol.47 , pp. 203-213
    • Assmann, T.1    Homey, B.2    Ruzicka, T.3
  • 90
    • 0141926677 scopus 로고    scopus 로고
    • Atopic dermatitis management with tacrolimus ointment (Protopic)
    • [90] Kapp, A., Allen, B., Reitamo, S., Atopic dermatitis management with tacrolimus ointment (Protopic). Dermatol. Treat. 14:Suppl 1 (2003), 5–16.
    • (2003) Dermatol. Treat. , vol.14 , Issue.Suppl 1 , pp. 5-16
    • Kapp, A.1    Allen, B.2    Reitamo, S.3
  • 91
    • 4344580940 scopus 로고    scopus 로고
    • Tacrolimus therapy in rheumatoid arthritis
    • [91] McCarey, D., Capell, H., Madhok, R., Tacrolimus therapy in rheumatoid arthritis. Rheumatol. Oxf. 43:8 (2004), 946–948.
    • (2004) Rheumatol. Oxf. , vol.43 , Issue.8 , pp. 946-948
    • McCarey, D.1    Capell, H.2    Madhok, R.3
  • 92
    • 3142694952 scopus 로고    scopus 로고
    • Cyclosporin in the treatment of severe atopic dermatitis: a retrospective study
    • [92] Lee, S., Tan, A., Giam, Y., Cyclosporin in the treatment of severe atopic dermatitis: a retrospective study. Ann. Acad. Med. Singap. 33:3 (2004), 311–313.
    • (2004) Ann. Acad. Med. Singap. , vol.33 , Issue.3 , pp. 311-313
    • Lee, S.1    Tan, A.2    Giam, Y.3
  • 93
    • 0027523369 scopus 로고
    • Cyclosporin A in rheumatoid arthritis: overview of efficacy
    • [93] Wells, G., Tugwell, P., Cyclosporin A in rheumatoid arthritis: overview of efficacy. Br. J. Rheumatol. 32:Suppl 1 (1993), 51–56.
    • (1993) Br. J. Rheumatol. , vol.32 , Issue.Suppl 1 , pp. 51-56
    • Wells, G.1    Tugwell, P.2
  • 94
    • 49649118801 scopus 로고    scopus 로고
    • HIF-1A is up-regulated in activated mast cells by a process that involves calcineurin and NFAT
    • [94] Walczak-Drzewiecka, A., Ratajewski, M., Wagner, W., Dastych, J., HIF-1A is up-regulated in activated mast cells by a process that involves calcineurin and NFAT. J. Immunol. 181 (2008), 1665–1672.
    • (2008) J. Immunol. , vol.181 , pp. 1665-1672
    • Walczak-Drzewiecka, A.1    Ratajewski, M.2    Wagner, W.3    Dastych, J.4
  • 95
    • 37549028456 scopus 로고    scopus 로고
    • Calcineurin promotes hypoxia-inducible factor 1a expression by dephosphorylating RACK1 and blocking RACK1 dimerization
    • [95] Liu, Y.V., Hubbi, M.E., Pan, F., McDonald, K.R., Mansharamani, M., Cole, R.N., et al. Calcineurin promotes hypoxia-inducible factor 1a expression by dephosphorylating RACK1 and blocking RACK1 dimerization. J. Biol. Chem. 282:51 (2007), 37064–37073.
    • (2007) J. Biol. Chem. , vol.282 , Issue.51 , pp. 37064-37073
    • Liu, Y.V.1    Hubbi, M.E.2    Pan, F.3    McDonald, K.R.4    Mansharamani, M.5    Cole, R.N.6
  • 96
    • 77956258205 scopus 로고    scopus 로고
    • Sequential activation of NFAT and c-myc transcription factors mediates the TGF-B switch from a suppressor to a promoter of cancer cell proliferation
    • [96] Singh, G., Singh, S.K., König, A., Reutlinger, K., Nye, M.D., Adhikary, T., et al. Sequential activation of NFAT and c-myc transcription factors mediates the TGF-B switch from a suppressor to a promoter of cancer cell proliferation. J. Biol. Chem. 285:35 (2010), 27241–27250.
    • (2010) J. Biol. Chem. , vol.285 , Issue.35 , pp. 27241-27250
    • Singh, G.1    Singh, S.K.2    König, A.3    Reutlinger, K.4    Nye, M.D.5    Adhikary, T.6
  • 97
    • 33747616250 scopus 로고    scopus 로고
    • Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca+2/calcineurin signaling pathway
    • [97] Buchholz, M., Schatz, A., Wagner, M., Michl, P., Linhart, T., Adler, G., et al. Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca+2/calcineurin signaling pathway. EMBO J. 25 (2006), 3714–3724.
    • (2006) EMBO J. , vol.25 , pp. 3714-3724
    • Buchholz, M.1    Schatz, A.2    Wagner, M.3    Michl, P.4    Linhart, T.5    Adler, G.6
  • 98
    • 84871636747 scopus 로고    scopus 로고
    • Calcineurin/NFATc1 pathway contributes to cell proliferation in hepatocellular carcinoma
    • [98] Wang, S., Kang, X., Cao, S., Cheng, H., Wang, D., Geng, J., Calcineurin/NFATc1 pathway contributes to cell proliferation in hepatocellular carcinoma. Dig. Dis. Sci. 57 (2012), 3184–3188.
    • (2012) Dig. Dis. Sci. , vol.57 , pp. 3184-3188
    • Wang, S.1    Kang, X.2    Cao, S.3    Cheng, H.4    Wang, D.5    Geng, J.6
  • 99
    • 84857957581 scopus 로고    scopus 로고
    • Transcriptional regulation of the c-myc promoter NFAT1 involvers negative and positive NFAT-responsive elements
    • [99] Mognol, G.P., PSd, Araujo-Souza, Robbs, B.K., Teixera, L.K., Viola, J.P., Transcriptional regulation of the c-myc promoter NFAT1 involvers negative and positive NFAT-responsive elements. Cell Cycle 11:5 (2012), 1014–1028.
    • (2012) Cell Cycle , vol.11 , Issue.5 , pp. 1014-1028
    • Mognol, G.P.1    PSd, A.-S.2    Robbs, B.K.3    Teixera, L.K.4    Viola, J.P.5
  • 100
    • 80052004396 scopus 로고    scopus 로고
    • Calcineurin inhibitor-induced and ras-mediated overexpression of VEGF in renal cancer cells involves mTOR through the regulation of PRAS40
    • [100] Basu, A., Banerjee, P., Contreras, A.G., Flynn, E., Pal, S., Calcineurin inhibitor-induced and ras-mediated overexpression of VEGF in renal cancer cells involves mTOR through the regulation of PRAS40. PLoS One, 6(8), 2011, e23919.
    • (2011) PLoS One , vol.6 , Issue.8 , pp. e23919
    • Basu, A.1    Banerjee, P.2    Contreras, A.G.3    Flynn, E.4    Pal, S.5
  • 101
    • 84857497303 scopus 로고    scopus 로고
    • Critical role of mTOR in calcineurin inhibitor-induced renal cancer progression
    • [101] Basu, A., Banerjee, P., Pal, S., Critical role of mTOR in calcineurin inhibitor-induced renal cancer progression. Cell Cycle 11:4 (2012), 633–634.
    • (2012) Cell Cycle , vol.11 , Issue.4 , pp. 633-634
    • Basu, A.1    Banerjee, P.2    Pal, S.3
  • 103
  • 104
    • 84895553061 scopus 로고    scopus 로고
    • Molecular mechanisms underlying the effects of cyclosporin A and sirolimus on glucose and lipid metabolism in liver, skeletal muscle and adipose tissue in an in vivo rat model
    • [104] Fuhrmann, A., Lopes, P., Sereno, J., Pedro, J., Espinoza, D., Pereira, M., et al. Molecular mechanisms underlying the effects of cyclosporin A and sirolimus on glucose and lipid metabolism in liver, skeletal muscle and adipose tissue in an in vivo rat model. Biochem. Pharmacol. 88 (2014), 216–228.
    • (2014) Biochem. Pharmacol. , vol.88 , pp. 216-228
    • Fuhrmann, A.1    Lopes, P.2    Sereno, J.3    Pedro, J.4    Espinoza, D.5    Pereira, M.6
  • 105
    • 84975802632 scopus 로고
    • The Purine Path to Chempotherapy
    • [105] Elion, G.B., The Purine Path to Chempotherapy. 1989, 41–47.
    • (1989) , pp. 41-47
    • Elion, G.B.1
  • 106
    • 83555174812 scopus 로고    scopus 로고
    • Review article: the benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease
    • [106] Chouchana, L., Narjoz, C., Beaune, P., Loriot, M., Roblin, X., Review article: the benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease. Aliment. Pharmacol. Ther. 35 (2012), 15–36.
    • (2012) Aliment. Pharmacol. Ther. , vol.35 , pp. 15-36
    • Chouchana, L.1    Narjoz, C.2    Beaune, P.3    Loriot, M.4    Roblin, X.5
  • 107
    • 0033560678 scopus 로고    scopus 로고
    • Azathioprine and 6-mercaptopurine alter the nucleotide balance in endothelial cells
    • [107] Weigel, G., Griesmacher, A., DeAbreu, R.A., Wolner, E., Mueller, M.M., Azathioprine and 6-mercaptopurine alter the nucleotide balance in endothelial cells. Thromb. Res. 94 (1999), 87–94.
    • (1999) Thromb. Res. , vol.94 , pp. 87-94
    • Weigel, G.1    Griesmacher, A.2    DeAbreu, R.A.3    Wolner, E.4    Mueller, M.M.5
  • 108
    • 13244277605 scopus 로고    scopus 로고
    • Selective inhibition of inflammatory gene expression in activated T lymphocytes: a mechanism of immune suppression by thiopurines
    • [108] Thomas, C.W., Myhre, G.M., Tschumper, R., Sreekumar, R., Jelinek, D., McKean, D.J., et al. Selective inhibition of inflammatory gene expression in activated T lymphocytes: a mechanism of immune suppression by thiopurines. JPET 312:2 (2005), 537–545.
    • (2005) JPET , vol.312 , Issue.2 , pp. 537-545
    • Thomas, C.W.1    Myhre, G.M.2    Tschumper, R.3    Sreekumar, R.4    Jelinek, D.5    McKean, D.J.6
  • 109
    • 0042591275 scopus 로고    scopus 로고
    • Identification of the antineoplastic agent 6-mercaptopurine as an activator of the orphan nuclear hormone receptor Nurr1
    • [109] Ordentlich, P., Yan, Y., Zhou, S., Heyman, R.A., Identification of the antineoplastic agent 6-mercaptopurine as an activator of the orphan nuclear hormone receptor Nurr1. J. Biol. Chem. 278:27 (2003), 24791–24799.
    • (2003) J. Biol. Chem. , vol.278 , Issue.27 , pp. 24791-24799
    • Ordentlich, P.1    Yan, Y.2    Zhou, S.3    Heyman, R.A.4
  • 110
    • 37549024231 scopus 로고    scopus 로고
    • Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer
    • [110] Karran, P., Attard, N., Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat. Rev. Cancer 8 (2008), 24–36.
    • (2008) Nat. Rev. Cancer , vol.8 , pp. 24-36
    • Karran, P.1    Attard, N.2
  • 111
    • 0027510308 scopus 로고
    • A biochemical basis for synergism of 6-mercaptopurine and mycophenolic acid in Molt F4, a human malignant T-lymphoblastic cell line
    • [111] Stet, E.H., Abreu, R.A.D., Janssen, Y.P., Bökkerink, P.P., Trijbels, F.J., A biochemical basis for synergism of 6-mercaptopurine and mycophenolic acid in Molt F4, a human malignant T-lymphoblastic cell line. Biochem. Biophys. 1180 (1993), 277–282.
    • (1993) Biochem. Biophys. , vol.1180 , pp. 277-282
    • Stet, E.H.1    Abreu, R.A.D.2    Janssen, Y.P.3    Bökkerink, P.P.4    Trijbels, F.J.5
  • 112
    • 23844556557 scopus 로고    scopus 로고
    • Immunosuppressive efficacy of mycophenolate mofetil when compared with azathioprine and mizoribine against peripheral lymphocytes from renal transplant recipients
    • [112] Sugiyama, K., Satoh, H., Saito, K., Takahashi, K., Saito, N., Hirano, T., Immunosuppressive efficacy of mycophenolate mofetil when compared with azathioprine and mizoribine against peripheral lymphocytes from renal transplant recipients. Transpl. Int. 18:5 (2005), 590–595.
    • (2005) Transpl. Int. , vol.18 , Issue.5 , pp. 590-595
    • Sugiyama, K.1    Satoh, H.2    Saito, K.3    Takahashi, K.4    Saito, N.5    Hirano, T.6
  • 113
    • 0027094084 scopus 로고
    • Comparison of the effects of mizoribine with those of azathioprine, 6-mercaptopurine, and mycophenolic acid on T lymphocyte proliferation and purine ribonucleotide metabolism
    • [113] Dayton, J.S., Turka, L.A., Thompson, C.B., Mitchell, B.S., Comparison of the effects of mizoribine with those of azathioprine, 6-mercaptopurine, and mycophenolic acid on T lymphocyte proliferation and purine ribonucleotide metabolism. Mol. Pharmacol. 41:4 (1992), 671–676.
    • (1992) Mol. Pharmacol. , vol.41 , Issue.4 , pp. 671-676
    • Dayton, J.S.1    Turka, L.A.2    Thompson, C.B.3    Mitchell, B.S.4
  • 114
    • 34249944692 scopus 로고    scopus 로고
    • 6-mercaptopurine, an activator of Nur77, enhances transcriptional activity of HIF-1a resulting in new vessel formation
    • [114] Yoo, Y., Na, T., Yang, W., Kim, H., Lee, I., Kong, G., et al. 6-mercaptopurine, an activator of Nur77, enhances transcriptional activity of HIF-1a resulting in new vessel formation. Oncogene 26 (2007), 3823–3834.
    • (2007) Oncogene , vol.26 , pp. 3823-3834
    • Yoo, Y.1    Na, T.2    Yang, W.3    Kim, H.4    Lee, I.5    Kong, G.6
  • 115
    • 84889597949 scopus 로고    scopus 로고
    • The role of mycophenolate mofetil in kidney transplantation revisited
    • [115] Maripuri, S., Kasiske, B.L., The role of mycophenolate mofetil in kidney transplantation revisited. Transpl. Rev. 28:1 (2014), 26–31.
    • (2014) Transpl. Rev. , vol.28 , Issue.1 , pp. 26-31
    • Maripuri, S.1    Kasiske, B.L.2
  • 116
    • 61349171847 scopus 로고    scopus 로고
    • An update on the use of mycophenolate mofetil in lupus nephritis and other primary glomerular diseases
    • [116] Appel, A.S., Appel, G.B., An update on the use of mycophenolate mofetil in lupus nephritis and other primary glomerular diseases. Nat. Rev. Nephrol. 5 (2009), 132–142.
    • (2009) Nat. Rev. Nephrol. , vol.5 , pp. 132-142
    • Appel, A.S.1    Appel, G.B.2
  • 117
    • 84928803490 scopus 로고    scopus 로고
    • Differential effects of cyclophosphamide and mycophenolate mofetil on cellular and serological parameters in patients with systemic lupus erythematosus
    • [117] Fassbinder, T., Saunders, U., Mickholz, E., Jung, E., Becker, H., Schlüter, B., et al. Differential effects of cyclophosphamide and mycophenolate mofetil on cellular and serological parameters in patients with systemic lupus erythematosus. Arthritis Res. Ther., 17(92), 2015.
    • (2015) Arthritis Res. Ther. , vol.17 , Issue.92
    • Fassbinder, T.1    Saunders, U.2    Mickholz, E.3    Jung, E.4    Becker, H.5    Schlüter, B.6
  • 118
    • 49849093226 scopus 로고    scopus 로고
    • Molecular mechanisms of the antiangiogenic and antitumor effects of mycophenolic acid
    • [118] Domhan, S., Muschal, S., Schwager, C., Morath, C., Wirkner, U., Ansorge, W., et al. Molecular mechanisms of the antiangiogenic and antitumor effects of mycophenolic acid. Mol. Cancer Ther. 7:6 (2008), 1656–1667.
    • (2008) Mol. Cancer Ther. , vol.7 , Issue.6 , pp. 1656-1667
    • Domhan, S.1    Muschal, S.2    Schwager, C.3    Morath, C.4    Wirkner, U.5    Ansorge, W.6
  • 119
    • 84889689705 scopus 로고    scopus 로고
    • Transcriptomic changes induced by mycophenolic acid in gastric cancer cells
    • [119] Dun, B., Sharma, A., Xu, H., Liu, H., Bai, S., Zeng, L., et al. Transcriptomic changes induced by mycophenolic acid in gastric cancer cells. Am. J. Transl. Res. 6:1 (2014), 28–42.
    • (2014) Am. J. Transl. Res. , vol.6 , Issue.1 , pp. 28-42
    • Dun, B.1    Sharma, A.2    Xu, H.3    Liu, H.4    Bai, S.5    Zeng, L.6
  • 120
    • 79951961532 scopus 로고    scopus 로고
    • Mycophenolic acid-mediated suppression of human CD4+ T cells: more than mere guanine nucleotide deprivation
    • [120] He, X., Smeets, R., Koenen, H., Vink, P., Wagenaars, J., Boots, A., et al. Mycophenolic acid-mediated suppression of human CD4+ T cells: more than mere guanine nucleotide deprivation. Am. J. Transpl. 11 (2011), 439–449.
    • (2011) Am. J. Transpl. , vol.11 , pp. 439-449
    • He, X.1    Smeets, R.2    Koenen, H.3    Vink, P.4    Wagenaars, J.5    Boots, A.6
  • 121
    • 84888811354 scopus 로고    scopus 로고
    • Delineation of biological and molecular mechanisms underlying the diverse anticancer activities of mycophenolic acid
    • [121] Dun, B., Xu, H., Sharma, A., Liu, H., Yu, H., Yi, B., et al. Delineation of biological and molecular mechanisms underlying the diverse anticancer activities of mycophenolic acid. Int. J. Clin. Exp. Pathol. 6:12 (2013), 2880–2886.
    • (2013) Int. J. Clin. Exp. Pathol. , vol.6 , Issue.12 , pp. 2880-2886
    • Dun, B.1    Xu, H.2    Sharma, A.3    Liu, H.4    Yu, H.5    Yi, B.6
  • 122
    • 33645238415 scopus 로고    scopus 로고
    • Folic acid supplementation during methotrexate immunosuppression is not associated with early toxicity, risk of acute graft-versus-host disease or relapse following hematopoietic transplantation
    • [122] Robien, K., Schubert, M., Yasui, Y., Martin, P., Storb, R., Potter, J., et al. Folic acid supplementation during methotrexate immunosuppression is not associated with early toxicity, risk of acute graft-versus-host disease or relapse following hematopoietic transplantation. Bone Marrow Transpl. 37 (2006), 687–692.
    • (2006) Bone Marrow Transpl. , vol.37 , pp. 687-692
    • Robien, K.1    Schubert, M.2    Yasui, Y.3    Martin, P.4    Storb, R.5    Potter, J.6
  • 123
    • 0032916872 scopus 로고    scopus 로고
    • Methotrexate specifically modulates cytokine production by T cells and macrophages in murine collagen-induced arthritis (CIA): a mechanism for methotrexate-mediated immunosuppression
    • [123] Neurath, M., Hildner, K., Becker, C., et al. Methotrexate specifically modulates cytokine production by T cells and macrophages in murine collagen-induced arthritis (CIA): a mechanism for methotrexate-mediated immunosuppression. Clin. Exp. Immunol. 115 (1999), 42–55.
    • (1999) Clin. Exp. Immunol. , vol.115 , pp. 42-55
    • Neurath, M.1    Hildner, K.2    Becker, C.3
  • 124
    • 0031426332 scopus 로고    scopus 로고
    • The rational use of methotrexate in rheumatoid arthritis and other rheumatic diseases
    • [124] Furst, D., The rational use of methotrexate in rheumatoid arthritis and other rheumatic diseases. Br. J. Rheumatol. 36 (1997), 1196–1204.
    • (1997) Br. J. Rheumatol. , vol.36 , pp. 1196-1204
    • Furst, D.1
  • 125
    • 44249110721 scopus 로고    scopus 로고
    • Inhibition of c-myc down-regulation by sustained extracellular signal-regulated kinase activation prevents the antimetabolite methtrexate- and gemcitabine-induced differentiation in non-small-cell lung cancer cells
    • [125] Serra, J.M., Gutiérrez, A., Alemany, R., Navarro, M., Ros, T., Saus, C., et al. Inhibition of c-myc down-regulation by sustained extracellular signal-regulated kinase activation prevents the antimetabolite methtrexate- and gemcitabine-induced differentiation in non-small-cell lung cancer cells. Mol. Pharmacol. 73 (2008), 1679–1687.
    • (2008) Mol. Pharmacol. , vol.73 , pp. 1679-1687
    • Serra, J.M.1    Gutiérrez, A.2    Alemany, R.3    Navarro, M.4    Ros, T.5    Saus, C.6
  • 126
    • 84975802687 scopus 로고    scopus 로고
    • Methotrexate-mediated activation of an AMPK-CREC-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation
    • [126] Thornton, C., Al-Rashed, F., Calay, D., Birdsey, G., Bauer, A., Mylroie, H., et al. Methotrexate-mediated activation of an AMPK-CREC-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation. Ann. Rheum. Dis., 2015, 1–10.
    • (2015) Ann. Rheum. Dis. , pp. 1-10
    • Thornton, C.1    Al-Rashed, F.2    Calay, D.3    Birdsey, G.4    Bauer, A.5    Mylroie, H.6
  • 127
    • 84921897035 scopus 로고    scopus 로고
    • Methotrexate promotes glucose uptake and lipid oxidation in skeletal muscle via AMPK activation
    • [127] Pirkmajer, S., Kulkarni, S.S., Tom, R.Z., Ross, F.A., Hawley, S.A., Hardie, D.G., et al. Methotrexate promotes glucose uptake and lipid oxidation in skeletal muscle via AMPK activation. Diabetes, 64(360–369), 2015.
    • (2015) Diabetes , vol.64 , Issue.360–369
    • Pirkmajer, S.1    Kulkarni, S.S.2    Tom, R.Z.3    Ross, F.A.4    Hawley, S.A.5    Hardie, D.G.6
  • 128
    • 84941366350 scopus 로고    scopus 로고
    • Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses
    • [128] Ho, P.-C., Bihuniak, J.D., Macintyre, A.N., Staron, M., Liu, X., Amezquita, R., et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell. 162 (2015), 1217–1228.
    • (2015) Cell. , vol.162 , pp. 1217-1228
    • Ho, P.-C.1    Bihuniak, J.D.2    Macintyre, A.N.3    Staron, M.4    Liu, X.5    Amezquita, R.6
  • 129
    • 79951670258 scopus 로고    scopus 로고
    • Temsirolimus, an mTOR inhibitor, enhances anti-tumour effects of heat shock protein cancer vaccines
    • [129] Wang, Y., Wang, X.-Y., Subjeck, J., Shrikant, P., Kim, H., Temsirolimus, an mTOR inhibitor, enhances anti-tumour effects of heat shock protein cancer vaccines. Br. J. Cancer 104 (2011), 643–652.
    • (2011) Br. J. Cancer , vol.104 , pp. 643-652
    • Wang, Y.1    Wang, X.-Y.2    Subjeck, J.3    Shrikant, P.4    Kim, H.5
  • 130
    • 84942847541 scopus 로고    scopus 로고
    • Rapamycin impairs antitumor CD8+ T-cell responses and vaccine-induced tumor eradication
    • [130] Chaoul, N., Fayolle, C., Desrues, B., Oberkampf, M., Tang, A., Ladant, D., et al. Rapamycin impairs antitumor CD8+ T-cell responses and vaccine-induced tumor eradication. Cancer Res. 75:16 (2015), 3279–3291.
    • (2015) Cancer Res. , vol.75 , Issue.16 , pp. 3279-3291
    • Chaoul, N.1    Fayolle, C.2    Desrues, B.3    Oberkampf, M.4    Tang, A.5    Ladant, D.6
  • 131
    • 84961736633 scopus 로고    scopus 로고
    • Emerging concepts of T cell metabolism as a target of immunotherapy
    • [131] Chang, C.-H., Pearce, E.L., Emerging concepts of T cell metabolism as a target of immunotherapy. Nat. Immunol. 17:4 (2016), 364–368.
    • (2016) Nat. Immunol. , vol.17 , Issue.4 , pp. 364-368
    • Chang, C.-H.1    Pearce, E.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.