-
1
-
-
84885670616
-
Fueling immunity: insights into metabolism and lymphocyte function
-
[1] Pearce, E.L., Poffenberger, M.C., Chang, C.H., Jones, R.G., Fueling immunity: insights into metabolism and lymphocyte function. Science, 342(6155), 2013, 1242454.
-
(2013)
Science
, vol.342
, Issue.6155
, pp. 1242454
-
-
Pearce, E.L.1
Poffenberger, M.C.2
Chang, C.H.3
Jones, R.G.4
-
2
-
-
84885377829
-
The Warburg effect then and now: from cancer to inflammatory diseases
-
[2] Palsson-McDermott, E.M., O'Neill, L.A., The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays 35:11 (2013), 965–973.
-
(2013)
BioEssays
, vol.35
, Issue.11
, pp. 965-973
-
-
Palsson-McDermott, E.M.1
O'Neill, L.A.2
-
3
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
[3] Vander-Heiden, M.G., Cantley, L., Thompson, C.B., Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324 (2009), 1029–1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander-Heiden, M.G.1
Cantley, L.2
Thompson, C.B.3
-
4
-
-
84876758617
-
Metabolic pathways in immune cell activation and quiescence
-
[4] Pearce, E.L., Pearce, E.J., Metabolic pathways in immune cell activation and quiescence. Immunity 38:4 (2013), 633–643.
-
(2013)
Immunity
, vol.38
, Issue.4
, pp. 633-643
-
-
Pearce, E.L.1
Pearce, E.J.2
-
5
-
-
8144228566
-
Why do cancers have high aerobic glycolysis?
-
[5] Gatenby, R.A., Gillies, R.J., Why do cancers have high aerobic glycolysis?. Nat. Rev. Cancer 4 (2004), 891–899.
-
(2004)
Nat. Rev. Cancer
, vol.4
, pp. 891-899
-
-
Gatenby, R.A.1
Gillies, R.J.2
-
6
-
-
84865976786
-
Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review
-
[6] Porporato, P.E., Dhup, S., Dadhich, R.K., Copetti, T., Sonvenaux, P., Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front. Pharmacol. 2:49 (2011), 1–18.
-
(2011)
Front. Pharmacol.
, vol.2
, Issue.49
, pp. 1-18
-
-
Porporato, P.E.1
Dhup, S.2
Dadhich, R.K.3
Copetti, T.4
Sonvenaux, P.5
-
7
-
-
0016300146
-
History of the Pasteur effect and its pathobiology
-
[7] Racker, E., History of the Pasteur effect and its pathobiology. Mol. Cell Biochem. 5 (1974), 17–23.
-
(1974)
Mol. Cell Biochem.
, vol.5
, pp. 17-23
-
-
Racker, E.1
-
8
-
-
84875494365
-
Metabolic regulation of T lymphocytes
-
[8] MacIver, N.J., Michalek, R.D., Rathmell, J.C., Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31 (2013), 259–283.
-
(2013)
Annu. Rev. Immunol.
, vol.31
, pp. 259-283
-
-
MacIver, N.J.1
Michalek, R.D.2
Rathmell, J.C.3
-
9
-
-
84893190179
-
Activated lymphocytes as a metabolic model for carcinogenesis
-
[9] Macintyre, A.N., Rathmell, J.C., Activated lymphocytes as a metabolic model for carcinogenesis. Cancer Metab. 1 (2013), 1–12.
-
(2013)
Cancer Metab.
, vol.1
, pp. 1-12
-
-
Macintyre, A.N.1
Rathmell, J.C.2
-
10
-
-
12444279265
-
On the origin of cancer cells
-
[10] Warburg, O., On the origin of cancer cells. Science 123:3191 (1956), 309–314.
-
(1956)
Science
, vol.123
, Issue.3191
, pp. 309-314
-
-
Warburg, O.1
-
11
-
-
84901428396
-
Regulation of cancer metabolism by oncogenes and tumor suppressors
-
[11] Iurlaro, R., León-Annicchiarico, C.L., Muñoz-Pinedo, C., Regulation of cancer metabolism by oncogenes and tumor suppressors. Methods Enzymol. 542 (2014), 59–80.
-
(2014)
Methods Enzymol.
, vol.542
, pp. 59-80
-
-
Iurlaro, R.1
León-Annicchiarico, C.L.2
Muñoz-Pinedo, C.3
-
12
-
-
84887045362
-
Metabolic targets for cancer therapy
-
[12] Galluzzi, L., Kepp, O., Heiden, M.G.V., Kroemer, G., Metabolic targets for cancer therapy. Nat. Rev. Drug Discov. 12 (2013), 829–946.
-
(2013)
Nat. Rev. Drug Discov.
, vol.12
, pp. 829-946
-
-
Galluzzi, L.1
Kepp, O.2
Heiden, M.G.V.3
Kroemer, G.4
-
13
-
-
78049295120
-
Aerobic glycolysis suppresses p53 activity to provide selective protection from apoptosis upon loss of growth signals or inhibition of BCR-AbI
-
[13] Mason, E.F., Zhao, Y., Goraksha-Hicks, P., Coloff, J.L., Gannon, H., Jones, S.N., et al. Aerobic glycolysis suppresses p53 activity to provide selective protection from apoptosis upon loss of growth signals or inhibition of BCR-AbI. Cancer Res. 70:20 (2010), 8066–8076.
-
(2010)
Cancer Res.
, vol.70
, Issue.20
, pp. 8066-8076
-
-
Mason, E.F.1
Zhao, Y.2
Goraksha-Hicks, P.3
Coloff, J.L.4
Gannon, H.5
Jones, S.N.6
-
14
-
-
84865294745
-
Metabolic reprogramming and metabolic dependency in T cells
-
[14] Wang, R., Green, D.R., Metabolic reprogramming and metabolic dependency in T cells. Immunol. Rev. 249 (2012), 14–26.
-
(2012)
Immunol. Rev.
, vol.249
, pp. 14-26
-
-
Wang, R.1
Green, D.R.2
-
15
-
-
84922468705
-
Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport
-
[15] Yang, C., Ko, B., Hensley, C.T., Jiang, L., Wasti, A.T., Kim, J., et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell. 56:3 (2014), 414–424.
-
(2014)
Mol. Cell.
, vol.56
, Issue.3
, pp. 414-424
-
-
Yang, C.1
Ko, B.2
Hensley, C.T.3
Jiang, L.4
Wasti, A.T.5
Kim, J.6
-
16
-
-
84897392385
-
Serine and glycine metabolism in cancer
-
[16] Amelio, I., Cutruzzolá, F., Antonov, A., Agostini, M., Melino, G., Serine and glycine metabolism in cancer. Trends Biochem. Sci. 39:4 (2014), 191–198.
-
(2014)
Trends Biochem. Sci.
, vol.39
, Issue.4
, pp. 191-198
-
-
Amelio, I.1
Cutruzzolá, F.2
Antonov, A.3
Agostini, M.4
Melino, G.5
-
17
-
-
84881177291
-
Serine, glycine and one-carbon units: cancer metabolism in full circle
-
[17] Locasale, J.W., Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13 (2013), 572–583.
-
(2013)
Nat. Rev. Cancer
, vol.13
, pp. 572-583
-
-
Locasale, J.W.1
-
18
-
-
84947591002
-
T cell metabolism drives immunity
-
[18] Buck, M.D., O'Sullivan, D., Pearce, E.L., T cell metabolism drives immunity. J. Exp. Med. 212:9 (2015), 1345–1360.
-
(2015)
J. Exp. Med.
, vol.212
, Issue.9
, pp. 1345-1360
-
-
Buck, M.D.1
O'Sullivan, D.2
Pearce, E.L.3
-
19
-
-
84907212907
-
Metabolic control of cell death
-
[19] Green, D.R., Galluzzi, L., Kroemer, G., Metabolic control of cell death. Science, 345(6203), 2014, 1250256.
-
(2014)
Science
, vol.345
, Issue.6203
, pp. 1250256
-
-
Green, D.R.1
Galluzzi, L.2
Kroemer, G.3
-
20
-
-
0035795985
-
An overview of the immune system
-
[20] Parkin, J., Cohen, B., An overview of the immune system. Lancet 357 (2001), 1777–1789.
-
(2001)
Lancet
, vol.357
, pp. 1777-1789
-
-
Parkin, J.1
Cohen, B.2
-
21
-
-
77953534607
-
Metabolism in T cell activation and differentiation
-
[21] Pearce, E.L., Metabolism in T cell activation and differentiation. Curr. Opin. Immunol. 22:3 (2010), 314–320.
-
(2010)
Curr. Opin. Immunol.
, vol.22
, Issue.3
, pp. 314-320
-
-
Pearce, E.L.1
-
22
-
-
84961290082
-
Targeting T cell metabolism for therapy
-
[22] O'Sullivan, D., Pearce, E.L., Targeting T cell metabolism for therapy. Trends Immunol. 36 (2015), 71–80.
-
(2015)
Trends Immunol.
, vol.36
, pp. 71-80
-
-
O'Sullivan, D.1
Pearce, E.L.2
-
23
-
-
84903277871
-
Integrating canonical and metabolic signalling programmes in the regulation of T cell responses
-
[23] Pollizzi, K.N., Powell, J.D., Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat. Rev. Immunol. 14:7 (2014), 435–446.
-
(2014)
Nat. Rev. Immunol.
, vol.14
, Issue.7
, pp. 435-446
-
-
Pollizzi, K.N.1
Powell, J.D.2
-
24
-
-
0032502801
-
Homeostasis and self-tolerance in the immune system: turning lymphocytes off
-
[24] Parijs, L.V., Abbas, A.K., Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280 (1998), 243–248.
-
(1998)
Science
, vol.280
, pp. 243-248
-
-
Parijs, L.V.1
Abbas, A.K.2
-
25
-
-
84904392273
-
Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development
-
[25] O'Sullivan, D., van der Windt, G.J., Huang, S.C., Curtis, J.D., Chang, C.H., Buck, M.D., et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41:1 (2014), 75–88.
-
(2014)
Immunity
, vol.41
, Issue.1
, pp. 75-88
-
-
O'Sullivan, D.1
van der Windt, G.J.2
Huang, S.C.3
Curtis, J.D.4
Chang, C.H.5
Buck, M.D.6
-
26
-
-
84905510173
-
Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells
-
[26] Cao, Y., Rathmell, J.C., Macintyre, A.N., Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS One, 9(8), 2014, e104104.
-
(2014)
PLoS One
, vol.9
, Issue.8
, pp. e104104
-
-
Cao, Y.1
Rathmell, J.C.2
Macintyre, A.N.3
-
27
-
-
70249099576
-
Interdependence of hypoxic and innate immune responses
-
[27] Nizet, V., Johnson, R.S., Interdependence of hypoxic and innate immune responses. Nat. Rev. Immunol. 9 (2009), 609–617.
-
(2009)
Nat. Rev. Immunol.
, vol.9
, pp. 609-617
-
-
Nizet, V.1
Johnson, R.S.2
-
28
-
-
0038326642
-
Differential control of cell cycle, proliferation, and survival of primary T lymphocytes by purine and pyrimidine nucleotides
-
[28] Quemeneur, L., Gerland, L.M., Flacher, M., Ffrench, M., Revillard, J.P., Genestier, L., Differential control of cell cycle, proliferation, and survival of primary T lymphocytes by purine and pyrimidine nucleotides. J. Immunol. 170:10 (2003), 4986–4995.
-
(2003)
J. Immunol.
, vol.170
, Issue.10
, pp. 4986-4995
-
-
Quemeneur, L.1
Gerland, L.M.2
Flacher, M.3
Ffrench, M.4
Revillard, J.P.5
Genestier, L.6
-
29
-
-
84922326745
-
Purinosome formation as a function of the cell cycle
-
[29] Chan, C.Y., Zhao, H., Pugh, R.J., et al. Purinosome formation as a function of the cell cycle. PNAS 112:5 (2015), 1368–1373.
-
(2015)
PNAS
, vol.112
, Issue.5
, pp. 1368-1373
-
-
Chan, C.Y.1
Zhao, H.2
Pugh, R.J.3
-
30
-
-
0003308915
-
Purine and pyrimidine nucleotide synthesis and metabolism
-
e0018. doi: 10.1199/tab.0018
-
[30] Moffatt, B.A., Ashihara, H., Purine and pyrimidine nucleotide synthesis and metabolism. Arab. Book, 1, 2002, e0018. doi: 10.1199/tab.0018.
-
(2002)
Arab. Book, 1
-
-
Moffatt, B.A.1
Ashihara, H.2
-
31
-
-
84905187426
-
Regulation of the pentose phosphate pathway in cancer
-
[31] Jiang, P., Du, W., Wu, M., Regulation of the pentose phosphate pathway in cancer. Protein Cell. 5:8 (2014), 592–602.
-
(2014)
Protein Cell.
, vol.5
, Issue.8
, pp. 592-602
-
-
Jiang, P.1
Du, W.2
Wu, M.3
-
32
-
-
60949083613
-
The molecular determinants of de novo nucleotide biosynthesis in cancer cells
-
[32] Tong, X., Zhao, F., Thompson, C.B., The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr. Opin. Genet. Dev. 19:1 (2009), 32–37.
-
(2009)
Curr. Opin. Genet. Dev.
, vol.19
, Issue.1
, pp. 32-37
-
-
Tong, X.1
Zhao, F.2
Thompson, C.B.3
-
33
-
-
84897935083
-
Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies
-
[33] Phan, L.M., Yeung, S.C.J., Lee, M.H., Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med. 11 (2014), 1–19.
-
(2014)
Cancer Biol. Med.
, vol.11
, pp. 1-19
-
-
Phan, L.M.1
Yeung, S.C.J.2
Lee, M.H.3
-
34
-
-
84866562625
-
Metabolic checkpoints in activated T cells
-
[34] Wang, R., Green, D.R., Metabolic checkpoints in activated T cells. Nat. Immunol. 13:10 (2012), 907–915.
-
(2012)
Nat. Immunol.
, vol.13
, Issue.10
, pp. 907-915
-
-
Wang, R.1
Green, D.R.2
-
35
-
-
0033930340
-
The rate of cell growth is regulated by purine biosynthesis via ATP production and G1 to S phase transition
-
[35] Kondo, M., Yamaoka, T., Honda, S., Miwa, Y., Katashima, R., Moritani, M., et al. The rate of cell growth is regulated by purine biosynthesis via ATP production and G1 to S phase transition. J. Biochem. 128 (2000), 57–64.
-
(2000)
J. Biochem.
, vol.128
, pp. 57-64
-
-
Kondo, M.1
Yamaoka, T.2
Honda, S.3
Miwa, Y.4
Katashima, R.5
Moritani, M.6
-
36
-
-
30044432116
-
Nucleotide Biosynthesis
-
W. Freeman sixth ed. New York
-
[36] Stryer, L., Berg, J.M., Tymoczko, J.L., Nucleotide Biosynthesis. Freeman, W., (eds.) Biochemistry, sixth ed., 2007 New York.
-
(2007)
Biochemistry
-
-
Stryer, L.1
Berg, J.M.2
Tymoczko, J.L.3
-
37
-
-
0034045586
-
Mycophenolate mofetil and its mechanisms of action
-
[37] Allison, A.C., Eugui, E.M., Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 47 (2000), 85–118.
-
(2000)
Immunopharmacology
, vol.47
, pp. 85-118
-
-
Allison, A.C.1
Eugui, E.M.2
-
38
-
-
0027189955
-
The design and development of an immunosuppressive drug, mycophenolate mofetil
-
[38] Allison, A.C., Eugui, E.M., The design and development of an immunosuppressive drug, mycophenolate mofetil. Springer Semin. Immunopathol. 14 (1993), 353–380.
-
(1993)
Springer Semin. Immunopathol.
, vol.14
, pp. 353-380
-
-
Allison, A.C.1
Eugui, E.M.2
-
39
-
-
0032523010
-
Effects of guanine nucleotide depletion on cell cycle progression in human T lymphocytes
-
[39] Laliberté, J., Yee, A., Xiong, Y., Mitchell, B.S., Effects of guanine nucleotide depletion on cell cycle progression in human T lymphocytes. Blood 91:8 (1998), 2896–2904.
-
(1998)
Blood
, vol.91
, Issue.8
, pp. 2896-2904
-
-
Laliberté, J.1
Yee, A.2
Xiong, Y.3
Mitchell, B.S.4
-
40
-
-
0036721788
-
Mycophenolic acid inhibits IL-2-Dependent T cell proliferation, But Not IL-2-dependent survival and sensitization to apoptosis
-
[40] Quemeneur, L., Flacher, M., Gerland, L.M., Ffrench, M., Revillard, J.P., Bonnefoy-Berard, N., Mycophenolic acid inhibits IL-2-Dependent T cell proliferation, But Not IL-2-dependent survival and sensitization to apoptosis. J. Immunol. 169:5 (2002), 2747–2755.
-
(2002)
J. Immunol.
, vol.169
, Issue.5
, pp. 2747-2755
-
-
Quemeneur, L.1
Flacher, M.2
Gerland, L.M.3
Ffrench, M.4
Revillard, J.P.5
Bonnefoy-Berard, N.6
-
41
-
-
24644461627
-
Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy
-
[41] Taylor, A.L., Watson, C.J., Bradley, J.A., Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy. Crit. Rev. Oncol. Hematol. 56:1 (2005), 23–46.
-
(2005)
Crit. Rev. Oncol. Hematol.
, vol.56
, Issue.1
, pp. 23-46
-
-
Taylor, A.L.1
Watson, C.J.2
Bradley, J.A.3
-
42
-
-
42949139481
-
AMPK phosphorylation of Raptor mediates metabolic checkpoint
-
[42] Gwinn, D.M., Shackelford, D.B., Egan, D.F., Mihaylova, M.M., Mery, A., Vasquez, D.S., et al. AMPK phosphorylation of Raptor mediates metabolic checkpoint. Mol. Cell. 30 (2008), 214–226.
-
(2008)
Mol. Cell.
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
-
43
-
-
84872159532
-
AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo
-
[43] Faubert, B., Boily, G., Izreig, S., Griss, T., Samborska, B., Dong, Z., et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 17 (2013), 113–124.
-
(2013)
Cell Metab.
, vol.17
, pp. 113-124
-
-
Faubert, B.1
Boily, G.2
Izreig, S.3
Griss, T.4
Samborska, B.5
Dong, Z.6
-
44
-
-
84862908818
-
AMPK and mTOR in cellular energy homeostasis and drug targets
-
[44] Inoki, K., Kim, J., Guan, K.L., AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52 (2012), 381–400.
-
(2012)
Annu. Rev. Pharmacol. Toxicol.
, vol.52
, pp. 381-400
-
-
Inoki, K.1
Kim, J.2
Guan, K.L.3
-
45
-
-
84921309472
-
The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo
-
[45] Blagih, J., Coulombe, F., Vincent, E.E., Dupuy, F., Galicia-Vazquez, G., Yurchenko, E., et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42:1 (2015), 41–54.
-
(2015)
Immunity
, vol.42
, Issue.1
, pp. 41-54
-
-
Blagih, J.1
Coulombe, F.2
Vincent, E.E.3
Dupuy, F.4
Galicia-Vazquez, G.5
Yurchenko, E.6
-
46
-
-
84855603512
-
Cellular and molecular mechanisms of metformin: an overview
-
[46] Viollet, B., Guigas, B., Garcia, N.S., Leclerc, J., Foretz, M., Andreelli, F., Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. (Lond) 122:6 (2012), 253–270.
-
(2012)
Clin. Sci. (Lond)
, vol.122
, Issue.6
, pp. 253-270
-
-
Viollet, B.1
Guigas, B.2
Garcia, N.S.3
Leclerc, J.4
Foretz, M.5
Andreelli, F.6
-
47
-
-
84919392760
-
Metformin, cancer and glucose metabolism
-
[47] Salani, B., Rio, A.D., Marini, C., Sambuceti, G., Cordera, R., Maggi, D., Metformin, cancer and glucose metabolism. Endocr. Relat. Cancer 21 (2014), R461–R471.
-
(2014)
Endocr. Relat. Cancer
, vol.21
, pp. R461-R471
-
-
Salani, B.1
Rio, A.D.2
Marini, C.3
Sambuceti, G.4
Cordera, R.5
Maggi, D.6
-
48
-
-
84890353160
-
Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer
-
[48] Marini, C., Salani, B., Massollo, M., Amaro, A., Esposito, A.I., Orengo, A.M., et al. Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle 12:22 (2013), 3490–3499.
-
(2013)
Cell Cycle
, vol.12
, Issue.22
, pp. 3490-3499
-
-
Marini, C.1
Salani, B.2
Massollo, M.3
Amaro, A.4
Esposito, A.I.5
Orengo, A.M.6
-
49
-
-
77952116629
-
Metformin in cancer therapy: a new perspective for an old antidiabetic drug?
-
[49] Sahra, I.B., Marchand-Brustel, Y.L., Tanti, J.-F., Bost, F., Metformin in cancer therapy: a new perspective for an old antidiabetic drug?. Mol. Cancer Ther. 9:5 (2010), 1092–1099.
-
(2010)
Mol. Cancer Ther.
, vol.9
, Issue.5
, pp. 1092-1099
-
-
Sahra, I.B.1
Marchand-Brustel, Y.L.2
Tanti, J.-F.3
Bost, F.4
-
50
-
-
84865301337
-
mTOR, metabolism, and the regulation of T-cell differentiation and function
-
[50] Waickman, A.T., Powell, J.D., mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol. Rev. 249 (2012), 43–58.
-
(2012)
Immunol. Rev.
, vol.249
, pp. 43-58
-
-
Waickman, A.T.1
Powell, J.D.2
-
51
-
-
84860237060
-
Regulation and function of mTOR signalling in T cell fate decisions
-
[51] Chi, H., Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12:5 (2012), 325–338.
-
(2012)
Nat. Rev. Immunol.
, vol.12
, Issue.5
, pp. 325-338
-
-
Chi, H.1
-
52
-
-
54549089738
-
Hypoxia signaling through mTOR and the unfolded protein response in cancer
-
[52] Wouters, B.G., Koritzinsky, M., Hypoxia signaling through mTOR and the unfolded protein response in cancer. Nat. Rev. Cancer 8 (2008), 851–864.
-
(2008)
Nat. Rev. Cancer
, vol.8
, pp. 851-864
-
-
Wouters, B.G.1
Koritzinsky, M.2
-
53
-
-
84893983706
-
Metabolism of activated T lymphocytes
-
[53] Maciolek, J.A., Pasternak, J.A., Wilson, H.L., Metabolism of activated T lymphocytes. Curr. Opin. Immunol. 27 (2014), 60–74.
-
(2014)
Curr. Opin. Immunol.
, vol.27
, pp. 60-74
-
-
Maciolek, J.A.1
Pasternak, J.A.2
Wilson, H.L.3
-
54
-
-
84894105147
-
Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition
-
[54] Roberts, D.J., Tan-Sah, V.P., Ding, E.Y., Smith, J.M., Miyamoto, S., Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol. Cell. 53 (2014), 521–533.
-
(2014)
Mol. Cell.
, vol.53
, pp. 521-533
-
-
Roberts, D.J.1
Tan-Sah, V.P.2
Ding, E.Y.3
Smith, J.M.4
Miyamoto, S.5
-
55
-
-
46149092748
-
Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment
-
[55] Jiang, B.-H., Liu, L.-Z., Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist. Uptdate 11 (2008), 63–76.
-
(2008)
Drug Resist. Uptdate
, vol.11
, pp. 63-76
-
-
Jiang, B.-H.1
Liu, L.-Z.2
-
56
-
-
84916898065
-
Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling
-
[56] Zhdanov, A.V., Waters, A.H., Golubeva, A.V., Papkovsky, D.B., Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling. Exp. Cell Res. 330:1 (2015), 13–28.
-
(2015)
Exp. Cell Res.
, vol.330
, Issue.1
, pp. 13-28
-
-
Zhdanov, A.V.1
Waters, A.H.2
Golubeva, A.V.3
Papkovsky, D.B.4
-
57
-
-
19944433653
-
Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-1a prolyl hydroxylase
-
[57] Selak, M.A., Armour, S.M., MacKenzie, E.D., Boulahbel, H., Watson, D.G., Mansfield, K.D., et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-1a prolyl hydroxylase. Cancer Cell 7 (2005), 77–85.
-
(2005)
Cancer Cell
, vol.7
, pp. 77-85
-
-
Selak, M.A.1
Armour, S.M.2
MacKenzie, E.D.3
Boulahbel, H.4
Watson, D.G.5
Mansfield, K.D.6
-
58
-
-
79951829343
-
Hypoxia and inflammation
-
[58] Eltzschig, H.K., Carmeliet, P., Hypoxia and inflammation. NEJM 364 (2011), 656–665.
-
(2011)
NEJM
, vol.364
, pp. 656-665
-
-
Eltzschig, H.K.1
Carmeliet, P.2
-
59
-
-
84876285741
-
Succinate is an inflammatory signal that induces IL-1b through HIF-1a
-
[59] Tannahill, G., Curtis, A., Adamik, J., Palsson-McDermott, E., McGettrick, A., Goel, G., et al. Succinate is an inflammatory signal that induces IL-1b through HIF-1a. Nature 496 (2013), 238–242.
-
(2013)
Nature
, vol.496
, pp. 238-242
-
-
Tannahill, G.1
Curtis, A.2
Adamik, J.3
Palsson-McDermott, E.4
McGettrick, A.5
Goel, G.6
-
60
-
-
84920591180
-
Pyruvate kinase M2 regulates Hif-1a activity and IL-1B induction and is a critical determinant of the Warburg effect in LPS-activated macrophages
-
[60] Palsson-McDermott, E.M., Curtis, A.M., Goel, G., Lauterbach, M.A., Sheedy, F.J., Gleeson, L.E., et al. Pyruvate kinase M2 regulates Hif-1a activity and IL-1B induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21 (2015), 65–80.
-
(2015)
Cell Metab.
, vol.21
, pp. 65-80
-
-
Palsson-McDermott, E.M.1
Curtis, A.M.2
Goel, G.3
Lauterbach, M.A.4
Sheedy, F.J.5
Gleeson, L.E.6
-
61
-
-
84924286077
-
T-cell metabolism in autoimmune disease
-
[61] Yang, Z., Matteson, E.L., Goronzy, J.J., Weyand, C.M., T-cell metabolism in autoimmune disease. Arthritis Res. Ther., 17(1), 2015, 29.
-
(2015)
Arthritis Res. Ther.
, vol.17
, Issue.1
, pp. 29
-
-
Yang, Z.1
Matteson, E.L.2
Goronzy, J.J.3
Weyand, C.M.4
-
62
-
-
84255199079
-
The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
-
[62] Wang, R., Dillon, C.P., Shi, L.Z., Milasta, S., Carter, R., Finkelstein, D., et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:6 (2011), 871–882.
-
(2011)
Immunity
, vol.35
, Issue.6
, pp. 871-882
-
-
Wang, R.1
Dillon, C.P.2
Shi, L.Z.3
Milasta, S.4
Carter, R.5
Finkelstein, D.6
-
64
-
-
84904057246
-
The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function
-
[64] Macintyre, A.N., Gerriets, V.A., Nichols, A.G., Michalek, R.D., Rudolph, M.C., Deoliveira, D., et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20:1 (2014), 61–72.
-
(2014)
Cell Metab.
, vol.20
, Issue.1
, pp. 61-72
-
-
Macintyre, A.N.1
Gerriets, V.A.2
Nichols, A.G.3
Michalek, R.D.4
Rudolph, M.C.5
Deoliveira, D.6
-
65
-
-
84876514626
-
Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation
-
[65] Sinclair, L.V., Rolf, J., Emslie, E., Shi, Y.B., Taylor, P.M., Cantrell, D.A., Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14:5 (2013), 500–508.
-
(2013)
Nat. Immunol.
, vol.14
, Issue.5
, pp. 500-508
-
-
Sinclair, L.V.1
Rolf, J.2
Emslie, E.3
Shi, Y.B.4
Taylor, P.M.5
Cantrell, D.A.6
-
66
-
-
84929008302
-
+ T cell differentiation
-
+ T cell differentiation. J. Clin. Investig., 125(5), 2015, 2090–2108.
-
(2015)
J. Clin. Investig.
, vol.125
, Issue.5
, pp. 2090-2108
-
-
Pollizzi, K.N.1
-
67
-
-
84890137621
-
T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming
-
[67] Yang, K., Shrestha, S., Zeng, H., Karmaus, P.W., Neale, G., Vogel, P., et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39:6 (2013), 1043–1056.
-
(2013)
Immunity
, vol.39
, Issue.6
, pp. 1043-1056
-
-
Yang, K.1
Shrestha, S.2
Zeng, H.3
Karmaus, P.W.4
Neale, G.5
Vogel, P.6
-
68
-
-
80052277906
-
Control of TH17/Treg balance by hypoxia-inducible factor 1
-
[68] Dang, E.V., Barbi, J., Yang, H.Y., Jinasena, D., Yu, H., Zheng, Y., et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell Metab. 146 (2011), 772–784.
-
(2011)
Cell Metab.
, vol.146
, pp. 772-784
-
-
Dang, E.V.1
Barbi, J.2
Yang, H.Y.3
Jinasena, D.4
Yu, H.5
Zheng, Y.6
-
69
-
-
79960369458
-
HIF1a-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of Th17 and Treg cells
-
[69] Shi, L.Z., Wang, R., Huang, G., Vogel, P., Neale, G., Green, D.R., et al. HIF1a-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of Th17 and Treg cells. JEM 208 (2011), 1367–1376.
-
(2011)
JEM
, vol.208
, pp. 1367-1376
-
-
Shi, L.Z.1
Wang, R.2
Huang, G.3
Vogel, P.4
Neale, G.5
Green, D.R.6
-
70
-
-
84867381718
-
Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hpoxia of the mucosa
-
[70] Clambey, E.T., McNamee, E.N., Westrich, J.A., Glover, L.E., Campbell, E.L., Jedlicka, P., et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hpoxia of the mucosa. PNAS 17 (2012), 2784–2793.
-
(2012)
PNAS
, vol.17
, pp. 2784-2793
-
-
Clambey, E.T.1
McNamee, E.N.2
Westrich, J.A.3
Glover, L.E.4
Campbell, E.L.5
Jedlicka, P.6
-
71
-
-
84925688346
-
PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation
-
[71] Patsoukis, N., Bardhan, K., Chatterjee, P., Sari, D., Liu, B., Bell, L.N., et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun., 6, 2015, 6692.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6692
-
-
Patsoukis, N.1
Bardhan, K.2
Chatterjee, P.3
Sari, D.4
Liu, B.5
Bell, L.N.6
-
72
-
-
67650074206
-
mTOR regulates memory CD8 T-cell differentiation
-
[72] Araki, K., Turner, A.P., Shaffer, V.O., Gangappa, S., Keller, S.A., Bachmann, M.F., et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460:7251 (2009), 108–112.
-
(2009)
Nature
, vol.460
, Issue.7251
, pp. 108-112
-
-
Araki, K.1
Turner, A.P.2
Shaffer, V.O.3
Gangappa, S.4
Keller, S.A.5
Bachmann, M.F.6
-
73
-
-
84957080574
-
Immunosuppressive medications
-
[73] Wiseman, A.C., Immunosuppressive medications. CJASN, 11(2), 2016, 332-343.
-
(2016)
CJASN
, vol.11
, Issue.2
, pp. 332-343
-
-
Wiseman, A.C.1
-
74
-
-
10844292763
-
Immunosuppressive drugs fot kidney transplantation
-
[74] Halloran, P.F., Immunosuppressive drugs fot kidney transplantation. NEJM 351:26 (2004), 2715–2729.
-
(2004)
NEJM
, vol.351
, Issue.26
, pp. 2715-2729
-
-
Halloran, P.F.1
-
75
-
-
40549094648
-
Interleukin-2 receptor downstream events in regulatory T cells: implications for the choice of immunosuppressive drug therapy
-
[75] Zeiser, R., Negrin, R.S., Interleukin-2 receptor downstream events in regulatory T cells: implications for the choice of immunosuppressive drug therapy. Cell Cycle 7:4 (2008), 458–462.
-
(2008)
Cell Cycle
, vol.7
, Issue.4
, pp. 458-462
-
-
Zeiser, R.1
Negrin, R.S.2
-
76
-
-
0034098326
-
Immunosuppressive drugs: the first 50 years and a glance forward
-
[76] Allison, A.C., Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology 47 (2000), 63–83.
-
(2000)
Immunopharmacology
, vol.47
, pp. 63-83
-
-
Allison, A.C.1
-
77
-
-
84863078767
-
Everolimus in Postmenopausal Hormone-Receptor-Positive Advanced Breast Cancer
-
[77] Baselga, J., Campone, M., Piccart, M., Burris, H.A., Rugo, H.S., Sahmoud, T., et al. Everolimus in Postmenopausal Hormone-Receptor-Positive Advanced Breast Cancer. NEJM 366:6 (2012), 520–529.
-
(2012)
NEJM
, vol.366
, Issue.6
, pp. 520-529
-
-
Baselga, J.1
Campone, M.2
Piccart, M.3
Burris, H.A.4
Rugo, H.S.5
Sahmoud, T.6
-
78
-
-
84959209910
-
Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases
-
[78] Perl, A., Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat. Rev. Rheumatol. 12 (2016), 169–182.
-
(2016)
Nat. Rev. Rheumatol.
, vol.12
, pp. 169-182
-
-
Perl, A.1
-
79
-
-
84927626238
-
A translational, pharmacodynamic, and pharmacokinetic phase IB clinical study of Everolimus in resectable non-small cell lung cancer
-
[79] Owonikoko, T.K., Ramalingam, S.S., Miller, D.L., A translational, pharmacodynamic, and pharmacokinetic phase IB clinical study of Everolimus in resectable non-small cell lung cancer. Clin. Cancer Res. 21 (2015), 1859–1868.
-
(2015)
Clin. Cancer Res.
, vol.21
, pp. 1859-1868
-
-
Owonikoko, T.K.1
Ramalingam, S.S.2
Miller, D.L.3
-
80
-
-
34447570485
-
Everolimus: an immunosuppressive agent in transplantation
-
[80] Patel, J.K., Kobashigawa, J.A., Everolimus: an immunosuppressive agent in transplantation. Expert Opin. Pharmacother. 7:10 (2006), 1347–1355.
-
(2006)
Expert Opin. Pharmacother.
, vol.7
, Issue.10
, pp. 1347-1355
-
-
Patel, J.K.1
Kobashigawa, J.A.2
-
81
-
-
77957054466
-
The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism
-
[81] Powell, J.D., Delgoffe, G.M., The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immun. Rev. 33 (2010), 301–311.
-
(2010)
Immun. Rev.
, vol.33
, pp. 301-311
-
-
Powell, J.D.1
Delgoffe, G.M.2
-
82
-
-
84899562139
-
Mechanistic target of rapamycin complex 1 expands Th17 and IL4+ CD4-CD8- double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus
-
[82] Kato, H., Perl, A., Mechanistic target of rapamycin complex 1 expands Th17 and IL4+ CD4-CD8- double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus. J. Immunol. 192 (2014), 4134–4144.
-
(2014)
J. Immunol.
, vol.192
, pp. 4134-4144
-
-
Kato, H.1
Perl, A.2
-
83
-
-
84938927002
-
Persistent antigen and prolonged AKT-mTORC1 activation underlie memory CD8 T cell impairment in the absence of CD4 T cells
-
[83] Li, Y., Shen, C., Zhu, B., Shi, F., Eisen, H.N., Chen, J., Persistent antigen and prolonged AKT-mTORC1 activation underlie memory CD8 T cell impairment in the absence of CD4 T cells. J. Immunol. 195 (2015), 1591–1598.
-
(2015)
J. Immunol.
, vol.195
, pp. 1591-1598
-
-
Li, Y.1
Shen, C.2
Zhu, B.3
Shi, F.4
Eisen, H.N.5
Chen, J.6
-
84
-
-
84908432145
-
The effects of rapamycin on regulatory T cells: its potential time-dependent role in inducing transplant tolerance
-
[84] Shan, J., Feng, L., Li, Y., Sun, G., Chen, X., Chen, P., The effects of rapamycin on regulatory T cells: its potential time-dependent role in inducing transplant tolerance. Immunol. Lett. 162 (2014), 74–86.
-
(2014)
Immunol. Lett.
, vol.162
, pp. 74-86
-
-
Shan, J.1
Feng, L.2
Li, Y.3
Sun, G.4
Chen, X.5
Chen, P.6
-
85
-
-
19944427094
-
Tacrolimus suppresses glucose-induced release from pancreatic islets by reducing glucokinase activity
-
[85] Radu, R.G., Fujimoto, S., Mukai, E., Takehiro, M., Shimono, D., Nabe, K., et al. Tacrolimus suppresses glucose-induced release from pancreatic islets by reducing glucokinase activity. Am. J. Physiol. Endocrinol. Metab. 288 (2004), E365–E371.
-
(2004)
Am. J. Physiol. Endocrinol. Metab.
, vol.288
, pp. E365-E371
-
-
Radu, R.G.1
Fujimoto, S.2
Mukai, E.3
Takehiro, M.4
Shimono, D.5
Nabe, K.6
-
86
-
-
84883826118
-
Immunosuppressive drug therapy
-
[86] Hartono, C., Muthukumar, T., Suthanthiran, M., Immunosuppressive drug therapy. Cold Spring Harb. Perspect. Med. 3 (2013), 1–15.
-
(2013)
Cold Spring Harb. Perspect. Med.
, vol.3
, pp. 1-15
-
-
Hartono, C.1
Muthukumar, T.2
Suthanthiran, M.3
-
87
-
-
84885047618
-
PharmGKB summary: cyclosporine and tacrolimus pathways
-
[87] Barbarino, J.M., Staatz, C.E., Venkataramanan, R., Klein, T.E., Altman, R.B., PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenet. Genomics 23:10 (2013), 563–585.
-
(2013)
Pharmacogenet. Genomics
, vol.23
, Issue.10
, pp. 563-585
-
-
Barbarino, J.M.1
Staatz, C.E.2
Venkataramanan, R.3
Klein, T.E.4
Altman, R.B.5
-
88
-
-
84907677279
-
Cyclosporine A and Tacrolimus reduce the amount of GLUT4 at the cell surface in human adipocytes: increased endocytosis as a potential mechanism for the diabetogenic effects of immunosuppressive agents
-
[88] Pereira, M.J., Palming, J., Rizell, M., Aureliano, M., Carvalho, E., Svensson, M.K., et al. Cyclosporine A and Tacrolimus reduce the amount of GLUT4 at the cell surface in human adipocytes: increased endocytosis as a potential mechanism for the diabetogenic effects of immunosuppressive agents. J. Clin. Endocrinol. Metab. 99:10 (2014), E1885–E1894.
-
(2014)
J. Clin. Endocrinol. Metab.
, vol.99
, Issue.10
, pp. E1885-E1894
-
-
Pereira, M.J.1
Palming, J.2
Rizell, M.3
Aureliano, M.4
Carvalho, E.5
Svensson, M.K.6
-
89
-
-
0034124993
-
Applications of tacrolimus for the treatment of skin disorders
-
[89] Assmann, T., Homey, B., Ruzicka, T., Applications of tacrolimus for the treatment of skin disorders. Immunopharmacology 47 (2000), 203–213.
-
(2000)
Immunopharmacology
, vol.47
, pp. 203-213
-
-
Assmann, T.1
Homey, B.2
Ruzicka, T.3
-
90
-
-
0141926677
-
Atopic dermatitis management with tacrolimus ointment (Protopic)
-
[90] Kapp, A., Allen, B., Reitamo, S., Atopic dermatitis management with tacrolimus ointment (Protopic). Dermatol. Treat. 14:Suppl 1 (2003), 5–16.
-
(2003)
Dermatol. Treat.
, vol.14
, Issue.Suppl 1
, pp. 5-16
-
-
Kapp, A.1
Allen, B.2
Reitamo, S.3
-
91
-
-
4344580940
-
Tacrolimus therapy in rheumatoid arthritis
-
[91] McCarey, D., Capell, H., Madhok, R., Tacrolimus therapy in rheumatoid arthritis. Rheumatol. Oxf. 43:8 (2004), 946–948.
-
(2004)
Rheumatol. Oxf.
, vol.43
, Issue.8
, pp. 946-948
-
-
McCarey, D.1
Capell, H.2
Madhok, R.3
-
92
-
-
3142694952
-
Cyclosporin in the treatment of severe atopic dermatitis: a retrospective study
-
[92] Lee, S., Tan, A., Giam, Y., Cyclosporin in the treatment of severe atopic dermatitis: a retrospective study. Ann. Acad. Med. Singap. 33:3 (2004), 311–313.
-
(2004)
Ann. Acad. Med. Singap.
, vol.33
, Issue.3
, pp. 311-313
-
-
Lee, S.1
Tan, A.2
Giam, Y.3
-
93
-
-
0027523369
-
Cyclosporin A in rheumatoid arthritis: overview of efficacy
-
[93] Wells, G., Tugwell, P., Cyclosporin A in rheumatoid arthritis: overview of efficacy. Br. J. Rheumatol. 32:Suppl 1 (1993), 51–56.
-
(1993)
Br. J. Rheumatol.
, vol.32
, Issue.Suppl 1
, pp. 51-56
-
-
Wells, G.1
Tugwell, P.2
-
94
-
-
49649118801
-
HIF-1A is up-regulated in activated mast cells by a process that involves calcineurin and NFAT
-
[94] Walczak-Drzewiecka, A., Ratajewski, M., Wagner, W., Dastych, J., HIF-1A is up-regulated in activated mast cells by a process that involves calcineurin and NFAT. J. Immunol. 181 (2008), 1665–1672.
-
(2008)
J. Immunol.
, vol.181
, pp. 1665-1672
-
-
Walczak-Drzewiecka, A.1
Ratajewski, M.2
Wagner, W.3
Dastych, J.4
-
95
-
-
37549028456
-
Calcineurin promotes hypoxia-inducible factor 1a expression by dephosphorylating RACK1 and blocking RACK1 dimerization
-
[95] Liu, Y.V., Hubbi, M.E., Pan, F., McDonald, K.R., Mansharamani, M., Cole, R.N., et al. Calcineurin promotes hypoxia-inducible factor 1a expression by dephosphorylating RACK1 and blocking RACK1 dimerization. J. Biol. Chem. 282:51 (2007), 37064–37073.
-
(2007)
J. Biol. Chem.
, vol.282
, Issue.51
, pp. 37064-37073
-
-
Liu, Y.V.1
Hubbi, M.E.2
Pan, F.3
McDonald, K.R.4
Mansharamani, M.5
Cole, R.N.6
-
96
-
-
77956258205
-
Sequential activation of NFAT and c-myc transcription factors mediates the TGF-B switch from a suppressor to a promoter of cancer cell proliferation
-
[96] Singh, G., Singh, S.K., König, A., Reutlinger, K., Nye, M.D., Adhikary, T., et al. Sequential activation of NFAT and c-myc transcription factors mediates the TGF-B switch from a suppressor to a promoter of cancer cell proliferation. J. Biol. Chem. 285:35 (2010), 27241–27250.
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.35
, pp. 27241-27250
-
-
Singh, G.1
Singh, S.K.2
König, A.3
Reutlinger, K.4
Nye, M.D.5
Adhikary, T.6
-
97
-
-
33747616250
-
Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca+2/calcineurin signaling pathway
-
[97] Buchholz, M., Schatz, A., Wagner, M., Michl, P., Linhart, T., Adler, G., et al. Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca+2/calcineurin signaling pathway. EMBO J. 25 (2006), 3714–3724.
-
(2006)
EMBO J.
, vol.25
, pp. 3714-3724
-
-
Buchholz, M.1
Schatz, A.2
Wagner, M.3
Michl, P.4
Linhart, T.5
Adler, G.6
-
98
-
-
84871636747
-
Calcineurin/NFATc1 pathway contributes to cell proliferation in hepatocellular carcinoma
-
[98] Wang, S., Kang, X., Cao, S., Cheng, H., Wang, D., Geng, J., Calcineurin/NFATc1 pathway contributes to cell proliferation in hepatocellular carcinoma. Dig. Dis. Sci. 57 (2012), 3184–3188.
-
(2012)
Dig. Dis. Sci.
, vol.57
, pp. 3184-3188
-
-
Wang, S.1
Kang, X.2
Cao, S.3
Cheng, H.4
Wang, D.5
Geng, J.6
-
99
-
-
84857957581
-
Transcriptional regulation of the c-myc promoter NFAT1 involvers negative and positive NFAT-responsive elements
-
[99] Mognol, G.P., PSd, Araujo-Souza, Robbs, B.K., Teixera, L.K., Viola, J.P., Transcriptional regulation of the c-myc promoter NFAT1 involvers negative and positive NFAT-responsive elements. Cell Cycle 11:5 (2012), 1014–1028.
-
(2012)
Cell Cycle
, vol.11
, Issue.5
, pp. 1014-1028
-
-
Mognol, G.P.1
PSd, A.-S.2
Robbs, B.K.3
Teixera, L.K.4
Viola, J.P.5
-
100
-
-
80052004396
-
Calcineurin inhibitor-induced and ras-mediated overexpression of VEGF in renal cancer cells involves mTOR through the regulation of PRAS40
-
[100] Basu, A., Banerjee, P., Contreras, A.G., Flynn, E., Pal, S., Calcineurin inhibitor-induced and ras-mediated overexpression of VEGF in renal cancer cells involves mTOR through the regulation of PRAS40. PLoS One, 6(8), 2011, e23919.
-
(2011)
PLoS One
, vol.6
, Issue.8
, pp. e23919
-
-
Basu, A.1
Banerjee, P.2
Contreras, A.G.3
Flynn, E.4
Pal, S.5
-
101
-
-
84857497303
-
Critical role of mTOR in calcineurin inhibitor-induced renal cancer progression
-
[101] Basu, A., Banerjee, P., Pal, S., Critical role of mTOR in calcineurin inhibitor-induced renal cancer progression. Cell Cycle 11:4 (2012), 633–634.
-
(2012)
Cell Cycle
, vol.11
, Issue.4
, pp. 633-634
-
-
Basu, A.1
Banerjee, P.2
Pal, S.3
-
102
-
-
79960090691
-
Effect of tacrolimus on energy metabolism in human umbilical endothelial cells
-
[102] Illsinger, S., Göken, C., Brockmann, M., Thiemann, I., Bednarczyk, J., Schmidt, K.-H., et al. Effect of tacrolimus on energy metabolism in human umbilical endothelial cells. Ann. Transpl. 16:2 (2011), 68–75.
-
(2011)
Ann. Transpl.
, vol.16
, Issue.2
, pp. 68-75
-
-
Illsinger, S.1
Göken, C.2
Brockmann, M.3
Thiemann, I.4
Bednarczyk, J.5
Schmidt, K.-H.6
-
103
-
-
80051697675
-
Cyclosporine A: impact on mitochondrial function in endothelial cells
-
[103] Illsinger, S., Janzen, N., Lücke, T., Bednarczyk, J., Schmidt, K., Hoy, L., et al. Cyclosporine A: impact on mitochondrial function in endothelial cells. Clin. Transpl. 25 (2011), 584–593.
-
(2011)
Clin. Transpl.
, vol.25
, pp. 584-593
-
-
Illsinger, S.1
Janzen, N.2
Lücke, T.3
Bednarczyk, J.4
Schmidt, K.5
Hoy, L.6
-
104
-
-
84895553061
-
Molecular mechanisms underlying the effects of cyclosporin A and sirolimus on glucose and lipid metabolism in liver, skeletal muscle and adipose tissue in an in vivo rat model
-
[104] Fuhrmann, A., Lopes, P., Sereno, J., Pedro, J., Espinoza, D., Pereira, M., et al. Molecular mechanisms underlying the effects of cyclosporin A and sirolimus on glucose and lipid metabolism in liver, skeletal muscle and adipose tissue in an in vivo rat model. Biochem. Pharmacol. 88 (2014), 216–228.
-
(2014)
Biochem. Pharmacol.
, vol.88
, pp. 216-228
-
-
Fuhrmann, A.1
Lopes, P.2
Sereno, J.3
Pedro, J.4
Espinoza, D.5
Pereira, M.6
-
105
-
-
84975802632
-
The Purine Path to Chempotherapy
-
[105] Elion, G.B., The Purine Path to Chempotherapy. 1989, 41–47.
-
(1989)
, pp. 41-47
-
-
Elion, G.B.1
-
106
-
-
83555174812
-
Review article: the benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease
-
[106] Chouchana, L., Narjoz, C., Beaune, P., Loriot, M., Roblin, X., Review article: the benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease. Aliment. Pharmacol. Ther. 35 (2012), 15–36.
-
(2012)
Aliment. Pharmacol. Ther.
, vol.35
, pp. 15-36
-
-
Chouchana, L.1
Narjoz, C.2
Beaune, P.3
Loriot, M.4
Roblin, X.5
-
107
-
-
0033560678
-
Azathioprine and 6-mercaptopurine alter the nucleotide balance in endothelial cells
-
[107] Weigel, G., Griesmacher, A., DeAbreu, R.A., Wolner, E., Mueller, M.M., Azathioprine and 6-mercaptopurine alter the nucleotide balance in endothelial cells. Thromb. Res. 94 (1999), 87–94.
-
(1999)
Thromb. Res.
, vol.94
, pp. 87-94
-
-
Weigel, G.1
Griesmacher, A.2
DeAbreu, R.A.3
Wolner, E.4
Mueller, M.M.5
-
108
-
-
13244277605
-
Selective inhibition of inflammatory gene expression in activated T lymphocytes: a mechanism of immune suppression by thiopurines
-
[108] Thomas, C.W., Myhre, G.M., Tschumper, R., Sreekumar, R., Jelinek, D., McKean, D.J., et al. Selective inhibition of inflammatory gene expression in activated T lymphocytes: a mechanism of immune suppression by thiopurines. JPET 312:2 (2005), 537–545.
-
(2005)
JPET
, vol.312
, Issue.2
, pp. 537-545
-
-
Thomas, C.W.1
Myhre, G.M.2
Tschumper, R.3
Sreekumar, R.4
Jelinek, D.5
McKean, D.J.6
-
109
-
-
0042591275
-
Identification of the antineoplastic agent 6-mercaptopurine as an activator of the orphan nuclear hormone receptor Nurr1
-
[109] Ordentlich, P., Yan, Y., Zhou, S., Heyman, R.A., Identification of the antineoplastic agent 6-mercaptopurine as an activator of the orphan nuclear hormone receptor Nurr1. J. Biol. Chem. 278:27 (2003), 24791–24799.
-
(2003)
J. Biol. Chem.
, vol.278
, Issue.27
, pp. 24791-24799
-
-
Ordentlich, P.1
Yan, Y.2
Zhou, S.3
Heyman, R.A.4
-
110
-
-
37549024231
-
Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer
-
[110] Karran, P., Attard, N., Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat. Rev. Cancer 8 (2008), 24–36.
-
(2008)
Nat. Rev. Cancer
, vol.8
, pp. 24-36
-
-
Karran, P.1
Attard, N.2
-
111
-
-
0027510308
-
A biochemical basis for synergism of 6-mercaptopurine and mycophenolic acid in Molt F4, a human malignant T-lymphoblastic cell line
-
[111] Stet, E.H., Abreu, R.A.D., Janssen, Y.P., Bökkerink, P.P., Trijbels, F.J., A biochemical basis for synergism of 6-mercaptopurine and mycophenolic acid in Molt F4, a human malignant T-lymphoblastic cell line. Biochem. Biophys. 1180 (1993), 277–282.
-
(1993)
Biochem. Biophys.
, vol.1180
, pp. 277-282
-
-
Stet, E.H.1
Abreu, R.A.D.2
Janssen, Y.P.3
Bökkerink, P.P.4
Trijbels, F.J.5
-
112
-
-
23844556557
-
Immunosuppressive efficacy of mycophenolate mofetil when compared with azathioprine and mizoribine against peripheral lymphocytes from renal transplant recipients
-
[112] Sugiyama, K., Satoh, H., Saito, K., Takahashi, K., Saito, N., Hirano, T., Immunosuppressive efficacy of mycophenolate mofetil when compared with azathioprine and mizoribine against peripheral lymphocytes from renal transplant recipients. Transpl. Int. 18:5 (2005), 590–595.
-
(2005)
Transpl. Int.
, vol.18
, Issue.5
, pp. 590-595
-
-
Sugiyama, K.1
Satoh, H.2
Saito, K.3
Takahashi, K.4
Saito, N.5
Hirano, T.6
-
113
-
-
0027094084
-
Comparison of the effects of mizoribine with those of azathioprine, 6-mercaptopurine, and mycophenolic acid on T lymphocyte proliferation and purine ribonucleotide metabolism
-
[113] Dayton, J.S., Turka, L.A., Thompson, C.B., Mitchell, B.S., Comparison of the effects of mizoribine with those of azathioprine, 6-mercaptopurine, and mycophenolic acid on T lymphocyte proliferation and purine ribonucleotide metabolism. Mol. Pharmacol. 41:4 (1992), 671–676.
-
(1992)
Mol. Pharmacol.
, vol.41
, Issue.4
, pp. 671-676
-
-
Dayton, J.S.1
Turka, L.A.2
Thompson, C.B.3
Mitchell, B.S.4
-
114
-
-
34249944692
-
6-mercaptopurine, an activator of Nur77, enhances transcriptional activity of HIF-1a resulting in new vessel formation
-
[114] Yoo, Y., Na, T., Yang, W., Kim, H., Lee, I., Kong, G., et al. 6-mercaptopurine, an activator of Nur77, enhances transcriptional activity of HIF-1a resulting in new vessel formation. Oncogene 26 (2007), 3823–3834.
-
(2007)
Oncogene
, vol.26
, pp. 3823-3834
-
-
Yoo, Y.1
Na, T.2
Yang, W.3
Kim, H.4
Lee, I.5
Kong, G.6
-
115
-
-
84889597949
-
The role of mycophenolate mofetil in kidney transplantation revisited
-
[115] Maripuri, S., Kasiske, B.L., The role of mycophenolate mofetil in kidney transplantation revisited. Transpl. Rev. 28:1 (2014), 26–31.
-
(2014)
Transpl. Rev.
, vol.28
, Issue.1
, pp. 26-31
-
-
Maripuri, S.1
Kasiske, B.L.2
-
116
-
-
61349171847
-
An update on the use of mycophenolate mofetil in lupus nephritis and other primary glomerular diseases
-
[116] Appel, A.S., Appel, G.B., An update on the use of mycophenolate mofetil in lupus nephritis and other primary glomerular diseases. Nat. Rev. Nephrol. 5 (2009), 132–142.
-
(2009)
Nat. Rev. Nephrol.
, vol.5
, pp. 132-142
-
-
Appel, A.S.1
Appel, G.B.2
-
117
-
-
84928803490
-
Differential effects of cyclophosphamide and mycophenolate mofetil on cellular and serological parameters in patients with systemic lupus erythematosus
-
[117] Fassbinder, T., Saunders, U., Mickholz, E., Jung, E., Becker, H., Schlüter, B., et al. Differential effects of cyclophosphamide and mycophenolate mofetil on cellular and serological parameters in patients with systemic lupus erythematosus. Arthritis Res. Ther., 17(92), 2015.
-
(2015)
Arthritis Res. Ther.
, vol.17
, Issue.92
-
-
Fassbinder, T.1
Saunders, U.2
Mickholz, E.3
Jung, E.4
Becker, H.5
Schlüter, B.6
-
118
-
-
49849093226
-
Molecular mechanisms of the antiangiogenic and antitumor effects of mycophenolic acid
-
[118] Domhan, S., Muschal, S., Schwager, C., Morath, C., Wirkner, U., Ansorge, W., et al. Molecular mechanisms of the antiangiogenic and antitumor effects of mycophenolic acid. Mol. Cancer Ther. 7:6 (2008), 1656–1667.
-
(2008)
Mol. Cancer Ther.
, vol.7
, Issue.6
, pp. 1656-1667
-
-
Domhan, S.1
Muschal, S.2
Schwager, C.3
Morath, C.4
Wirkner, U.5
Ansorge, W.6
-
119
-
-
84889689705
-
Transcriptomic changes induced by mycophenolic acid in gastric cancer cells
-
[119] Dun, B., Sharma, A., Xu, H., Liu, H., Bai, S., Zeng, L., et al. Transcriptomic changes induced by mycophenolic acid in gastric cancer cells. Am. J. Transl. Res. 6:1 (2014), 28–42.
-
(2014)
Am. J. Transl. Res.
, vol.6
, Issue.1
, pp. 28-42
-
-
Dun, B.1
Sharma, A.2
Xu, H.3
Liu, H.4
Bai, S.5
Zeng, L.6
-
120
-
-
79951961532
-
Mycophenolic acid-mediated suppression of human CD4+ T cells: more than mere guanine nucleotide deprivation
-
[120] He, X., Smeets, R., Koenen, H., Vink, P., Wagenaars, J., Boots, A., et al. Mycophenolic acid-mediated suppression of human CD4+ T cells: more than mere guanine nucleotide deprivation. Am. J. Transpl. 11 (2011), 439–449.
-
(2011)
Am. J. Transpl.
, vol.11
, pp. 439-449
-
-
He, X.1
Smeets, R.2
Koenen, H.3
Vink, P.4
Wagenaars, J.5
Boots, A.6
-
121
-
-
84888811354
-
Delineation of biological and molecular mechanisms underlying the diverse anticancer activities of mycophenolic acid
-
[121] Dun, B., Xu, H., Sharma, A., Liu, H., Yu, H., Yi, B., et al. Delineation of biological and molecular mechanisms underlying the diverse anticancer activities of mycophenolic acid. Int. J. Clin. Exp. Pathol. 6:12 (2013), 2880–2886.
-
(2013)
Int. J. Clin. Exp. Pathol.
, vol.6
, Issue.12
, pp. 2880-2886
-
-
Dun, B.1
Xu, H.2
Sharma, A.3
Liu, H.4
Yu, H.5
Yi, B.6
-
122
-
-
33645238415
-
Folic acid supplementation during methotrexate immunosuppression is not associated with early toxicity, risk of acute graft-versus-host disease or relapse following hematopoietic transplantation
-
[122] Robien, K., Schubert, M., Yasui, Y., Martin, P., Storb, R., Potter, J., et al. Folic acid supplementation during methotrexate immunosuppression is not associated with early toxicity, risk of acute graft-versus-host disease or relapse following hematopoietic transplantation. Bone Marrow Transpl. 37 (2006), 687–692.
-
(2006)
Bone Marrow Transpl.
, vol.37
, pp. 687-692
-
-
Robien, K.1
Schubert, M.2
Yasui, Y.3
Martin, P.4
Storb, R.5
Potter, J.6
-
123
-
-
0032916872
-
Methotrexate specifically modulates cytokine production by T cells and macrophages in murine collagen-induced arthritis (CIA): a mechanism for methotrexate-mediated immunosuppression
-
[123] Neurath, M., Hildner, K., Becker, C., et al. Methotrexate specifically modulates cytokine production by T cells and macrophages in murine collagen-induced arthritis (CIA): a mechanism for methotrexate-mediated immunosuppression. Clin. Exp. Immunol. 115 (1999), 42–55.
-
(1999)
Clin. Exp. Immunol.
, vol.115
, pp. 42-55
-
-
Neurath, M.1
Hildner, K.2
Becker, C.3
-
124
-
-
0031426332
-
The rational use of methotrexate in rheumatoid arthritis and other rheumatic diseases
-
[124] Furst, D., The rational use of methotrexate in rheumatoid arthritis and other rheumatic diseases. Br. J. Rheumatol. 36 (1997), 1196–1204.
-
(1997)
Br. J. Rheumatol.
, vol.36
, pp. 1196-1204
-
-
Furst, D.1
-
125
-
-
44249110721
-
Inhibition of c-myc down-regulation by sustained extracellular signal-regulated kinase activation prevents the antimetabolite methtrexate- and gemcitabine-induced differentiation in non-small-cell lung cancer cells
-
[125] Serra, J.M., Gutiérrez, A., Alemany, R., Navarro, M., Ros, T., Saus, C., et al. Inhibition of c-myc down-regulation by sustained extracellular signal-regulated kinase activation prevents the antimetabolite methtrexate- and gemcitabine-induced differentiation in non-small-cell lung cancer cells. Mol. Pharmacol. 73 (2008), 1679–1687.
-
(2008)
Mol. Pharmacol.
, vol.73
, pp. 1679-1687
-
-
Serra, J.M.1
Gutiérrez, A.2
Alemany, R.3
Navarro, M.4
Ros, T.5
Saus, C.6
-
126
-
-
84975802687
-
Methotrexate-mediated activation of an AMPK-CREC-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation
-
[126] Thornton, C., Al-Rashed, F., Calay, D., Birdsey, G., Bauer, A., Mylroie, H., et al. Methotrexate-mediated activation of an AMPK-CREC-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation. Ann. Rheum. Dis., 2015, 1–10.
-
(2015)
Ann. Rheum. Dis.
, pp. 1-10
-
-
Thornton, C.1
Al-Rashed, F.2
Calay, D.3
Birdsey, G.4
Bauer, A.5
Mylroie, H.6
-
127
-
-
84921897035
-
Methotrexate promotes glucose uptake and lipid oxidation in skeletal muscle via AMPK activation
-
[127] Pirkmajer, S., Kulkarni, S.S., Tom, R.Z., Ross, F.A., Hawley, S.A., Hardie, D.G., et al. Methotrexate promotes glucose uptake and lipid oxidation in skeletal muscle via AMPK activation. Diabetes, 64(360–369), 2015.
-
(2015)
Diabetes
, vol.64
, Issue.360–369
-
-
Pirkmajer, S.1
Kulkarni, S.S.2
Tom, R.Z.3
Ross, F.A.4
Hawley, S.A.5
Hardie, D.G.6
-
128
-
-
84941366350
-
Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses
-
[128] Ho, P.-C., Bihuniak, J.D., Macintyre, A.N., Staron, M., Liu, X., Amezquita, R., et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell. 162 (2015), 1217–1228.
-
(2015)
Cell.
, vol.162
, pp. 1217-1228
-
-
Ho, P.-C.1
Bihuniak, J.D.2
Macintyre, A.N.3
Staron, M.4
Liu, X.5
Amezquita, R.6
-
129
-
-
79951670258
-
Temsirolimus, an mTOR inhibitor, enhances anti-tumour effects of heat shock protein cancer vaccines
-
[129] Wang, Y., Wang, X.-Y., Subjeck, J., Shrikant, P., Kim, H., Temsirolimus, an mTOR inhibitor, enhances anti-tumour effects of heat shock protein cancer vaccines. Br. J. Cancer 104 (2011), 643–652.
-
(2011)
Br. J. Cancer
, vol.104
, pp. 643-652
-
-
Wang, Y.1
Wang, X.-Y.2
Subjeck, J.3
Shrikant, P.4
Kim, H.5
-
130
-
-
84942847541
-
Rapamycin impairs antitumor CD8+ T-cell responses and vaccine-induced tumor eradication
-
[130] Chaoul, N., Fayolle, C., Desrues, B., Oberkampf, M., Tang, A., Ladant, D., et al. Rapamycin impairs antitumor CD8+ T-cell responses and vaccine-induced tumor eradication. Cancer Res. 75:16 (2015), 3279–3291.
-
(2015)
Cancer Res.
, vol.75
, Issue.16
, pp. 3279-3291
-
-
Chaoul, N.1
Fayolle, C.2
Desrues, B.3
Oberkampf, M.4
Tang, A.5
Ladant, D.6
-
131
-
-
84961736633
-
Emerging concepts of T cell metabolism as a target of immunotherapy
-
[131] Chang, C.-H., Pearce, E.L., Emerging concepts of T cell metabolism as a target of immunotherapy. Nat. Immunol. 17:4 (2016), 364–368.
-
(2016)
Nat. Immunol.
, vol.17
, Issue.4
, pp. 364-368
-
-
Chang, C.-H.1
Pearce, E.L.2
|