메뉴 건너뛰기




Volumn 1391, Issue 1, 2017, Pages 35-53

Neuronal systems and circuits involved in the control of food intake and adaptive thermogenesis

Author keywords

energy balance; executive; hypothalamus; melanocortin; reward

Indexed keywords

GHRELIN; INSULIN; LEPTIN; MAMMALIAN TARGET OF RAPAMYCIN; MELANOCORTIN; STEROIDOGENIC FACTOR 1;

EID: 84992390026     PISSN: 00778923     EISSN: 17496632     Source Type: Journal    
DOI: 10.1111/nyas.13263     Document Type: Review
Times cited : (55)

References (251)
  • 3
    • 20444471046 scopus 로고    scopus 로고
    • Genetics of human obesity
    • Clement, K. 2005. Genetics of human obesity. Proc. Nutr. Soc. 64: 133–142.
    • (2005) Proc. Nutr. Soc , vol.64 , pp. 133-142
    • Clement, K.1
  • 4
    • 84898939148 scopus 로고    scopus 로고
    • Heritability: the family roots of obesity
    • Willyard, C. Heritability: the family roots of obesity. Nature 508: S58-S60.
    • Nature , vol.508 , pp. S58-S60
    • Willyard, C.1
  • 5
  • 6
    • 34547828083 scopus 로고    scopus 로고
    • Interactions between the “cognitive” and “metabolic” brain in the control of food intake
    • Berthoud, H.R. 2007. Interactions between the “cognitive” and “metabolic” brain in the control of food intake. Physiol. Behav. 91: 486–498.
    • (2007) Physiol. Behav , vol.91 , pp. 486-498
    • Berthoud, H.R.1
  • 7
    • 84948762954 scopus 로고    scopus 로고
    • Hypothalamic control of brown adipose tissue thermogenesis
    • Labbe, S.M. et al. 2015. Hypothalamic control of brown adipose tissue thermogenesis. Front. Syst. Neurosci. 9: 150.
    • (2015) Front. Syst. Neurosci , vol.9 , pp. 150
    • Labbe, S.M.1
  • 8
    • 84900334867 scopus 로고    scopus 로고
    • Central neural regulation of brown adipose tissue thermogenesis and energy expenditure
    • Morrison, S.F., C.J. Madden & D. Tupone. 2014. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19: 741–756.
    • (2014) Cell Metab , vol.19 , pp. 741-756
    • Morrison, S.F.1    Madden, C.J.2    Tupone, D.3
  • 9
    • 84925841979 scopus 로고    scopus 로고
    • Neural control of energy balance: translating circuits to therapies
    • Gautron, L., J.K. Elmquist & K.W. Williams. 2015. Neural control of energy balance: translating circuits to therapies. Cell 161: 133–145.
    • (2015) Cell , vol.161 , pp. 133-145
    • Gautron, L.1    Elmquist, J.K.2    Williams, K.W.3
  • 10
    • 84893137029 scopus 로고    scopus 로고
    • Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance
    • Schneeberger, M., R. Gomis & M. Claret. 2014. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J. Endocrinol. 220: T25–T46.
    • (2014) J. Endocrinol , vol.220 , pp. T25-T46
    • Schneeberger, M.1    Gomis, R.2    Claret, M.3
  • 11
    • 84873131782 scopus 로고    scopus 로고
    • Hypothalamic control of energy balance: insights into the role of synaptic plasticity
    • Dietrich, M.O. & T.L. Horvath. 2013. Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci. 36: 65–73.
    • (2013) Trends Neurosci , vol.36 , pp. 65-73
    • Dietrich, M.O.1    Horvath, T.L.2
  • 12
    • 0034611732 scopus 로고    scopus 로고
    • Central nervous system control of food intake
    • Schwartz, M.W., S.C. Woods, D. Porte, Jr., et al. 2000. Central nervous system control of food intake. Nature 404: 661–671.
    • (2000) Nature , vol.404 , pp. 661-671
    • Schwartz, M.W.1    Woods, S.C.2    Porte, D.3
  • 13
    • 84860385660 scopus 로고    scopus 로고
    • Functional brain imaging of appetite
    • Dagher, A. 2012. Functional brain imaging of appetite. Trends Endocrinol. Metab. 23: 250–260.
    • (2012) Trends Endocrinol. Metab , vol.23 , pp. 250-260
    • Dagher, A.1
  • 14
    • 84873849544 scopus 로고    scopus 로고
    • Neurobehavioural correlates of body mass index and eating behaviours in adults: a systematic review
    • Vainik, U., A. Dagher, L. Dubé & L.K. Fellows. 2013. Neurobehavioural correlates of body mass index and eating behaviours in adults: a systematic review. Neurosci. Biobehav. Rev. 37: 279–299.
    • (2013) Neurosci. Biobehav. Rev , vol.37 , pp. 279-299
    • Vainik, U.1    Dagher, A.2    Dubé, L.3    Fellows, L.K.4
  • 15
    • 0034672327 scopus 로고    scopus 로고
    • Cerebral hemisphere regulation of motivated behavior
    • Swanson, L.W. 2000. Cerebral hemisphere regulation of motivated behavior. Brain Res. 886, 113–164.
    • (2000) Brain Res , vol.886 , pp. 113-164
    • Swanson, L.W.1
  • 16
    • 0036627597 scopus 로고    scopus 로고
    • Multiple neural systems controlling food intake and body weight
    • Berthoud, H.R. 2002. Multiple neural systems controlling food intake and body weight. Neurosci. Biobehav. Rev. 26: 393–428.
    • (2002) Neurosci. Biobehav. Rev , vol.26 , pp. 393-428
    • Berthoud, H.R.1
  • 17
    • 84937725697 scopus 로고    scopus 로고
    • Cognitive and autonomic determinants of energy homeostasis in obesity
    • Richard, D. 2015. Cognitive and autonomic determinants of energy homeostasis in obesity. Nat. Rev. Endocrinol. 11: 489–501.
    • (2015) Nat. Rev. Endocrinol , vol.11 , pp. 489-501
    • Richard, D.1
  • 18
    • 84871241900 scopus 로고    scopus 로고
    • Obesity and addiction: neurobiological overlaps
    • Volkow, N.D., G.J. Wang, D. Tomasi & R.D. Baler. 2013. Obesity and addiction: neurobiological overlaps. Obes. Rev. 14: 2–18.
    • (2013) Obes. Rev , vol.14 , pp. 2-18
    • Volkow, N.D.1    Wang, G.J.2    Tomasi, D.3    Baler, R.D.4
  • 19
    • 59049101818 scopus 로고    scopus 로고
    • High-restrained eaters only overeat when they are also impulsive
    • Jansen, A. et al. 2009. High-restrained eaters only overeat when they are also impulsive. Behav. Res. Ther. 47: 105–110.
    • (2009) Behav. Res. Ther , vol.47 , pp. 105-110
    • Jansen, A.1
  • 21
    • 0028437652 scopus 로고
    • Stress-induced eating
    • Greeno, C.G. & R.R. Wing. 1994. Stress-induced eating. Psychol. Bull. 115: 444–464.
    • (1994) Psychol. Bull , vol.115 , pp. 444-464
    • Greeno, C.G.1    Wing, R.R.2
  • 22
    • 85011633765 scopus 로고    scopus 로고
    • Emotional distress regulation takes precedence over impulse control: if you feel bad, do it!
    • Tice, D.M., E. Bratslavsky & R.F. Baumeister. 2001. Emotional distress regulation takes precedence over impulse control: if you feel bad, do it! J. Pers. Soc. Psychol. 80: 53–67.
    • (2001) J. Pers. Soc. Psychol , vol.80 , pp. 53-67
    • Tice, D.M.1    Bratslavsky, E.2    Baumeister, R.F.3
  • 23
    • 78149415052 scopus 로고    scopus 로고
    • Executive cognitive function and food intake in children
    • Riggs, N.R., D. Spruijt-Metz, K.L. Sakuma, et al. 2010. Executive cognitive function and food intake in children. J. Nutr. Educ. Behav. 42: 398–403.
    • (2010) J. Nutr. Educ. Behav , vol.42 , pp. 398-403
    • Riggs, N.R.1    Spruijt-Metz, D.2    Sakuma, K.L.3
  • 24
    • 84907199758 scopus 로고    scopus 로고
    • Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies
    • Dietrich, A., M. Federbusch, C. Grellmann, et al. 2014. Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies. Front. Psychol. 5: 1073.
    • (2014) Front. Psychol , vol.5 , pp. 1073
    • Dietrich, A.1    Federbusch, M.2    Grellmann, C.3
  • 25
    • 84930742361 scopus 로고    scopus 로고
    • Being impulsive and obese increases susceptibility to speeded detection of high-calorie foods
    • Bongers, P. et al. 2015. Being impulsive and obese increases susceptibility to speeded detection of high-calorie foods. Health Psychol. 34: 677–685.
    • (2015) Health Psychol , vol.34 , pp. 677-685
    • Bongers, P.1
  • 26
    • 67649532592 scopus 로고    scopus 로고
    • The neurobiology of appetite: hunger as addiction
    • Dagher, A. 2009. The neurobiology of appetite: hunger as addiction. Int. J. Obes. 33(Suppl. 2): S30–S33.
    • (2009) Int. J. Obes , vol.33 , pp. S30-S33
    • Dagher, A.1
  • 27
    • 68649118810 scopus 로고    scopus 로고
    • ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders
    • Berridge, K.C. 2009. ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol. Behav. 97: 537–550.
    • (2009) Physiol. Behav , vol.97 , pp. 537-550
    • Berridge, K.C.1
  • 28
    • 84891629285 scopus 로고    scopus 로고
    • Feelings about food: the ventral tegmental area in food reward and emotional eating
    • Meye, F.J. & R.A. Adan. 2014. Feelings about food: the ventral tegmental area in food reward and emotional eating. Trends Pharmacol. Sci. 35: 31–40.
    • (2014) Trends Pharmacol. Sci , vol.35 , pp. 31-40
    • Meye, F.J.1    Adan, R.A.2
  • 29
    • 0037057802 scopus 로고    scopus 로고
    • The need to feed: homeostatic and hedonic control of eating
    • Saper, C.B., T.C. Chou & J.K. Elmquist. 2002. The need to feed: homeostatic and hedonic control of eating. Neuron 36: 199–211.
    • (2002) Neuron , vol.36 , pp. 199-211
    • Saper, C.B.1    Chou, T.C.2    Elmquist, J.K.3
  • 30
    • 84860432404 scopus 로고    scopus 로고
    • Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies
    • Tang, D.W., L.K. Fellows, D.M. Small & A. Dagher. 2012. Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies. Physiol. Behav. 106: 317–324.
    • (2012) Physiol. Behav , vol.106 , pp. 317-324
    • Tang, D.W.1    Fellows, L.K.2    Small, D.M.3    Dagher, A.4
  • 31
    • 58049180709 scopus 로고    scopus 로고
    • Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis
    • Carlezon, W.A., Jr. & M.J. Thomas. 2009. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56(Suppl. 1): 122–132.
    • (2009) Neuropharmacology , vol.56 , pp. 122-132
    • Carlezon, W.A.1    Thomas, M.J.2
  • 32
    • 1642423939 scopus 로고    scopus 로고
    • The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues
    • Yun, I.A., K.T. Wakabayashi, H.L. Fields & S.M. Nicola. 2004. The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues. J. Neurosci. 24: 2923–2933.
    • (2004) J. Neurosci , vol.24 , pp. 2923-2933
    • Yun, I.A.1    Wakabayashi, K.T.2    Fields, H.L.3    Nicola, S.M.4
  • 33
    • 0021709532 scopus 로고
    • Electrophysiological responses of neurons in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system
    • Yang, C.R. & G.J. Mogenson. 1984. Electrophysiological responses of neurons in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system. Brain Res. 324: 69–84.
    • (1984) Brain Res , vol.324 , pp. 69-84
    • Yang, C.R.1    Mogenson, G.J.2
  • 34
    • 84862152872 scopus 로고    scopus 로고
    • Dysregulation of brain reward systems in eating disorders: neurochemical information from animal models of binge eating, bulimia nervosa, and anorexia nervosa
    • Avena, N.M. & M.E. Bocarsly. 2012. Dysregulation of brain reward systems in eating disorders: neurochemical information from animal models of binge eating, bulimia nervosa, and anorexia nervosa. Neuropharmacology 63: 87–96.
    • (2012) Neuropharmacology , vol.63 , pp. 87-96
    • Avena, N.M.1    Bocarsly, M.E.2
  • 35
    • 0032694280 scopus 로고    scopus 로고
    • Feeding behavior in dopamine-deficient mice
    • Szczypka, M.S. et al. 1999. Feeding behavior in dopamine-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 96: 12138–12143.
    • (1999) Proc. Natl. Acad. Sci. U.S.A , vol.96 , pp. 12138-12143
    • Szczypka, M.S.1
  • 36
    • 0024267590 scopus 로고
    • Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens
    • Hernandez, L. & B.G. Hoebel. 1988. Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiol. Behav. 44: 599–606.
    • (1988) Physiol. Behav , vol.44 , pp. 599-606
    • Hernandez, L.1    Hoebel, B.G.2
  • 37
    • 0032779911 scopus 로고    scopus 로고
    • The role of the striatopallidal and extended amygdala systems in drug addiction
    • Koob, G.F. 1999. The role of the striatopallidal and extended amygdala systems in drug addiction. Ann. N.Y. Acad. Sci. 877: 445–460.
    • (1999) Ann. N.Y. Acad. Sci , vol.877 , pp. 445-460
    • Koob, G.F.1
  • 39
    • 0037057755 scopus 로고    scopus 로고
    • Getting formal with dopamine and reward
    • Schultz, W. 2002. Getting formal with dopamine and reward. Neuron 36: 241–263.
    • (2002) Neuron , vol.36 , pp. 241-263
    • Schultz, W.1
  • 40
    • 12344308143 scopus 로고    scopus 로고
    • Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine
    • Salamone, J.D., M. Correa, S.M. Mingote & S.M. Weber. 2005. Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr. Opin. Pharmacol. 5: 34–41.
    • (2005) Curr. Opin. Pharmacol , vol.5 , pp. 34-41
    • Salamone, J.D.1    Correa, M.2    Mingote, S.M.3    Weber, S.M.4
  • 41
    • 84880678420 scopus 로고    scopus 로고
    • Functional organization of neuronal and humoral signals regulating feeding behavior
    • Schwartz, G.J. & L.M. Zeltser. 2013. Functional organization of neuronal and humoral signals regulating feeding behavior. Ann. Rev. Nutr. 33: 1–21.
    • (2013) Ann. Rev. Nutr , vol.33 , pp. 1-21
    • Schwartz, G.J.1    Zeltser, L.M.2
  • 42
    • 0030565585 scopus 로고    scopus 로고
    • Skilled motor deficits in rats induced by ventrolateral striatal dopamine depletions: behavioral and pharmacological characterization
    • Cousins, M.S. & J.D. Salamone. 1996. Skilled motor deficits in rats induced by ventrolateral striatal dopamine depletions: behavioral and pharmacological characterization. Brain Res. 732: 186–194.
    • (1996) Brain Res , vol.732 , pp. 186-194
    • Cousins, M.S.1    Salamone, J.D.2
  • 43
    • 0029689447 scopus 로고    scopus 로고
    • Contribution of dopaminergic and glutamatergic mechanisms to the pathogenesis of motor response complications in Parkinson's disease
    • Chase, T.N., T.M. Engber & M.M. Mouradian. 1996. Contribution of dopaminergic and glutamatergic mechanisms to the pathogenesis of motor response complications in Parkinson's disease. Adv. Neurol. 69: 497–501.
    • (1996) Adv. Neurol , vol.69 , pp. 497-501
    • Chase, T.N.1    Engber, T.M.2    Mouradian, M.M.3
  • 44
    • 1042286441 scopus 로고    scopus 로고
    • Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning
    • Kelley, A.E. 2004. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci. Biobehav. Rev. 27: 765–776.
    • (2004) Neurosci. Biobehav. Rev , vol.27 , pp. 765-776
    • Kelley, A.E.1
  • 45
    • 0028133318 scopus 로고
    • Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat
    • Canteras, N.S., R.B. Simerly & L.W. Swanson. 1994. Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J. Comp. Neurol. 348: 41–79.
    • (1994) J. Comp. Neurol , vol.348 , pp. 41-79
    • Canteras, N.S.1    Simerly, R.B.2    Swanson, L.W.3
  • 46
    • 58049174958 scopus 로고    scopus 로고
    • Role of lateral hypothalamic orexin neurons in reward processing and addiction
    • Aston-Jones, G., R.J. Smith, D.E. Moorman & K.A. Richardson. 2009. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 56(Suppl. 1): 112–121.
    • (2009) Neuropharmacology , vol.56 , pp. 112-121
    • Aston-Jones, G.1    Smith, R.J.2    Moorman, D.E.3    Richardson, K.A.4
  • 47
    • 0029656135 scopus 로고    scopus 로고
    • Food reward: brain substrates of wanting and liking
    • Berridge, K.C. 1996. Food reward: brain substrates of wanting and liking. Neurosci. Biobehav. Rev. 20: 1–25.
    • (1996) Neurosci. Biobehav. Rev , vol.20 , pp. 1-25
    • Berridge, K.C.1
  • 48
    • 77956180425 scopus 로고    scopus 로고
    • The tempted brain eats: pleasure and desire circuits in obesity and eating disorders
    • Berridge, K.C., C.Y. Ho, J.M. Richard & A.G. DiFeliceantonio. 2010. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 1350: 43–64.
    • (2010) Brain Res , vol.1350 , pp. 43-64
    • Berridge, K.C.1    Ho, C.Y.2    Richard, J.M.3    DiFeliceantonio, A.G.4
  • 49
    • 27744431653 scopus 로고    scopus 로고
    • The endogenous opioid system and clinical pain management
    • Holden, J.E., Y. Jeong & J.M. Forrest. 2005. The endogenous opioid system and clinical pain management. AACN Clin. Issues 16: 291–301.
    • (2005) AACN Clin. Issues , vol.16 , pp. 291-301
    • Holden, J.E.1    Jeong, Y.2    Forrest, J.M.3
  • 50
    • 67649513606 scopus 로고    scopus 로고
    • Reward systems and food intake: role of opioids
    • Gosnell, B.A. & A.S. Levine. 2009. Reward systems and food intake: role of opioids. Int. J. Obes. 33(Suppl. 2): S54–S58.
    • (2009) Int. J. Obes , vol.33 , pp. S54-S58
    • Gosnell, B.A.1    Levine, A.S.2
  • 51
    • 0039000718 scopus 로고
    • Opioids and palatability
    • In, B.G. Hoebel, &, D. Novin, Eds., Brunswick, ME, Haer Institute
    • Siviy, S.M., D.J. Calcagnetti & L.D. Reid. 1982. “Opioids and palatability.” In The Neural Basis of Feeding and Reward. B.G. Hoebel & D. Novin, Eds.: 517–524. Brunswick, ME: Haer Institute.
    • (1982) The Neural Basis of Feeding and Reward , pp. 517-524
    • Siviy, S.M.1    Calcagnetti, D.J.2    Reid, L.D.3
  • 52
    • 0037107190 scopus 로고    scopus 로고
    • Selective reward deficit in mice lacking β-endorphin and enkephalin
    • Hayward, M.D., J.E. Pintar & M.J. Low. 2002. Selective reward deficit in mice lacking β-endorphin and enkephalin. J. Neurosci. 22: 8251–8258.
    • (2002) J. Neurosci , vol.22 , pp. 8251-8258
    • Hayward, M.D.1    Pintar, J.E.2    Low, M.J.3
  • 54
    • 48249097797 scopus 로고    scopus 로고
    • Endocannabinoids: synthesis and degradation
    • Di Marzo, V. 2008. Endocannabinoids: synthesis and degradation. Rev. Physiol. Biochem. Pharmacol. 160: 1–24.
    • (2008) Rev. Physiol. Biochem. Pharmacol , vol.160 , pp. 1-24
    • Di Marzo, V.1
  • 55
    • 17844388556 scopus 로고    scopus 로고
    • Endocannabinoid control of food intake and energy balance
    • Di Marzo, V. & I. Matias. 2005. Endocannabinoid control of food intake and energy balance. Nat. Neurosci. 8: 585–589.
    • (2005) Nat. Neurosci , vol.8 , pp. 585-589
    • Di Marzo, V.1    Matias, I.2
  • 56
    • 43449127219 scopus 로고    scopus 로고
    • The endocannabinoid system in brain reward processes
    • Solinas, M., S.R. Goldberg & D. Piomelli. 2008. The endocannabinoid system in brain reward processes. Br. J. Pharmacol. 154: 369–383.
    • (2008) Br. J. Pharmacol , vol.154 , pp. 369-383
    • Solinas, M.1    Goldberg, S.R.2    Piomelli, D.3
  • 57
    • 84924385915 scopus 로고    scopus 로고
    • Hypothalamic POMC neurons promote cannabinoid-induced feeding
    • Koch, M. et al. 2015. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 519: 45–50.
    • (2015) Nature , vol.519 , pp. 45-50
    • Koch, M.1
  • 58
    • 84907043858 scopus 로고    scopus 로고
    • The PVH as a site of CB1-mediated stimulation of thermogenesis by MC4R agonism in male rats
    • Monge-Roffarello, B. et al. 2014. The PVH as a site of CB1-mediated stimulation of thermogenesis by MC4R agonism in male rats. Endocrinology 155: 3448–3458.
    • (2014) Endocrinology , vol.155 , pp. 3448-3458
    • Monge-Roffarello, B.1
  • 59
    • 79959428713 scopus 로고    scopus 로고
    • Metabolic sensing and the brain: who, what, where, and how?
    • Levin, B.E., C. Magnan, A. Dunn-Meynell & C. Le Foll. 2011. Metabolic sensing and the brain: who, what, where, and how? Endocrinology 152: 2552–2557.
    • (2011) Endocrinology , vol.152 , pp. 2552-2557
    • Levin, B.E.1    Magnan, C.2    Dunn-Meynell, A.3    Le Foll, C.4
  • 60
    • 77249131674 scopus 로고    scopus 로고
    • Hypothalamic nutrient sensing in the control of energy homeostasis
    • Blouet, C. & G.J. Schwartz. 2010. Hypothalamic nutrient sensing in the control of energy homeostasis. Behav. Brain Res. 209: 1–12.
    • (2010) Behav. Brain Res , vol.209 , pp. 1-12
    • Blouet, C.1    Schwartz, G.J.2
  • 61
    • 77955597981 scopus 로고    scopus 로고
    • Central nervous system nutrient signaling: the regulation of energy balance and the future of dietary therapies
    • Stefater, M.A. & R.J. Seeley. 2010. Central nervous system nutrient signaling: the regulation of energy balance and the future of dietary therapies. Ann. Rev. Nutr. 30: 219–235.
    • (2010) Ann. Rev. Nutr , vol.30 , pp. 219-235
    • Stefater, M.A.1    Seeley, R.J.2
  • 62
    • 84888201148 scopus 로고    scopus 로고
    • The hypothalamus and metabolism: integrating signals to control energy and glucose homeostasis
    • Coll, A.P. & G.S. Yeo. 2013. The hypothalamus and metabolism: integrating signals to control energy and glucose homeostasis. Curr. Opin. Pharmacol. 13: 970–976.
    • (2013) Curr. Opin. Pharmacol , vol.13 , pp. 970-976
    • Coll, A.P.1    Yeo, G.S.2
  • 63
    • 0035851851 scopus 로고    scopus 로고
    • The hypothalamus and the control of energy homeostasis: different circuits, different purposes
    • Williams, G. et al. 2001. The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol. Behav. 74: 683–701.
    • (2001) Physiol. Behav , vol.74 , pp. 683-701
    • Williams, G.1
  • 64
    • 84924060988 scopus 로고    scopus 로고
    • The hypothalamic arcuate nucleus and the control of peripheral substrates
    • Joly-Amado, A. et al. 2014. The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Pract. Res. Clin. Endocrinol. Metab. 28: 725–737.
    • (2014) Best Pract. Res. Clin. Endocrinol. Metab , vol.28 , pp. 725-737
    • Joly-Amado, A.1
  • 65
    • 72449161077 scopus 로고    scopus 로고
    • Role of the arcuate nucleus of the hypothalamus in regulation of body weight during energy deficit
    • Sainsbury, A. & L. Zhang. 2010. Role of the arcuate nucleus of the hypothalamus in regulation of body weight during energy deficit. Mol. Cell. Endocrinol. 316: 109–119.
    • (2010) Mol. Cell. Endocrinol , vol.316 , pp. 109-119
    • Sainsbury, A.1    Zhang, L.2
  • 66
    • 84874141984 scopus 로고    scopus 로고
    • Genetic labeling of steroidogenic factor-1 (SF-1) neurons in mice reveals ventromedial nucleus of the hypothalamus (VMH) circuitry beginning at neurogenesis and development of a separate non-SF-1 neuronal cluster in the ventrolateral VMH
    • Cheung, C.C., D.M. Kurrasch, J.K. Liang & H.A. Ingraham. 2013. Genetic labeling of steroidogenic factor-1 (SF-1) neurons in mice reveals ventromedial nucleus of the hypothalamus (VMH) circuitry beginning at neurogenesis and development of a separate non-SF-1 neuronal cluster in the ventrolateral VMH. J. Comp. Neurol. 521: 1268–1288.
    • (2013) J. Comp. Neurol , vol.521 , pp. 1268-1288
    • Cheung, C.C.1    Kurrasch, D.M.2    Liang, J.K.3    Ingraham, H.A.4
  • 67
    • 78651063747 scopus 로고    scopus 로고
    • Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin
    • Ghamari-Langroudi, M., D. Srisai & R.D. Cone. 2011. Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin. Proc. Natl. Acad. Sci. U.S.A. 108: 355–360.
    • (2011) Proc. Natl. Acad. Sci. U.S.A , vol.108 , pp. 355-360
    • Ghamari-Langroudi, M.1    Srisai, D.2    Cone, R.D.3
  • 68
    • 84906979430 scopus 로고    scopus 로고
    • MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus
    • Shah, B.P. et al. 2014. MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. Proc. Natl. Acad. Sci. U.S.A. 111: 13193–13198.
    • (2014) Proc. Natl. Acad. Sci. U.S.A , vol.111 , pp. 13193-13198
    • Shah, B.P.1
  • 69
    • 84887407770 scopus 로고    scopus 로고
    • Genetic identification of a neural circuit that suppresses appetite
    • Carter, M.E., M.E. Soden, L.S. Zweifel & R.D. Palmiter. 2013. Genetic identification of a neural circuit that suppresses appetite. Nature 503: 111–114.
    • (2013) Nature , vol.503 , pp. 111-114
    • Carter, M.E.1    Soden, M.E.2    Zweifel, L.S.3    Palmiter, R.D.4
  • 70
    • 77649212149 scopus 로고    scopus 로고
    • Brainstem integrative function in the central nervous system control of food intake
    • Schwartz, G.J. 2010. Brainstem integrative function in the central nervous system control of food intake. Forum Nutr. 63: 141–151.
    • (2010) Forum Nutr , vol.63 , pp. 141-151
    • Schwartz, G.J.1
  • 71
    • 77649223913 scopus 로고    scopus 로고
    • Hypothalamic-brainstem circuits controlling eating
    • Blevins, J.E. & D.G. Baskin. 2010. Hypothalamic-brainstem circuits controlling eating. Forum Nutr. 63: 133–140.
    • (2010) Forum Nutr , vol.63 , pp. 133-140
    • Blevins, J.E.1    Baskin, D.G.2
  • 72
    • 84962882994 scopus 로고    scopus 로고
    • Central nervous system regulation of brown adipose tissue
    • Morrison, S.F. & C.J. Madden. 2014. Central nervous system regulation of brown adipose tissue. Compr. Physiol. 4: 1677–1713.
    • (2014) Compr. Physiol , vol.4 , pp. 1677-1713
    • Morrison, S.F.1    Madden, C.J.2
  • 73
    • 68649112368 scopus 로고    scopus 로고
    • Parabrachial coding of sapid sucrose: relevance to reward and obesity
    • Hajnal, A., R. Norgren & P. Kovacs. 2009. Parabrachial coding of sapid sucrose: relevance to reward and obesity. Ann. N.Y. Acad. Sci. 1170: 347–364.
    • (2009) Ann. N.Y. Acad. Sci , vol.1170 , pp. 347-364
    • Hajnal, A.1    Norgren, R.2    Kovacs, P.3
  • 74
    • 84255199265 scopus 로고    scopus 로고
    • Central nervous control of energy and glucose balance: focus on the central melanocortin system
    • Xu, Y., J.K. Elmquist & M. Fukuda. 2011. Central nervous control of energy and glucose balance: focus on the central melanocortin system. Ann. N.Y. Acad. Sci. 1243: 1–14.
    • (2011) Ann. N.Y. Acad. Sci , vol.1243 , pp. 1-14
    • Xu, Y.1    Elmquist, J.K.2    Fukuda, M.3
  • 75
    • 84961381209 scopus 로고    scopus 로고
    • Melanocortin-4 receptor-regulated energy homeostasis
    • Krashes, M.J., B.B. Lowell & A.S. Garfield. 2016. Melanocortin-4 receptor-regulated energy homeostasis. Nat. Neurosci. 19: 206–219.
    • (2016) Nat. Neurosci , vol.19 , pp. 206-219
    • Krashes, M.J.1    Lowell, B.B.2    Garfield, A.S.3
  • 78
    • 79960939354 scopus 로고    scopus 로고
    • Melanocortin control of energy balance: evidence from rodent models
    • De Jonghe, B.C., M.R. Hayes & K.K. Bence. 2011. Melanocortin control of energy balance: evidence from rodent models. Cell. Mol. Life Sci. 68: 2569–2588.
    • (2011) Cell. Mol. Life Sci , vol.68 , pp. 2569-2588
    • De Jonghe, B.C.1    Hayes, M.R.2    Bence, K.K.3
  • 79
    • 33845572889 scopus 로고    scopus 로고
    • Studies on the physiological functions of the melanocortin system
    • Cone, R.D. 2006. Studies on the physiological functions of the melanocortin system. Endocr. Rev. 27: 736–749.
    • (2006) Endocr. Rev , vol.27 , pp. 736-749
    • Cone, R.D.1
  • 80
    • 33845222715 scopus 로고    scopus 로고
    • The MC4 receptor and control of appetite
    • Adan, R.A. et al. 2006. The MC4 receptor and control of appetite. Br. J. Pharmacol. 149: 815–827.
    • (2006) Br. J. Pharmacol , vol.149 , pp. 815-827
    • Adan, R.A.1
  • 81
    • 31544465224 scopus 로고    scopus 로고
    • The melanocortin system and energy balance
    • Butler, A.A. 2006. The melanocortin system and energy balance. Peptides 27: 281–290.
    • (2006) Peptides , vol.27 , pp. 281-290
    • Butler, A.A.1
  • 82
    • 0030889192 scopus 로고    scopus 로고
    • Targeted disruption of the melanocortin-4 receptor results in obesity in mice
    • Huszar, D. et al. 1997. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88: 131–141.
    • (1997) Cell , vol.88 , pp. 131-141
    • Huszar, D.1
  • 83
    • 33845567553 scopus 로고    scopus 로고
    • Genetics of obesity in humans
    • Farooqi, S. & S. O'Rahilly. 2006. Genetics of obesity in humans. Endocr. Rev. 27: 710–718.
    • (2006) Endocr. Rev , vol.27 , pp. 710-718
    • Farooqi, S.1    O'Rahilly, S.2
  • 84
    • 11244289511 scopus 로고    scopus 로고
    • Neuropeptide Y Y1 receptor mRNA in rodent brain: distribution and colocalization with melanocortin-4 receptor
    • Kishi, T. et al. 2005. Neuropeptide Y Y1 receptor mRNA in rodent brain: distribution and colocalization with melanocortin-4 receptor. J. Comp. Neurol. 482: 217–243.
    • (2005) J. Comp. Neurol , vol.482 , pp. 217-243
    • Kishi, T.1
  • 85
    • 33748448079 scopus 로고    scopus 로고
    • Distribution of NPY Y5-like immunoreactivity in the rat brain
    • Morin, S.M. & D.R. Gehlert. 2006. Distribution of NPY Y5-like immunoreactivity in the rat brain. J. Mol. Neurosci. 29: 109–114.
    • (2006) J. Mol. Neurosci , vol.29 , pp. 109-114
    • Morin, S.M.1    Gehlert, D.R.2
  • 86
    • 3242744417 scopus 로고    scopus 로고
    • Opioids as agents of reward-related feeding: a consideration of the evidence
    • Levine, A.S. & C.J. Billington. 2004. Opioids as agents of reward-related feeding: a consideration of the evidence. Physiol. Behav. 82: 57–61.
    • (2004) Physiol. Behav , vol.82 , pp. 57-61
    • Levine, A.S.1    Billington, C.J.2
  • 87
    • 0027319108 scopus 로고
    • Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse
    • Wilding, J.P. et al. 1993. Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse. Endocrinology 132: 1939–1944.
    • (1993) Endocrinology , vol.132 , pp. 1939-1944
    • Wilding, J.P.1
  • 88
    • 0025072899 scopus 로고
    • Increased hypothalamic content of preproneuropeptide Y messenger ribonucleic acid in genetically obese Zucker rats and its regulation by food deprivation
    • Sanacora, G., M. Kershaw, J.A. Finkelstein & J.D. White. 1990. Increased hypothalamic content of preproneuropeptide Y messenger ribonucleic acid in genetically obese Zucker rats and its regulation by food deprivation. Endocrinology 127: 730–737.
    • (1990) Endocrinology , vol.127 , pp. 730-737
    • Sanacora, G.1    Kershaw, M.2    Finkelstein, J.A.3    White, J.D.4
  • 89
    • 27344431720 scopus 로고    scopus 로고
    • NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates
    • Luquet, S., F.A. Perez, T.S. Hnasko & R.D. Palmiter. 2005. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685.
    • (2005) Science , vol.310 , pp. 683-685
    • Luquet, S.1    Perez, F.A.2    Hnasko, T.S.3    Palmiter, R.D.4
  • 90
    • 84926393022 scopus 로고    scopus 로고
    • G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons
    • Ghamari-Langroudi, M. et al. 2015. G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons. Nature 520: 94–98.
    • (2015) Nature , vol.520 , pp. 94-98
    • Ghamari-Langroudi, M.1
  • 91
    • 79951999061 scopus 로고    scopus 로고
    • GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism
    • Wu, Q. & R.D. Palmiter. 2011. GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. Eur. J. Pharmacol. 660: 21–27.
    • (2011) Eur. J. Pharmacol , vol.660 , pp. 21-27
    • Wu, Q.1    Palmiter, R.D.2
  • 92
    • 84927618698 scopus 로고    scopus 로고
    • RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals
    • Chen, K.Y. et al. 2015. RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals. J. Clin. Endocrinol. Metab. 100: 1639–1645.
    • (2015) J. Clin. Endocrinol. Metab , vol.100 , pp. 1639-1645
    • Chen, K.Y.1
  • 93
    • 79956282385 scopus 로고    scopus 로고
    • Prader–Willi syndrome: obesity due to genomic imprinting
    • Butler, M.G. 2011. Prader–Willi syndrome: obesity due to genomic imprinting. Curr. Genomics 12: 204–215.
    • (2011) Curr. Genomics , vol.12 , pp. 204-215
    • Butler, M.G.1
  • 94
    • 84979666715 scopus 로고    scopus 로고
    • Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist
    • Kuhnen, P. et al. 2016. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N. Engl. J. Med. 375: 240–246.
    • (2016) N. Engl. J. Med , vol.375 , pp. 240-246
    • Kuhnen, P.1
  • 95
    • 79960190012 scopus 로고    scopus 로고
    • Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons
    • Vong, L. et al. 2011. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71: 142–154.
    • (2011) Neuron , vol.71 , pp. 142-154
    • Vong, L.1
  • 96
    • 84860652458 scopus 로고    scopus 로고
    • Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance
    • Leshan, R.L., M. Greenwald-Yarnell, C.M. Patterson, et al. 2012. Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance. Nat. Med. 18: 820–823.
    • (2012) Nat. Med , vol.18 , pp. 820-823
    • Leshan, R.L.1    Greenwald-Yarnell, M.2    Patterson, C.M.3
  • 97
    • 84979583901 scopus 로고    scopus 로고
    • Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice
    • Lanfray, D. et al. 2016. Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice. eLife 5.
    • (2016) eLife , vol.5
    • Lanfray, D.1
  • 98
    • 77249146406 scopus 로고    scopus 로고
    • Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons
    • Williams, K.W. et al. 2010. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J. Neurosci. 30: 2472–2479.
    • (2010) J. Neurosci , vol.30 , pp. 2472-2479
    • Williams, K.W.1
  • 99
    • 84990756135 scopus 로고
    • Hypothalamic lesions and adiposity in the rat
    • Hetherington, A.W. & S.W. Ranson. 1940. Hypothalamic lesions and adiposity in the rat. Anat. Rec. 78: 149–172.
    • (1940) Anat. Rec , vol.78 , pp. 149-172
    • Hetherington, A.W.1    Ranson, S.W.2
  • 100
    • 31944452253 scopus 로고    scopus 로고
    • The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight
    • King, B.M. 2006. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol. Behav. 87: 221–244.
    • (2006) Physiol. Behav , vol.87 , pp. 221-244
    • King, B.M.1
  • 101
    • 84878819433 scopus 로고    scopus 로고
    • Revisiting the ventral medial nucleus of the hypothalamus: the roles of sf-1 neurons in energy homeostasis
    • Choi, Y.H., T. Fujikawa, J. Lee, et al. 2013. Revisiting the ventral medial nucleus of the hypothalamus: the roles of sf-1 neurons in energy homeostasis. Front. Neurosci. 7: 71.
    • (2013) Front. Neurosci , vol.7 , pp. 71
    • Choi, Y.H.1    Fujikawa, T.2    Lee, J.3
  • 102
    • 0032958372 scopus 로고    scopus 로고
    • RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue
    • Morrison, S.F. 1999. RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am. J. Physiol. 276: R962–R973.
    • (1999) Am. J. Physiol , vol.276 , pp. R962-R973
    • Morrison, S.F.1
  • 103
    • 84896317618 scopus 로고    scopus 로고
    • An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger
    • Krashes, M.J. et al. 2014. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507: 238–242.
    • (2014) Nature , vol.507 , pp. 238-242
    • Krashes, M.J.1
  • 104
    • 0028959656 scopus 로고
    • The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus
    • Ikeda, Y., X. Luo, R. Abbud, et al. 1995. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol. Endocrinol. 9: 478–486.
    • (1995) Mol. Endocrinol , vol.9 , pp. 478-486
    • Ikeda, Y.1    Luo, X.2    Abbud, R.3
  • 105
    • 30644473109 scopus 로고    scopus 로고
    • Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis
    • Dhillon, H. et al. 2006. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49: 191–203.
    • (2006) Neuron , vol.49 , pp. 191-203
    • Dhillon, H.1
  • 106
    • 42449086900 scopus 로고    scopus 로고
    • Selective loss of leptin receptors in the ventromedial hypothalamic nucleus results in increased adiposity and a metabolic syndrome
    • Bingham, N.C., K.K. Anderson, A.L. Reuter, et al. 2008. Selective loss of leptin receptors in the ventromedial hypothalamic nucleus results in increased adiposity and a metabolic syndrome. Endocrinology 149: 2138–2148.
    • (2008) Endocrinology , vol.149 , pp. 2138-2148
    • Bingham, N.C.1    Anderson, K.K.2    Reuter, A.L.3
  • 107
    • 0036153668 scopus 로고    scopus 로고
    • Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity
    • Majdic, G. et al. 2002. Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity. Endocrinology 143: 607–614.
    • (2002) Endocrinology , vol.143 , pp. 607-614
    • Majdic, G.1
  • 108
    • 77956627976 scopus 로고    scopus 로고
    • PI3K signaling in the ventromedial hypothalamic nucleus is required for normal energy homeostasis
    • Xu, Y. et al. 2010. PI3K signaling in the ventromedial hypothalamic nucleus is required for normal energy homeostasis. Cell Metab. 12: 88–95.
    • (2010) Cell Metab , vol.12 , pp. 88-95
    • Xu, Y.1
  • 109
    • 79952068857 scopus 로고    scopus 로고
    • SF-1 in the ventral medial hypothalamic nucleus: a key regulator of homeostasis
    • Kim, K.W. et al. 2011. SF-1 in the ventral medial hypothalamic nucleus: a key regulator of homeostasis. Mol. Cell. Endocrinol. 336: 219–223.
    • (2011) Mol. Cell. Endocrinol , vol.336 , pp. 219-223
    • Kim, K.W.1
  • 110
    • 0021186883 scopus 로고
    • Quantitative contribution of brown adipose tissue thermogenesis to overall metabolism
    • Foster, D.O. 1984. Quantitative contribution of brown adipose tissue thermogenesis to overall metabolism. Can. J. Biochem. Cell Biol. 62: 618–622.
    • (1984) Can. J. Biochem. Cell Biol , vol.62 , pp. 618-622
    • Foster, D.O.1
  • 111
    • 4143078238 scopus 로고    scopus 로고
    • The brown adipocyte: update on its metabolic role
    • Sell, H., Y. Deshaies & D. Richard. 2004. The brown adipocyte: update on its metabolic role. Int. J. Biochem. Cell Biol. 36: 2098–2104.
    • (2004) Int. J. Biochem. Cell Biol , vol.36 , pp. 2098-2104
    • Sell, H.1    Deshaies, Y.2    Richard, D.3
  • 112
    • 78650100807 scopus 로고    scopus 로고
    • Determinants of brown adipocyte development and thermogenesis
    • Richard, D., A.C. Carpentier, G. Dore, et al. 2010. Determinants of brown adipocyte development and thermogenesis. Int. J. Obes. 34(Suppl. 2): S59–S66.
    • (2010) Int. J. Obes , vol.34 , pp. S59-S66
    • Richard, D.1    Carpentier, A.C.2    Dore, G.3
  • 113
    • 0347989317 scopus 로고    scopus 로고
    • Brown adipose tissue: function and physiological significance
    • Cannon, B. & J. Nedergaard. 2004. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84: 277–359.
    • (2004) Physiol. Rev , vol.84 , pp. 277-359
    • Cannon, B.1    Nedergaard, J.2
  • 114
    • 18844458927 scopus 로고    scopus 로고
    • Respiration uncoupling and metabolism in the control of energy expenditure
    • Ricquier, D. 2005. Respiration uncoupling and metabolism in the control of energy expenditure. Proc. Nutr. Soc. 64: 47–52.
    • (2005) Proc. Nutr. Soc , vol.64 , pp. 47-52
    • Ricquier, D.1
  • 115
    • 78449285575 scopus 로고    scopus 로고
    • Sympathetic and sensory innervation of brown adipose tissue
    • Bartness, T.J., C.H. Vaughan & C.K. Song. 2010. Sympathetic and sensory innervation of brown adipose tissue. Int. J. Obes. 34(Suppl. 1): S36–S42.
    • (2010) Int. J. Obes , vol.34 , pp. S36-S42
    • Bartness, T.J.1    Vaughan, C.H.2    Song, C.K.3
  • 116
    • 84880930448 scopus 로고    scopus 로고
    • Understanding the brown adipocyte as a contributor to energy homeostasis
    • Chechi, K., A.C. Carpentier & D. Richard. 2013. Understanding the brown adipocyte as a contributor to energy homeostasis. Trends Endocrinol. Metab. 24: 408–420.
    • (2013) Trends Endocrinol. Metab , vol.24 , pp. 408-420
    • Chechi, K.1    Carpentier, A.C.2    Richard, D.3
  • 117
    • 84877585823 scopus 로고    scopus 로고
    • Beyond the sympathetic tone: the new brown fat activators
    • Villarroya, F. & A. Vidal-Puig. 2013. Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 17: 638–643.
    • (2013) Cell Metab , vol.17 , pp. 638-643
    • Villarroya, F.1    Vidal-Puig, A.2
  • 118
    • 84892795525 scopus 로고    scopus 로고
    • Brown adipose tissue as an anti-obesity tissue in humans
    • Chechi, K., J. Nedergaard & D. Richard. 2014. Brown adipose tissue as an anti-obesity tissue in humans. Obes. Rev. 15: 92–106.
    • (2014) Obes. Rev , vol.15 , pp. 92-106
    • Chechi, K.1    Nedergaard, J.2    Richard, D.3
  • 120
    • 64349123664 scopus 로고    scopus 로고
    • Functional brown adipose tissue in healthy adults
    • Virtanen, K.A. et al. 2009. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360: 1518–1525.
    • (2009) N. Engl. J. Med , vol.360 , pp. 1518-1525
    • Virtanen, K.A.1
  • 121
    • 64349095231 scopus 로고    scopus 로고
    • Cold-activated brown adipose tissue in healthy men
    • van Marken Lichtenbelt, W.D. et al. 2009. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360: 1500–1508.
    • (2009) N. Engl. J. Med , vol.360 , pp. 1500-1508
    • van Marken Lichtenbelt, W.D.1
  • 122
    • 64349105205 scopus 로고    scopus 로고
    • Identification and importance of brown adipose tissue in adult humans
    • Cypess, A.M. et al. 2009. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360: 1509–1517.
    • (2009) N. Engl. J. Med , vol.360 , pp. 1509-1517
    • Cypess, A.M.1
  • 123
    • 84856529575 scopus 로고    scopus 로고
    • Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans
    • Ouellet, V. et al. 2012. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 122: 545–552.
    • (2012) J. Clin. Invest , vol.122 , pp. 545-552
    • Ouellet, V.1
  • 124
    • 84895792999 scopus 로고    scopus 로고
    • Increased brown adipose tissue oxidative capacity in cold-acclimated humans
    • Blondin, D.P. et al. 2014. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J. Clin. Endocrinol. Metab. 99: E438–E446.
    • (2014) J. Clin. Endocrinol. Metab , vol.99 , pp. E438-E446
    • Blondin, D.P.1
  • 125
    • 84932626659 scopus 로고    scopus 로고
    • In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis
    • Labbe, S.M. et al. 2015. In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis. FASEB J. 29: 2046–2058.
    • (2015) FASEB J , vol.29 , pp. 2046-2058
    • Labbe, S.M.1
  • 126
    • 84922391798 scopus 로고    scopus 로고
    • Brown adipose tissue and its therapeutic potential
    • Lidell, M.E., M.J. Betz & S. Enerback. 2014. Brown adipose tissue and its therapeutic potential. J. Intern. Med. 276: 364–377.
    • (2014) J. Intern. Med , vol.276 , pp. 364-377
    • Lidell, M.E.1    Betz, M.J.2    Enerback, S.3
  • 127
    • 84896866771 scopus 로고    scopus 로고
    • Recent advance in brown adipose physiology and its therapeutic potential
    • Lee, Y.H., Y.S. Jung & D. Choi. 2014. Recent advance in brown adipose physiology and its therapeutic potential. Exp. Mol. Med. 46: e78.
    • (2014) Exp. Mol. Med , vol.46
    • Lee, Y.H.1    Jung, Y.S.2    Choi, D.3
  • 128
    • 84887431711 scopus 로고    scopus 로고
    • Brown and beige fat: development, function and therapeutic potential
    • Harms, M. & P. Seale. 2013. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19: 1252–1263.
    • (2013) Nat. Med , vol.19 , pp. 1252-1263
    • Harms, M.1    Seale, P.2
  • 129
    • 84861845111 scopus 로고    scopus 로고
    • Brown adipose tissue: mechanisms and potential therapeutic targets
    • Tam, C.S., V. Lecoultre & E. Ravussin. 2012. Brown adipose tissue: mechanisms and potential therapeutic targets. Circulation 125: 2782–2791.
    • (2012) Circulation , vol.125 , pp. 2782-2791
    • Tam, C.S.1    Lecoultre, V.2    Ravussin, E.3
  • 130
    • 84904356069 scopus 로고    scopus 로고
    • The medial preoptic nucleus as a site of the thermogenic and metabolic actions of melanotan II in male rats
    • Monge-Roffarello, B. et al. 2014. The medial preoptic nucleus as a site of the thermogenic and metabolic actions of melanotan II in male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307: R158–R166.
    • (2014) Am. J. Physiol. Regul. Integr. Comp. Physiol , vol.307 , pp. R158-R166
    • Monge-Roffarello, B.1
  • 131
    • 84881257127 scopus 로고    scopus 로고
    • Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain
    • Lindberg, D., P. Chen & C. Li. 2013. Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain. J. Comp. Neurol. 521: 3167–3190.
    • (2013) J. Comp. Neurol , vol.521 , pp. 3167-3190
    • Lindberg, D.1    Chen, P.2    Li, C.3
  • 133
    • 0032967165 scopus 로고    scopus 로고
    • Brain glucose sensing and body energy homeostasis: role in obesity and diabetes
    • Levin, B.E., A.A. Dunn-Meynell & V.H. Routh. 1999. Brain glucose sensing and body energy homeostasis: role in obesity and diabetes. Am. J. Physiol. 276: R1223–R1231.
    • (1999) Am. J. Physiol , vol.276 , pp. R1223-R1231
    • Levin, B.E.1    Dunn-Meynell, A.A.2    Routh, V.H.3
  • 134
  • 136
    • 80052049014 scopus 로고    scopus 로고
    • GLP-1 and energy balance: an integrated model of short-term and long-term control
    • Barrera, J.G., D.A. Sandoval, D.A. D'Alessio & R.J. Seeley. 2011. GLP-1 and energy balance: an integrated model of short-term and long-term control. Nat. Rev. Endocrinol. 7: 507–516.
    • (2011) Nat. Rev. Endocrinol , vol.7 , pp. 507-516
    • Barrera, J.G.1    Sandoval, D.A.2    D'Alessio, D.A.3    Seeley, R.J.4
  • 137
    • 84877577992 scopus 로고    scopus 로고
    • The regulation of food intake by the gut–brain axis: implications for obesity
    • Hussain, S.S. & S.R. Bloom. 2013. The regulation of food intake by the gut–brain axis: implications for obesity. Int. J. Obes. 37: 625–633.
    • (2013) Int. J. Obes , vol.37 , pp. 625-633
    • Hussain, S.S.1    Bloom, S.R.2
  • 138
    • 84868303198 scopus 로고    scopus 로고
    • Hypothalamic dysfunction in obesity
    • Williams, L.M. 2012. Hypothalamic dysfunction in obesity. Proc. Nutr. Soc. 71: 521–533.
    • (2012) Proc. Nutr. Soc , vol.71 , pp. 521-533
    • Williams, L.M.1
  • 139
    • 84879916109 scopus 로고    scopus 로고
    • Role of leptin resistance in the development of obesity in older patients
    • Carter, S., A. Caron, D. Richard & F. Picard. 2013. Role of leptin resistance in the development of obesity in older patients. Clin. Interv. Aging 8: 829–844.
    • (2013) Clin. Interv. Aging , vol.8 , pp. 829-844
    • Carter, S.1    Caron, A.2    Richard, D.3    Picard, F.4
  • 140
    • 84873198464 scopus 로고    scopus 로고
    • CNS insulin signaling in the control of energy homeostasis and glucose metabolism—from embryo to old age
    • Vogt, M.C. & J.C. Bruning. 2013. CNS insulin signaling in the control of energy homeostasis and glucose metabolism—from embryo to old age. Trends Endocrinol. Metab. 24: 76–84.
    • (2013) Trends Endocrinol. Metab , vol.24 , pp. 76-84
    • Vogt, M.C.1    Bruning, J.C.2
  • 141
    • 33748755428 scopus 로고    scopus 로고
    • Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer's disease
    • de la Monte, S.M., M. Tong, N. Lester-Coll. 2006. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer's disease. J. Alzheimers Dis. 10: 89–109.
    • (2006) J. Alzheimers Dis , vol.10 , pp. 89-109
    • de la Monte, S.M.1    Tong, M.2    Lester-Coll, N.3
  • 142
    • 84860390335 scopus 로고    scopus 로고
    • Insulin sensitivity of the human brain
    • Ketterer, C. et al. 2011. Insulin sensitivity of the human brain. Diabetes Res. Clin. Pract. 93(Suppl. 1): S47–S51.
    • (2011) Diabetes Res. Clin. Pract , vol.93 , pp. S47-S51
    • Ketterer, C.1
  • 143
    • 84951859618 scopus 로고    scopus 로고
    • Obesity impairs the action of the neuroendocrine ghrelin system
    • Zigman, J.M., S.G. Bouret & Z.B. Andrews. 2016. Obesity impairs the action of the neuroendocrine ghrelin system. Trends Endocrinol. Metab. 27: 54–63.
    • (2016) Trends Endocrinol. Metab , vol.27 , pp. 54-63
    • Zigman, J.M.1    Bouret, S.G.2    Andrews, Z.B.3
  • 144
    • 0018139377 scopus 로고
    • Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice
    • Coleman, D.L. 1978. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14: 141–148.
    • (1978) Diabetologia , vol.14 , pp. 141-148
    • Coleman, D.L.1
  • 145
    • 0028139089 scopus 로고
    • Positional cloning of the mouse obese gene and its human homologue
    • Zhang, Y. et al. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–432.
    • (1994) Nature , vol.372 , pp. 425-432
    • Zhang, Y.1
  • 146
    • 0030878110 scopus 로고    scopus 로고
    • Congenital leptin deficiency is associated with severe early-onset obesity in humans
    • Montague, C.T. et al. 1997. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387: 903–908.
    • (1997) Nature , vol.387 , pp. 903-908
    • Montague, C.T.1
  • 147
    • 0029066265 scopus 로고
    • Effects of the obese gene product on body weight regulation in ob/ob mice
    • Pelleymounter, M.A. et al. 1995. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269: 540–543.
    • (1995) Science , vol.269 , pp. 540-543
    • Pelleymounter, M.A.1
  • 148
    • 0029048408 scopus 로고
    • Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks
    • Campfield, L.A., F.J. Smith, Y. Guisez, 1995. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269: 546–549.
    • (1995) Science , vol.269 , pp. 546-549
    • Campfield, L.A.1    Smith, F.J.2    Guisez, Y.3
  • 149
    • 0033575993 scopus 로고    scopus 로고
    • Effects of recombinant leptin therapy in a child with congenital leptin deficiency
    • Farooqi, I.S. et al. 1999. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341: 879–884.
    • (1999) N. Engl. J. Med , vol.341 , pp. 879-884
    • Farooqi, I.S.1
  • 150
    • 0030942844 scopus 로고    scopus 로고
    • The leptin receptor
    • Tartaglia, L.A. 1997. The leptin receptor. J. Biol. Chem. 272: 6093–6096.
    • (1997) J. Biol. Chem , vol.272 , pp. 6093-6096
    • Tartaglia, L.A.1
  • 151
    • 0032558725 scopus 로고    scopus 로고
    • Leptin and the regulation of body weight in mammals
    • Friedman, J.M. & J.L. Halaas. 1998. Leptin and the regulation of body weight in mammals. Nature 395: 763–770.
    • (1998) Nature , vol.395 , pp. 763-770
    • Friedman, J.M.1    Halaas, J.L.2
  • 152
    • 0029762615 scopus 로고    scopus 로고
    • Coexpression of leptin receptor and preproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus
    • Mercer, J.G. et al. 1996. Coexpression of leptin receptor and preproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus. J. Neuroendocrinol. 8: 733–735.
    • (1996) J. Neuroendocrinol , vol.8 , pp. 733-735
    • Mercer, J.G.1
  • 153
    • 0029895233 scopus 로고    scopus 로고
    • Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization
    • Mercer, J.G. et al. 1996. Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett. 387: 113–116.
    • (1996) FEBS Lett , vol.387 , pp. 113-116
    • Mercer, J.G.1
  • 154
    • 0032527071 scopus 로고    scopus 로고
    • Distributions of leptin receptor mRNA isoforms in the rat brain
    • Elmquist, J.K., C. Bjorbaek, R.S. Ahima, et al. 1998. Distributions of leptin receptor mRNA isoforms in the rat brain. J. Comp. Neurol. 395: 535–547.
    • (1998) J. Comp. Neurol , vol.395 , pp. 535-547
    • Elmquist, J.K.1    Bjorbaek, C.2    Ahima, R.S.3
  • 155
    • 33748540764 scopus 로고    scopus 로고
    • Leptin receptor signaling in midbrain dopamine neurons regulates feeding
    • Hommel, J.D. et al. 2006. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51: 801–810.
    • (2006) Neuron , vol.51 , pp. 801-810
    • Hommel, J.D.1
  • 156
    • 77954316996 scopus 로고    scopus 로고
    • Leptin promotes dopamine transporter and tyrosine hydroxylase activity in the nucleus accumbens of Sprague–Dawley rats
    • Perry, M.L. et al. 2010. Leptin promotes dopamine transporter and tyrosine hydroxylase activity in the nucleus accumbens of Sprague–Dawley rats. J. Neurochem. 114: 666–674.
    • (2010) J. Neurochem , vol.114 , pp. 666-674
    • Perry, M.L.1
  • 157
    • 0029073613 scopus 로고
    • Weight-reducing effects of the plasma protein encoded by the obese gene
    • Halaas, J.L. et al. 1995. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269: 543–546.
    • (1995) Science , vol.269 , pp. 543-546
    • Halaas, J.L.1
  • 158
    • 0033038418 scopus 로고    scopus 로고
    • Interacting appetite-regulating pathways in the hypothalamic regulation of body weight
    • Kalra, S.P. et al. 1999. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev. 20: 68–100.
    • (1999) Endocr. Rev , vol.20 , pp. 68-100
    • Kalra, S.P.1
  • 159
  • 161
    • 79957896666 scopus 로고    scopus 로고
    • Sixteen years and counting: an update on leptin in energy balance
    • Gautron, L. & J.K. Elmquist. 2011. Sixteen years and counting: an update on leptin in energy balance. J. Clin. Investig. 121: 2087–2093.
    • (2011) J. Clin. Investig , vol.121 , pp. 2087-2093
    • Gautron, L.1    Elmquist, J.K.2
  • 162
    • 78650839802 scopus 로고    scopus 로고
    • A treasure trove of hypothalamic neurocircuitries governing body weight homeostasis
    • Vianna, C.R. & R. Coppari. 2011. A treasure trove of hypothalamic neurocircuitries governing body weight homeostasis. Endocrinology 152: 11–18.
    • (2011) Endocrinology , vol.152 , pp. 11-18
    • Vianna, C.R.1    Coppari, R.2
  • 163
    • 84866076374 scopus 로고    scopus 로고
    • Leptin revisited: its mechanism of action and potential for treating diabetes
    • Coppari, R. & C. Bjorbaek. 2012. Leptin revisited: its mechanism of action and potential for treating diabetes. Nat. Rev. Drug Discov. 11: 692–708.
    • (2012) Nat. Rev. Drug Discov , vol.11 , pp. 692-708
    • Coppari, R.1    Bjorbaek, C.2
  • 164
    • 27744436291 scopus 로고    scopus 로고
    • Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis
    • Elmquist, J.K., R. Coppari, N. Balthasar, et al. 2005. Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J. Comp. Neurol. 493: 63–71.
    • (2005) J. Comp. Neurol , vol.493 , pp. 63-71
    • Elmquist, J.K.1    Coppari, R.2    Balthasar, N.3
  • 165
    • 0036553037 scopus 로고    scopus 로고
    • The melanocortin receptors: lessons from knockout models
    • Butler, A.A. & R.D. Cone. 2002. The melanocortin receptors: lessons from knockout models. Neuropeptides 36: 77–84.
    • (2002) Neuropeptides , vol.36 , pp. 77-84
    • Butler, A.A.1    Cone, R.D.2
  • 166
    • 0034614698 scopus 로고    scopus 로고
    • Modulation of brain reward circuitry by leptin
    • Fulton, S., B. Woodside & P. Shizgal. 2000. Modulation of brain reward circuitry by leptin. Science 287: 125–128.
    • (2000) Science , vol.287 , pp. 125-128
    • Fulton, S.1    Woodside, B.2    Shizgal, P.3
  • 167
    • 0037458468 scopus 로고    scopus 로고
    • Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat
    • Figlewicz, D.P., S.B. Evans, J. Murphy, et al. 2003. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res. 964: 107–115.
    • (2003) Brain Res , vol.964 , pp. 107-115
    • Figlewicz, D.P.1    Evans, S.B.2    Murphy, J.3
  • 168
    • 29144464338 scopus 로고    scopus 로고
    • Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit
    • Jo, Y.H., Y.J. Chen, S.C. Chua, Jr. et al. 2005. Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron 48: 1055–1066.
    • (2005) Neuron , vol.48 , pp. 1055-1066
    • Jo, Y.H.1    Chen, Y.J.2    Chua, S.C.3
  • 169
    • 33748541108 scopus 로고    scopus 로고
    • Leptin regulation of the mesoaccumbens dopamine pathway
    • Fulton, S. et al. 2006. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51: 811–822.
    • (2006) Neuron , vol.51 , pp. 811-822
    • Fulton, S.1
  • 170
    • 84943369863 scopus 로고    scopus 로고
    • Leptin suppresses the rewarding effects of running via STAT3 signaling in dopamine neurons
    • Fernandes, M.F. et al. 2015. Leptin suppresses the rewarding effects of running via STAT3 signaling in dopamine neurons. Cell Metab. 22: 741–749.
    • (2015) Cell Metab , vol.22 , pp. 741-749
    • Fernandes, M.F.1
  • 171
    • 77952503211 scopus 로고    scopus 로고
    • Pathogenesis of insulin resistance in skeletal muscle
    • Abdul-Ghani, M.A. & R.A. DeFronzo. 2010. Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol. 2010: 476279.
    • (2010) J. Biomed. Biotechnol , vol.2010 , pp. 476279
    • Abdul-Ghani, M.A.1    DeFronzo, R.A.2
  • 173
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • Laplante, M. & D.M. Sabatini. 2012. mTOR signaling in growth control and disease. Cell 149: 274–293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 174
    • 84870624154 scopus 로고    scopus 로고
    • Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis
    • Varela, L. & T.L. Horvath. 2012. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep. 13: 1079–1086.
    • (2012) EMBO Rep , vol.13 , pp. 1079-1086
    • Varela, L.1    Horvath, T.L.2
  • 175
    • 0034703229 scopus 로고    scopus 로고
    • Role of brain insulin receptor in control of body weight and reproduction
    • Bruning, J.C. et al. 2000. Role of brain insulin receptor in control of body weight and reproduction. Science 289: 2122–2125.
    • (2000) Science , vol.289 , pp. 2122-2125
    • Bruning, J.C.1
  • 176
    • 0018621289 scopus 로고
    • Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons
    • Woods, S.C., E.C. Lotter, L.D. McKay & D. Porte, Jr. 1979. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282: 503–505.
    • (1979) Nature , vol.282 , pp. 503-505
    • Woods, S.C.1    Lotter, E.C.2    McKay, L.D.3    Porte, D.4
  • 177
    • 0027524524 scopus 로고
    • Chronic intrahypothalamic insulin infusion in the rat: behavioral specificity
    • McGowan, M.K., K.M. Andrews, D. Fenner & S.P. Grossman. 1993. Chronic intrahypothalamic insulin infusion in the rat: behavioral specificity. Physiol. Behav. 54: 1031–1034.
    • (1993) Physiol. Behav , vol.54 , pp. 1031-1034
    • McGowan, M.K.1    Andrews, K.M.2    Fenner, D.3    Grossman, S.P.4
  • 178
    • 7044241101 scopus 로고    scopus 로고
    • Intranasal insulin reduces body fat in men but not in women
    • Hallschmid, M. et al. 2004. Intranasal insulin reduces body fat in men but not in women. Diabetes 53: 3024–3029.
    • (2004) Diabetes , vol.53 , pp. 3024-3029
    • Hallschmid, M.1
  • 179
    • 0037109670 scopus 로고    scopus 로고
    • The catabolic action of insulin in the brain is mediated by melanocortins
    • Benoit, S.C. et al. 2002. The catabolic action of insulin in the brain is mediated by melanocortins. J. Neurosci. 22: 9048–9052.
    • (2002) J. Neurosci , vol.22 , pp. 9048-9052
    • Benoit, S.C.1
  • 180
    • 0026670206 scopus 로고
    • Insulin in the brain: a hormonal regulator of energy balance
    • Schwartz, M.W., D.P. Figlewicz, D.G. Baskin, 1992. Insulin in the brain: a hormonal regulator of energy balance. Endocr. Rev. 13: 387–414.
    • (1992) Endocr. Rev , vol.13 , pp. 387-414
    • Schwartz, M.W.1    Figlewicz, D.P.2    Baskin, D.G.3
  • 181
    • 0026710057 scopus 로고
    • Inhibition of hypothalamic neuropeptide Y gene expression by insulin
    • Schwartz, M.W. et al. 1992. Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology 130: 3608–3616.
    • (1992) Endocrinology , vol.130 , pp. 3608-3616
    • Schwartz, M.W.1
  • 182
    • 0028924906 scopus 로고
    • Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression
    • Sipols, A.J., D.G. Baskin & M.W. Schwartz. 1995. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 44: 147–151.
    • (1995) Diabetes , vol.44 , pp. 147-151
    • Sipols, A.J.1    Baskin, D.G.2    Schwartz, M.W.3
  • 183
    • 34249651956 scopus 로고    scopus 로고
    • Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production
    • Konner, A.C. et al. 2007. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5: 438–449.
    • (2007) Cell Metab , vol.5 , pp. 438-449
    • Konner, A.C.1
  • 184
    • 77950264425 scopus 로고    scopus 로고
    • Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility
    • Hill, J.W. et al. 2010. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab. 11: 286–297.
    • (2010) Cell Metab , vol.11 , pp. 286-297
    • Hill, J.W.1
  • 185
    • 79959652223 scopus 로고    scopus 로고
    • High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons
    • Klockener, T. et al. 2011. High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat. Neurosci. 14: 911–918.
    • (2011) Nat. Neurosci , vol.14 , pp. 911-918
    • Klockener, T.1
  • 186
    • 84864816408 scopus 로고    scopus 로고
    • Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake
    • Mebel, D.M., J.C. Wong, Y.J. Dong & S.L. Borgland. 2012. Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake. Eur. J. Neurosci. 36: 2336–2346.
    • (2012) Eur. J. Neurosci , vol.36 , pp. 2336-2346
    • Mebel, D.M.1    Wong, J.C.2    Dong, Y.J.3    Borgland, S.L.4
  • 187
    • 84904129264 scopus 로고    scopus 로고
    • Effect of insulin on excitatory synaptic transmission onto dopamine neurons of the ventral tegmental area in a mouse model of hyperinsulinemia
    • Liu, S., G. Labouebe, S. Karunakaran, et al. 2013. Effect of insulin on excitatory synaptic transmission onto dopamine neurons of the ventral tegmental area in a mouse model of hyperinsulinemia. Nutr. Diabetes 3: e97.
    • (2013) Nutr. Diabetes , vol.3
    • Liu, S.1    Labouebe, G.2    Karunakaran, S.3
  • 188
    • 84925307917 scopus 로고    scopus 로고
    • Insulin resistance in brain alters dopamine turnover and causes behavioral disorders
    • Kleinridders, A. et al. 2015. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc. Natl. Acad. Sci. U.S.A. 112: 3463–3468.
    • (2015) Proc. Natl. Acad. Sci. U.S.A , vol.112 , pp. 3463-3468
    • Kleinridders, A.1
  • 189
    • 84929964936 scopus 로고    scopus 로고
    • Ghrelin
    • Muller, T.D. et al. 2015. Ghrelin. Mol. Metab. 4: 437–460.
    • (2015) Mol. Metab , vol.4 , pp. 437-460
    • Muller, T.D.1
  • 190
    • 0034687376 scopus 로고    scopus 로고
    • Ghrelin induces adiposity in rodents
    • Tschop, M., D.L. Smiley & M.L. Heiman. 2000. Ghrelin induces adiposity in rodents. Nature 407: 908–913.
    • (2000) Nature , vol.407 , pp. 908-913
    • Tschop, M.1    Smiley, D.L.2    Heiman, M.L.3
  • 191
    • 33745834734 scopus 로고    scopus 로고
    • Ghrelin action in the brain controls adipocyte metabolism
    • Theander-Carrillo, C. et al. 2006. Ghrelin action in the brain controls adipocyte metabolism. J. Clin. Invest. 116: 1983–1993.
    • (2006) J. Clin. Invest , vol.116 , pp. 1983-1993
    • Theander-Carrillo, C.1
  • 192
    • 84866239096 scopus 로고    scopus 로고
    • Thermogenic characterization of ghrelin receptor null mice
    • Lin, L. & Y. Sun. 2012. Thermogenic characterization of ghrelin receptor null mice. Methods Enzymol. 514: 355–370.
    • (2012) Methods Enzymol , vol.514 , pp. 355-370
    • Lin, L.1    Sun, Y.2
  • 193
    • 0032744366 scopus 로고    scopus 로고
    • Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat
    • Willesen, M.G., P. Kristensen & J. Romer. 1999. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology 70: 306–316.
    • (1999) Neuroendocrinology , vol.70 , pp. 306-316
    • Willesen, M.G.1    Kristensen, P.2    Romer, J.3
  • 194
    • 33750115577 scopus 로고    scopus 로고
    • Ghrelin: a hormone regulating food intake and energy homeostasis
    • Gil-Campos, M., C.M. Aguilera, R. Canete & A. Gil. 2006. Ghrelin: a hormone regulating food intake and energy homeostasis. Br. J. Nutr. 96: 201–226.
    • (2006) Br. J. Nutr , vol.96 , pp. 201-226
    • Gil-Campos, M.1    Aguilera, C.M.2    Canete, R.3    Gil, A.4
  • 195
    • 0035513696 scopus 로고    scopus 로고
    • Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA levels and body weight in rats
    • Kamegai, J. et al. 2001. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA levels and body weight in rats. Diabetes 50: 2438–2443.
    • (2001) Diabetes , vol.50 , pp. 2438-2443
    • Kamegai, J.1
  • 196
    • 84895099544 scopus 로고    scopus 로고
    • Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin
    • Wang, Q. et al. 2014. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Mol. Metab. 3: 64–72.
    • (2014) Mol. Metab , vol.3 , pp. 64-72
    • Wang, Q.1
  • 197
    • 29044434688 scopus 로고    scopus 로고
    • Expression of ghrelin receptor mRNA in the rat and the mouse brain
    • Zigman, J.M., J.E. Jones, C.E. Lee, et al. 2006. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 494: 528–548.
    • (2006) J. Comp. Neurol , vol.494 , pp. 528-548
    • Zigman, J.M.1    Jones, J.E.2    Lee, C.E.3
  • 198
    • 84926681508 scopus 로고    scopus 로고
    • Ghrelin signalling on food reward: a salient link between the gut and the mesolimbic system
    • Perello, M. & S.L. Dickson. 2015. Ghrelin signalling on food reward: a salient link between the gut and the mesolimbic system. J. Neuroendocrinol. 27: 424–434.
    • (2015) J. Neuroendocrinol , vol.27 , pp. 424-434
    • Perello, M.1    Dickson, S.L.2
  • 199
    • 79958079915 scopus 로고    scopus 로고
    • The role of the central ghrelin system in reward from food and chemical drugs
    • Dickson, S.L. et al. 2011. The role of the central ghrelin system in reward from food and chemical drugs. Mol. Cell. Endocrinol. 340: 80–87.
    • (2011) Mol. Cell. Endocrinol , vol.340 , pp. 80-87
    • Dickson, S.L.1
  • 200
    • 82255186756 scopus 로고    scopus 로고
    • Leptin regulates the reward value of nutrient
    • Domingos, A.I. et al. 2011. Leptin regulates the reward value of nutrient. Nat. Neurosci. 14: 1562–1568.
    • (2011) Nat. Neurosci , vol.14 , pp. 1562-1568
    • Domingos, A.I.1
  • 201
    • 48849107624 scopus 로고    scopus 로고
    • Brain circuits regulating energy homeostasis
    • Abizaid, A. & T.L. Horvath. 2008. Brain circuits regulating energy homeostasis. Regul. Pept. 149: 3–10.
    • (2008) Regul. Pept , vol.149 , pp. 3-10
    • Abizaid, A.1    Horvath, T.L.2
  • 202
    • 33748362868 scopus 로고    scopus 로고
    • Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward
    • Jerlhag, E. et al. 2006. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict. Biol. 11: 45–54.
    • (2006) Addict. Biol , vol.11 , pp. 45-54
    • Jerlhag, E.1
  • 203
    • 79953198914 scopus 로고    scopus 로고
    • Ghrelin directly targets the ventral tegmental area to increase food motivation
    • Skibicka, K.P., C. Hansson, M. Alvarez-Crespo, et al. 2011. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience 180: 129–137.
    • (2011) Neuroscience , vol.180 , pp. 129-137
    • Skibicka, K.P.1    Hansson, C.2    Alvarez-Crespo, M.3
  • 204
    • 77950371376 scopus 로고    scopus 로고
    • Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner
    • Perello, M. et al. 2010. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol. Psychiatry 67: 880–886.
    • (2010) Biol. Psychiatry , vol.67 , pp. 880-886
    • Perello, M.1
  • 205
    • 84864589380 scopus 로고    scopus 로고
    • The role of ghrelin in reward-based eating
    • Perello, M. & J.M. Zigman. 2012. The role of ghrelin in reward-based eating. Biol. Psychiatry 72: 347–353.
    • (2012) Biol. Psychiatry , vol.72 , pp. 347-353
    • Perello, M.1    Zigman, J.M.2
  • 206
    • 84914108445 scopus 로고    scopus 로고
    • Influence of mTOR in energy and metabolic homeostasis
    • Haissaguerre, M., N. Saucisse & D. Cota. 2014. Influence of mTOR in energy and metabolic homeostasis. Mol. Cell. Endocrinol. 397: 67–77.
    • (2014) Mol. Cell. Endocrinol , vol.397 , pp. 67-77
    • Haissaguerre, M.1    Saucisse, N.2    Cota, D.3
  • 207
    • 70350418625 scopus 로고    scopus 로고
    • mTOR signaling at a glance
    • Laplante, M. & D.M. Sabatini. 2009. mTOR signaling at a glance. J. Cell Sci. 122: 3589–3594.
    • (2009) J. Cell Sci , vol.122 , pp. 3589-3594
    • Laplante, M.1    Sabatini, D.M.2
  • 208
    • 80555143078 scopus 로고    scopus 로고
    • +-ATPase
    • +-ATPase. Science 334: 678–683.
    • (2011) Science , vol.334 , pp. 678-683
    • Zoncu, R.1
  • 209
    • 84937542416 scopus 로고    scopus 로고
    • The roles of mTOR complexes in lipid metabolism
    • Caron, A., D. Richard & M. Laplante. 2015. The roles of mTOR complexes in lipid metabolism. Ann. Rev. Nutr. 35: 321–348.
    • (2015) Ann. Rev. Nutr , vol.35 , pp. 321-348
    • Caron, A.1    Richard, D.2    Laplante, M.3
  • 210
    • 14644429670 scopus 로고    scopus 로고
    • Leptin action in the forebrain regulates the hindbrain response to satiety signals
    • Morton, G.J. et al. 2005. Leptin action in the forebrain regulates the hindbrain response to satiety signals. J. Clin. Investig. 115: 703–710.
    • (2005) J. Clin. Investig , vol.115 , pp. 703-710
    • Morton, G.J.1
  • 211
    • 0037315042 scopus 로고    scopus 로고
    • Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia
    • Niswender, K.D. et al. 2003. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52: 227–231.
    • (2003) Diabetes , vol.52 , pp. 227-231
    • Niswender, K.D.1
  • 212
    • 0035950093 scopus 로고    scopus 로고
    • Intracellular signalling. Key enzyme in leptin-induced anorexia
    • Niswender, K.D. et al. 2001. Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature 413: 794–795.
    • (2001) Nature , vol.413 , pp. 794-795
    • Niswender, K.D.1
  • 213
    • 0036321620 scopus 로고    scopus 로고
    • A phosphatidylinositol 3-kinase phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding
    • Zhao, A.Z., J.N. Huan, S. Gupta, et al. 2002. A phosphatidylinositol 3-kinase phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding. Nat. Neurosci. 5: 727–728.
    • (2002) Nat. Neurosci , vol.5 , pp. 727-728
    • Zhao, A.Z.1    Huan, J.N.2    Gupta, S.3
  • 214
    • 30044447631 scopus 로고    scopus 로고
    • Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons
    • Morton, G.J. et al. 2005. Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons. Cell Metab. 2: 411–420.
    • (2005) Cell Metab , vol.2 , pp. 411-420
    • Morton, G.J.1
  • 215
    • 44949163013 scopus 로고    scopus 로고
    • Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms
    • Buettner, C. et al. 2008. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat. Med. 14: 667–675.
    • (2008) Nat. Med , vol.14 , pp. 667-675
    • Buettner, C.1
  • 216
    • 33645071314 scopus 로고    scopus 로고
    • Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes
    • Gelling, R.W. et al. 2006. Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes. Cell Metab. 3: 67–73.
    • (2006) Cell Metab , vol.3 , pp. 67-73
    • Gelling, R.W.1
  • 217
    • 70350317881 scopus 로고    scopus 로고
    • Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis
    • Hill, J.W. et al. 2009. Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis. Endocrinology 150: 4874–4882.
    • (2009) Endocrinology , vol.150 , pp. 4874-4882
    • Hill, J.W.1
  • 218
    • 43049116846 scopus 로고    scopus 로고
    • Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice
    • Hill, J.W. et al. 2008. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J. Clin. Investig. 118: 1796–1805.
    • (2008) J. Clin. Investig , vol.118 , pp. 1796-1805
    • Hill, J.W.1
  • 219
    • 68949128765 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex 1 (mTORC1) signaling in energy balance and obesity
    • Cota, D. 2009. Mammalian target of rapamycin complex 1 (mTORC1) signaling in energy balance and obesity. Physiol. Behav. 97: 520–524.
    • (2009) Physiol. Behav , vol.97 , pp. 520-524
    • Cota, D.1
  • 220
    • 33646582664 scopus 로고    scopus 로고
    • Hypothalamic mTOR signaling regulates food intake
    • Cota, D. et al. 2006. Hypothalamic mTOR signaling regulates food intake. Science 312: 927–930.
    • (2006) Science , vol.312 , pp. 927-930
    • Cota, D.1
  • 221
    • 84902329648 scopus 로고    scopus 로고
    • Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis
    • Kocalis, H.E. et al. 2014. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis. Mol. Metab. 3: 394–407.
    • (2014) Mol. Metab , vol.3 , pp. 394-407
    • Kocalis, H.E.1
  • 222
    • 56449115916 scopus 로고    scopus 로고
    • Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis
    • Blouet, C., H. Ono & G.J. Schwartz. 2008. Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metab. 8: 459–467.
    • (2008) Cell Metab , vol.8 , pp. 459-467
    • Blouet, C.1    Ono, H.2    Schwartz, G.J.3
  • 223
    • 49049114337 scopus 로고    scopus 로고
    • The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity
    • Cota, D., E.K. Matter, S.C. Woods & R.J. Seeley. 2008. The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. J. Neurosci. 28: 7202–7208.
    • (2008) J. Neurosci , vol.28 , pp. 7202-7208
    • Cota, D.1    Matter, E.K.2    Woods, S.C.3    Seeley, R.J.4
  • 224
    • 84868288958 scopus 로고    scopus 로고
    • Coupling nutrient sensing to metabolic homoeostasis: the role of the mammalian target of rapamycin complex 1 pathway
    • Andre, C. & D. Cota. 2012. Coupling nutrient sensing to metabolic homoeostasis: the role of the mammalian target of rapamycin complex 1 pathway. Proc. Nutr. Soc. 71: 502–510.
    • (2012) Proc. Nutr. Soc , vol.71 , pp. 502-510
    • Andre, C.1    Cota, D.2
  • 225
    • 79960761944 scopus 로고    scopus 로고
    • An emerging role for TOR signaling in mammalian tissue and stem cell physiology
    • Russell, R.C., C. Fang & K.L. Guan. 2011. An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development 138: 3343–3356.
    • (2011) Development , vol.138 , pp. 3343-3356
    • Russell, R.C.1    Fang, C.2    Guan, K.L.3
  • 226
    • 33745052121 scopus 로고    scopus 로고
    • mTOR tells the brain that the body is hungry
    • Kahn, B.B. & M.G. Myers, Jr. 2006. mTOR tells the brain that the body is hungry. Nat. Med. 12: 615–617.
    • (2006) Nat. Med , vol.12 , pp. 615-617
    • Kahn, B.B.1    Myers, M.G.2
  • 227
    • 84926431715 scopus 로고    scopus 로고
    • The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight and sympathetic nerve activity in male mice
    • Muta, K., D.A. Morgan & K. Rahmouni. 2015. The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight and sympathetic nerve activity in male mice. Endocrinology 156: 1398–1407.
    • (2015) Endocrinology , vol.156 , pp. 1398-1407
    • Muta, K.1    Morgan, D.A.2    Rahmouni, K.3
  • 228
    • 84884231872 scopus 로고    scopus 로고
    • Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling
    • Stevanovic, D. et al. 2013. Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling. Mol. Cell. Endocrinol. 381: 280–290.
    • (2013) Mol. Cell. Endocrinol , vol.381 , pp. 280-290
    • Stevanovic, D.1
  • 229
    • 84877965001 scopus 로고    scopus 로고
    • Regulation of mTORC1 and its impact on gene expression at a glance
    • Laplante, M. & D.M. Sabatini. 2013. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126: 1713–1719.
    • (2013) J. Cell Sci , vol.126 , pp. 1713-1719
    • Laplante, M.1    Sabatini, D.M.2
  • 230
    • 84877682466 scopus 로고    scopus 로고
    • Age-dependent modulation of central ghrelin effects on food intake and lipid metabolism in rats
    • Nesic, D.M. et al. 2013. Age-dependent modulation of central ghrelin effects on food intake and lipid metabolism in rats. Eur. J. Pharmacol. 710: 85–91.
    • (2013) Eur. J. Pharmacol , vol.710 , pp. 85-91
    • Nesic, D.M.1
  • 231
    • 84928211330 scopus 로고    scopus 로고
    • Ribosomal S6K1 in POMC and AgRP neurons regulates glucose homeostasis but not feeding behavior in mice
    • Smith, M.A. et al. 2015. Ribosomal S6K1 in POMC and AgRP neurons regulates glucose homeostasis but not feeding behavior in mice. Cell Rep. 11: 335–343.
    • (2015) Cell Rep , vol.11 , pp. 335-343
    • Smith, M.A.1
  • 232
    • 84938422541 scopus 로고    scopus 로고
    • mTORC1 signaling in Agrp neurons mediates circadian expression of Agrp and NPY but is dispensable for regulation of feeding behavior
    • Albert, V., M. Cornu & M.N. Hall. 2015. mTORC1 signaling in Agrp neurons mediates circadian expression of Agrp and NPY but is dispensable for regulation of feeding behavior. Biochem. Biophys. Res. Commun. 464: 480–486.
    • (2015) Biochem. Biophys. Res. Commun , vol.464 , pp. 480-486
    • Albert, V.1    Cornu, M.2    Hall, M.N.3
  • 233
    • 84857418759 scopus 로고    scopus 로고
    • Capricious Cre: the devil is in the details
    • Morrison, C.D. & H. Munzberg. 2012. Capricious Cre: the devil is in the details. Endocrinology 153: 1005–1007.
    • (2012) Endocrinology , vol.153 , pp. 1005-1007
    • Morrison, C.D.1    Munzberg, H.2
  • 234
    • 84879868603 scopus 로고    scopus 로고
    • Metabolic pitfalls of CNS Cre-based technology
    • Harno, E., E.C. Cottrell & A. White. 2013. Metabolic pitfalls of CNS Cre-based technology. Cell Metab. 18: 21–28.
    • (2013) Cell Metab , vol.18 , pp. 21-28
    • Harno, E.1    Cottrell, E.C.2    White, A.3
  • 235
    • 84869412459 scopus 로고    scopus 로고
    • Hypothalamic Akt/PKB signaling in regulation of food intake
    • Kim, D.H., S.C. Woods & R.J. Seeley. 2012. Hypothalamic Akt/PKB signaling in regulation of food intake. Front. Biosci. (Schol. Ed.) 4: 953–966.
    • (2012) Front. Biosci. (Schol. Ed.) , vol.4 , pp. 953-966
    • Kim, D.H.1    Woods, S.C.2    Seeley, R.J.3
  • 236
    • 33745576798 scopus 로고    scopus 로고
    • Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis
    • Kim, M.S. et al. 2006. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat. Neurosci. 9: 901–906.
    • (2006) Nat. Neurosci , vol.9 , pp. 901-906
    • Kim, M.S.1
  • 237
    • 60749130864 scopus 로고    scopus 로고
    • The role of transcriptional regulators in central control of appetite and body weight
    • Coppari, R., G. Ramadori & J.K. Elmquist. 2009. The role of transcriptional regulators in central control of appetite and body weight. Nat. Clin. Pract. Endocrinol. Metab. 5: 160–166.
    • (2009) Nat. Clin. Pract. Endocrinol. Metab , vol.5 , pp. 160-166
    • Coppari, R.1    Ramadori, G.2    Elmquist, J.K.3
  • 238
    • 58149391976 scopus 로고    scopus 로고
    • Monitoring FoxO1 localization in chemically identified neurons
    • Fukuda, M. et al. 2008. Monitoring FoxO1 localization in chemically identified neurons. J. Neurosci. 28: 13640–13648.
    • (2008) J. Neurosci , vol.28 , pp. 13640-13648
    • Fukuda, M.1
  • 239
    • 33646590947 scopus 로고    scopus 로고
    • Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake
    • Kitamura, T. et al. 2006. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat. Med. 12: 534–540.
    • (2006) Nat. Med , vol.12 , pp. 534-540
    • Kitamura, T.1
  • 240
    • 70350369729 scopus 로고    scopus 로고
    • The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake
    • Plum, L. et al. 2009. The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nat. Med. 15: 1195–1201.
    • (2009) Nat. Med , vol.15 , pp. 1195-1201
    • Plum, L.1
  • 241
    • 84863549071 scopus 로고    scopus 로고
    • FOXO1 in the ventromedial hypothalamus regulates energy balance
    • Kim, K.W. et al. 2012. FOXO1 in the ventromedial hypothalamus regulates energy balance. J. Clin. Investig. 122: 2578–2589.
    • (2012) J. Clin. Investig , vol.122 , pp. 2578-2589
    • Kim, K.W.1
  • 242
    • 67349241955 scopus 로고    scopus 로고
    • DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
    • Peterson, T.R. et al. 2009. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137: 873–886.
    • (2009) Cell , vol.137 , pp. 873-886
    • Peterson, T.R.1
  • 243
    • 84864692282 scopus 로고    scopus 로고
    • DEPTOR cell-autonomously promotes adipogenesis, and its expression is associated with obesity
    • Laplante, M. et al. 2012. DEPTOR cell-autonomously promotes adipogenesis, and its expression is associated with obesity. Cell Metab. 16: 202–212.
    • (2012) Cell Metab , vol.16 , pp. 202-212
    • Laplante, M.1
  • 244
    • 84877587720 scopus 로고    scopus 로고
    • Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation
    • Meng, Z.X. et al. 2013. Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation. Nat. Med. 19: 640–645.
    • (2013) Nat. Med , vol.19 , pp. 640-645
    • Meng, Z.X.1
  • 245
    • 84899094563 scopus 로고    scopus 로고
    • The Baf60c/Deptor pathway links skeletal muscle inflammation to glucose homeostasis in obesity
    • Meng, Z.X., L. Wang, Y. Xiao & J.D. Lin. 2014. The Baf60c/Deptor pathway links skeletal muscle inflammation to glucose homeostasis in obesity. Diabetes 63: 1533–1545.
    • (2014) Diabetes , vol.63 , pp. 1533-1545
    • Meng, Z.X.1    Wang, L.2    Xiao, Y.3    Lin, J.D.4
  • 246
    • 81855167585 scopus 로고    scopus 로고
    • DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(βTrCP) E3 ubiquitin ligase and regulates survival and autophagy
    • Zhao, Y., X. Xiong & Y. Sun. 2011. DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(βTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol. Cell 44: 304–316.
    • (2011) Mol. Cell , vol.44 , pp. 304-316
    • Zhao, Y.1    Xiong, X.2    Sun, Y.3
  • 247
    • 84860855581 scopus 로고    scopus 로고
    • Functional characterization of glycine N-methyltransferase and its interactive protein DEPDC6/DEPTOR in hepatocellular carcinoma
    • Yen, C.H. et al. 2012. Functional characterization of glycine N-methyltransferase and its interactive protein DEPDC6/DEPTOR in hepatocellular carcinoma. Mol. Med. 18: 286–296.
    • (2012) Mol. Med , vol.18 , pp. 286-296
    • Yen, C.H.1
  • 248
    • 84909607931 scopus 로고    scopus 로고
    • DEP domain-containing mTOR-interacting protein in the rat brain: distribution of expression and potential implication
    • Caron, A., E.D. Baraboi, M. Laplante & D. Richard. 2015. DEP domain-containing mTOR-interacting protein in the rat brain: distribution of expression and potential implication. J. Comp. Neurol. 523: 93–107.
    • (2015) J. Comp. Neurol , vol.523 , pp. 93-107
    • Caron, A.1    Baraboi, E.D.2    Laplante, M.3    Richard, D.4
  • 249
    • 84958047525 scopus 로고    scopus 로고
    • Mediobasal hypothalamic overexpression of DEPTOR protects against high-fat diet-induced obesity
    • Caron, A. et al. 2016. Mediobasal hypothalamic overexpression of DEPTOR protects against high-fat diet-induced obesity. Mol. Metab. 5: 102–112.
    • (2016) Mol. Metab , vol.5 , pp. 102-112
    • Caron, A.1
  • 250
    • 84984806980 scopus 로고    scopus 로고
    • Deptor in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance
    • Caron, A. et al. 2016. Deptor in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310: R1322–R1331.
    • (2016) Am. J. Physiol. Regul. Integr. Comp. Physiol , vol.310 , pp. R1322-R1331
    • Caron, A.1
  • 251
    • 84962949589 scopus 로고    scopus 로고
    • Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19 2 million participants
    • NCD Risk Factor Collaboration. 2016. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19 2 million participants. Lancet 387: 1377–1396.
    • (2016) Lancet , vol.387 , pp. 1377-1396


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.