-
3
-
-
20444471046
-
Genetics of human obesity
-
Clement, K. 2005. Genetics of human obesity. Proc. Nutr. Soc. 64: 133–142.
-
(2005)
Proc. Nutr. Soc
, vol.64
, pp. 133-142
-
-
Clement, K.1
-
4
-
-
84898939148
-
Heritability: the family roots of obesity
-
Willyard, C. Heritability: the family roots of obesity. Nature 508: S58-S60.
-
Nature
, vol.508
, pp. S58-S60
-
-
Willyard, C.1
-
6
-
-
34547828083
-
Interactions between the “cognitive” and “metabolic” brain in the control of food intake
-
Berthoud, H.R. 2007. Interactions between the “cognitive” and “metabolic” brain in the control of food intake. Physiol. Behav. 91: 486–498.
-
(2007)
Physiol. Behav
, vol.91
, pp. 486-498
-
-
Berthoud, H.R.1
-
7
-
-
84948762954
-
Hypothalamic control of brown adipose tissue thermogenesis
-
Labbe, S.M. et al. 2015. Hypothalamic control of brown adipose tissue thermogenesis. Front. Syst. Neurosci. 9: 150.
-
(2015)
Front. Syst. Neurosci
, vol.9
, pp. 150
-
-
Labbe, S.M.1
-
8
-
-
84900334867
-
Central neural regulation of brown adipose tissue thermogenesis and energy expenditure
-
Morrison, S.F., C.J. Madden & D. Tupone. 2014. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19: 741–756.
-
(2014)
Cell Metab
, vol.19
, pp. 741-756
-
-
Morrison, S.F.1
Madden, C.J.2
Tupone, D.3
-
9
-
-
84925841979
-
Neural control of energy balance: translating circuits to therapies
-
Gautron, L., J.K. Elmquist & K.W. Williams. 2015. Neural control of energy balance: translating circuits to therapies. Cell 161: 133–145.
-
(2015)
Cell
, vol.161
, pp. 133-145
-
-
Gautron, L.1
Elmquist, J.K.2
Williams, K.W.3
-
10
-
-
84893137029
-
Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance
-
Schneeberger, M., R. Gomis & M. Claret. 2014. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J. Endocrinol. 220: T25–T46.
-
(2014)
J. Endocrinol
, vol.220
, pp. T25-T46
-
-
Schneeberger, M.1
Gomis, R.2
Claret, M.3
-
11
-
-
84873131782
-
Hypothalamic control of energy balance: insights into the role of synaptic plasticity
-
Dietrich, M.O. & T.L. Horvath. 2013. Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci. 36: 65–73.
-
(2013)
Trends Neurosci
, vol.36
, pp. 65-73
-
-
Dietrich, M.O.1
Horvath, T.L.2
-
12
-
-
0034611732
-
Central nervous system control of food intake
-
Schwartz, M.W., S.C. Woods, D. Porte, Jr., et al. 2000. Central nervous system control of food intake. Nature 404: 661–671.
-
(2000)
Nature
, vol.404
, pp. 661-671
-
-
Schwartz, M.W.1
Woods, S.C.2
Porte, D.3
-
13
-
-
84860385660
-
Functional brain imaging of appetite
-
Dagher, A. 2012. Functional brain imaging of appetite. Trends Endocrinol. Metab. 23: 250–260.
-
(2012)
Trends Endocrinol. Metab
, vol.23
, pp. 250-260
-
-
Dagher, A.1
-
14
-
-
84873849544
-
Neurobehavioural correlates of body mass index and eating behaviours in adults: a systematic review
-
Vainik, U., A. Dagher, L. Dubé & L.K. Fellows. 2013. Neurobehavioural correlates of body mass index and eating behaviours in adults: a systematic review. Neurosci. Biobehav. Rev. 37: 279–299.
-
(2013)
Neurosci. Biobehav. Rev
, vol.37
, pp. 279-299
-
-
Vainik, U.1
Dagher, A.2
Dubé, L.3
Fellows, L.K.4
-
15
-
-
0034672327
-
Cerebral hemisphere regulation of motivated behavior
-
Swanson, L.W. 2000. Cerebral hemisphere regulation of motivated behavior. Brain Res. 886, 113–164.
-
(2000)
Brain Res
, vol.886
, pp. 113-164
-
-
Swanson, L.W.1
-
16
-
-
0036627597
-
Multiple neural systems controlling food intake and body weight
-
Berthoud, H.R. 2002. Multiple neural systems controlling food intake and body weight. Neurosci. Biobehav. Rev. 26: 393–428.
-
(2002)
Neurosci. Biobehav. Rev
, vol.26
, pp. 393-428
-
-
Berthoud, H.R.1
-
17
-
-
84937725697
-
Cognitive and autonomic determinants of energy homeostasis in obesity
-
Richard, D. 2015. Cognitive and autonomic determinants of energy homeostasis in obesity. Nat. Rev. Endocrinol. 11: 489–501.
-
(2015)
Nat. Rev. Endocrinol
, vol.11
, pp. 489-501
-
-
Richard, D.1
-
19
-
-
59049101818
-
High-restrained eaters only overeat when they are also impulsive
-
Jansen, A. et al. 2009. High-restrained eaters only overeat when they are also impulsive. Behav. Res. Ther. 47: 105–110.
-
(2009)
Behav. Res. Ther
, vol.47
, pp. 105-110
-
-
Jansen, A.1
-
21
-
-
0028437652
-
Stress-induced eating
-
Greeno, C.G. & R.R. Wing. 1994. Stress-induced eating. Psychol. Bull. 115: 444–464.
-
(1994)
Psychol. Bull
, vol.115
, pp. 444-464
-
-
Greeno, C.G.1
Wing, R.R.2
-
22
-
-
85011633765
-
Emotional distress regulation takes precedence over impulse control: if you feel bad, do it!
-
Tice, D.M., E. Bratslavsky & R.F. Baumeister. 2001. Emotional distress regulation takes precedence over impulse control: if you feel bad, do it! J. Pers. Soc. Psychol. 80: 53–67.
-
(2001)
J. Pers. Soc. Psychol
, vol.80
, pp. 53-67
-
-
Tice, D.M.1
Bratslavsky, E.2
Baumeister, R.F.3
-
23
-
-
78149415052
-
Executive cognitive function and food intake in children
-
Riggs, N.R., D. Spruijt-Metz, K.L. Sakuma, et al. 2010. Executive cognitive function and food intake in children. J. Nutr. Educ. Behav. 42: 398–403.
-
(2010)
J. Nutr. Educ. Behav
, vol.42
, pp. 398-403
-
-
Riggs, N.R.1
Spruijt-Metz, D.2
Sakuma, K.L.3
-
24
-
-
84907199758
-
Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies
-
Dietrich, A., M. Federbusch, C. Grellmann, et al. 2014. Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies. Front. Psychol. 5: 1073.
-
(2014)
Front. Psychol
, vol.5
, pp. 1073
-
-
Dietrich, A.1
Federbusch, M.2
Grellmann, C.3
-
25
-
-
84930742361
-
Being impulsive and obese increases susceptibility to speeded detection of high-calorie foods
-
Bongers, P. et al. 2015. Being impulsive and obese increases susceptibility to speeded detection of high-calorie foods. Health Psychol. 34: 677–685.
-
(2015)
Health Psychol
, vol.34
, pp. 677-685
-
-
Bongers, P.1
-
26
-
-
67649532592
-
The neurobiology of appetite: hunger as addiction
-
Dagher, A. 2009. The neurobiology of appetite: hunger as addiction. Int. J. Obes. 33(Suppl. 2): S30–S33.
-
(2009)
Int. J. Obes
, vol.33
, pp. S30-S33
-
-
Dagher, A.1
-
27
-
-
68649118810
-
‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders
-
Berridge, K.C. 2009. ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol. Behav. 97: 537–550.
-
(2009)
Physiol. Behav
, vol.97
, pp. 537-550
-
-
Berridge, K.C.1
-
28
-
-
84891629285
-
Feelings about food: the ventral tegmental area in food reward and emotional eating
-
Meye, F.J. & R.A. Adan. 2014. Feelings about food: the ventral tegmental area in food reward and emotional eating. Trends Pharmacol. Sci. 35: 31–40.
-
(2014)
Trends Pharmacol. Sci
, vol.35
, pp. 31-40
-
-
Meye, F.J.1
Adan, R.A.2
-
29
-
-
0037057802
-
The need to feed: homeostatic and hedonic control of eating
-
Saper, C.B., T.C. Chou & J.K. Elmquist. 2002. The need to feed: homeostatic and hedonic control of eating. Neuron 36: 199–211.
-
(2002)
Neuron
, vol.36
, pp. 199-211
-
-
Saper, C.B.1
Chou, T.C.2
Elmquist, J.K.3
-
30
-
-
84860432404
-
Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies
-
Tang, D.W., L.K. Fellows, D.M. Small & A. Dagher. 2012. Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies. Physiol. Behav. 106: 317–324.
-
(2012)
Physiol. Behav
, vol.106
, pp. 317-324
-
-
Tang, D.W.1
Fellows, L.K.2
Small, D.M.3
Dagher, A.4
-
31
-
-
58049180709
-
Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis
-
Carlezon, W.A., Jr. & M.J. Thomas. 2009. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56(Suppl. 1): 122–132.
-
(2009)
Neuropharmacology
, vol.56
, pp. 122-132
-
-
Carlezon, W.A.1
Thomas, M.J.2
-
32
-
-
1642423939
-
The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues
-
Yun, I.A., K.T. Wakabayashi, H.L. Fields & S.M. Nicola. 2004. The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues. J. Neurosci. 24: 2923–2933.
-
(2004)
J. Neurosci
, vol.24
, pp. 2923-2933
-
-
Yun, I.A.1
Wakabayashi, K.T.2
Fields, H.L.3
Nicola, S.M.4
-
33
-
-
0021709532
-
Electrophysiological responses of neurons in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system
-
Yang, C.R. & G.J. Mogenson. 1984. Electrophysiological responses of neurons in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system. Brain Res. 324: 69–84.
-
(1984)
Brain Res
, vol.324
, pp. 69-84
-
-
Yang, C.R.1
Mogenson, G.J.2
-
34
-
-
84862152872
-
Dysregulation of brain reward systems in eating disorders: neurochemical information from animal models of binge eating, bulimia nervosa, and anorexia nervosa
-
Avena, N.M. & M.E. Bocarsly. 2012. Dysregulation of brain reward systems in eating disorders: neurochemical information from animal models of binge eating, bulimia nervosa, and anorexia nervosa. Neuropharmacology 63: 87–96.
-
(2012)
Neuropharmacology
, vol.63
, pp. 87-96
-
-
Avena, N.M.1
Bocarsly, M.E.2
-
35
-
-
0032694280
-
Feeding behavior in dopamine-deficient mice
-
Szczypka, M.S. et al. 1999. Feeding behavior in dopamine-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 96: 12138–12143.
-
(1999)
Proc. Natl. Acad. Sci. U.S.A
, vol.96
, pp. 12138-12143
-
-
Szczypka, M.S.1
-
36
-
-
0024267590
-
Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens
-
Hernandez, L. & B.G. Hoebel. 1988. Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiol. Behav. 44: 599–606.
-
(1988)
Physiol. Behav
, vol.44
, pp. 599-606
-
-
Hernandez, L.1
Hoebel, B.G.2
-
37
-
-
0032779911
-
The role of the striatopallidal and extended amygdala systems in drug addiction
-
Koob, G.F. 1999. The role of the striatopallidal and extended amygdala systems in drug addiction. Ann. N.Y. Acad. Sci. 877: 445–460.
-
(1999)
Ann. N.Y. Acad. Sci
, vol.877
, pp. 445-460
-
-
Koob, G.F.1
-
39
-
-
0037057755
-
Getting formal with dopamine and reward
-
Schultz, W. 2002. Getting formal with dopamine and reward. Neuron 36: 241–263.
-
(2002)
Neuron
, vol.36
, pp. 241-263
-
-
Schultz, W.1
-
40
-
-
12344308143
-
Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine
-
Salamone, J.D., M. Correa, S.M. Mingote & S.M. Weber. 2005. Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr. Opin. Pharmacol. 5: 34–41.
-
(2005)
Curr. Opin. Pharmacol
, vol.5
, pp. 34-41
-
-
Salamone, J.D.1
Correa, M.2
Mingote, S.M.3
Weber, S.M.4
-
41
-
-
84880678420
-
Functional organization of neuronal and humoral signals regulating feeding behavior
-
Schwartz, G.J. & L.M. Zeltser. 2013. Functional organization of neuronal and humoral signals regulating feeding behavior. Ann. Rev. Nutr. 33: 1–21.
-
(2013)
Ann. Rev. Nutr
, vol.33
, pp. 1-21
-
-
Schwartz, G.J.1
Zeltser, L.M.2
-
42
-
-
0030565585
-
Skilled motor deficits in rats induced by ventrolateral striatal dopamine depletions: behavioral and pharmacological characterization
-
Cousins, M.S. & J.D. Salamone. 1996. Skilled motor deficits in rats induced by ventrolateral striatal dopamine depletions: behavioral and pharmacological characterization. Brain Res. 732: 186–194.
-
(1996)
Brain Res
, vol.732
, pp. 186-194
-
-
Cousins, M.S.1
Salamone, J.D.2
-
43
-
-
0029689447
-
Contribution of dopaminergic and glutamatergic mechanisms to the pathogenesis of motor response complications in Parkinson's disease
-
Chase, T.N., T.M. Engber & M.M. Mouradian. 1996. Contribution of dopaminergic and glutamatergic mechanisms to the pathogenesis of motor response complications in Parkinson's disease. Adv. Neurol. 69: 497–501.
-
(1996)
Adv. Neurol
, vol.69
, pp. 497-501
-
-
Chase, T.N.1
Engber, T.M.2
Mouradian, M.M.3
-
44
-
-
1042286441
-
Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning
-
Kelley, A.E. 2004. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci. Biobehav. Rev. 27: 765–776.
-
(2004)
Neurosci. Biobehav. Rev
, vol.27
, pp. 765-776
-
-
Kelley, A.E.1
-
45
-
-
0028133318
-
Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat
-
Canteras, N.S., R.B. Simerly & L.W. Swanson. 1994. Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J. Comp. Neurol. 348: 41–79.
-
(1994)
J. Comp. Neurol
, vol.348
, pp. 41-79
-
-
Canteras, N.S.1
Simerly, R.B.2
Swanson, L.W.3
-
46
-
-
58049174958
-
Role of lateral hypothalamic orexin neurons in reward processing and addiction
-
Aston-Jones, G., R.J. Smith, D.E. Moorman & K.A. Richardson. 2009. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 56(Suppl. 1): 112–121.
-
(2009)
Neuropharmacology
, vol.56
, pp. 112-121
-
-
Aston-Jones, G.1
Smith, R.J.2
Moorman, D.E.3
Richardson, K.A.4
-
47
-
-
0029656135
-
Food reward: brain substrates of wanting and liking
-
Berridge, K.C. 1996. Food reward: brain substrates of wanting and liking. Neurosci. Biobehav. Rev. 20: 1–25.
-
(1996)
Neurosci. Biobehav. Rev
, vol.20
, pp. 1-25
-
-
Berridge, K.C.1
-
48
-
-
77956180425
-
The tempted brain eats: pleasure and desire circuits in obesity and eating disorders
-
Berridge, K.C., C.Y. Ho, J.M. Richard & A.G. DiFeliceantonio. 2010. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 1350: 43–64.
-
(2010)
Brain Res
, vol.1350
, pp. 43-64
-
-
Berridge, K.C.1
Ho, C.Y.2
Richard, J.M.3
DiFeliceantonio, A.G.4
-
49
-
-
27744431653
-
The endogenous opioid system and clinical pain management
-
Holden, J.E., Y. Jeong & J.M. Forrest. 2005. The endogenous opioid system and clinical pain management. AACN Clin. Issues 16: 291–301.
-
(2005)
AACN Clin. Issues
, vol.16
, pp. 291-301
-
-
Holden, J.E.1
Jeong, Y.2
Forrest, J.M.3
-
50
-
-
67649513606
-
Reward systems and food intake: role of opioids
-
Gosnell, B.A. & A.S. Levine. 2009. Reward systems and food intake: role of opioids. Int. J. Obes. 33(Suppl. 2): S54–S58.
-
(2009)
Int. J. Obes
, vol.33
, pp. S54-S58
-
-
Gosnell, B.A.1
Levine, A.S.2
-
51
-
-
0039000718
-
Opioids and palatability
-
In, B.G. Hoebel, &, D. Novin, Eds., Brunswick, ME, Haer Institute
-
Siviy, S.M., D.J. Calcagnetti & L.D. Reid. 1982. “Opioids and palatability.” In The Neural Basis of Feeding and Reward. B.G. Hoebel & D. Novin, Eds.: 517–524. Brunswick, ME: Haer Institute.
-
(1982)
The Neural Basis of Feeding and Reward
, pp. 517-524
-
-
Siviy, S.M.1
Calcagnetti, D.J.2
Reid, L.D.3
-
52
-
-
0037107190
-
Selective reward deficit in mice lacking β-endorphin and enkephalin
-
Hayward, M.D., J.E. Pintar & M.J. Low. 2002. Selective reward deficit in mice lacking β-endorphin and enkephalin. J. Neurosci. 22: 8251–8258.
-
(2002)
J. Neurosci
, vol.22
, pp. 8251-8258
-
-
Hayward, M.D.1
Pintar, J.E.2
Low, M.J.3
-
54
-
-
48249097797
-
Endocannabinoids: synthesis and degradation
-
Di Marzo, V. 2008. Endocannabinoids: synthesis and degradation. Rev. Physiol. Biochem. Pharmacol. 160: 1–24.
-
(2008)
Rev. Physiol. Biochem. Pharmacol
, vol.160
, pp. 1-24
-
-
Di Marzo, V.1
-
55
-
-
17844388556
-
Endocannabinoid control of food intake and energy balance
-
Di Marzo, V. & I. Matias. 2005. Endocannabinoid control of food intake and energy balance. Nat. Neurosci. 8: 585–589.
-
(2005)
Nat. Neurosci
, vol.8
, pp. 585-589
-
-
Di Marzo, V.1
Matias, I.2
-
56
-
-
43449127219
-
The endocannabinoid system in brain reward processes
-
Solinas, M., S.R. Goldberg & D. Piomelli. 2008. The endocannabinoid system in brain reward processes. Br. J. Pharmacol. 154: 369–383.
-
(2008)
Br. J. Pharmacol
, vol.154
, pp. 369-383
-
-
Solinas, M.1
Goldberg, S.R.2
Piomelli, D.3
-
57
-
-
84924385915
-
Hypothalamic POMC neurons promote cannabinoid-induced feeding
-
Koch, M. et al. 2015. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 519: 45–50.
-
(2015)
Nature
, vol.519
, pp. 45-50
-
-
Koch, M.1
-
58
-
-
84907043858
-
The PVH as a site of CB1-mediated stimulation of thermogenesis by MC4R agonism in male rats
-
Monge-Roffarello, B. et al. 2014. The PVH as a site of CB1-mediated stimulation of thermogenesis by MC4R agonism in male rats. Endocrinology 155: 3448–3458.
-
(2014)
Endocrinology
, vol.155
, pp. 3448-3458
-
-
Monge-Roffarello, B.1
-
59
-
-
79959428713
-
Metabolic sensing and the brain: who, what, where, and how?
-
Levin, B.E., C. Magnan, A. Dunn-Meynell & C. Le Foll. 2011. Metabolic sensing and the brain: who, what, where, and how? Endocrinology 152: 2552–2557.
-
(2011)
Endocrinology
, vol.152
, pp. 2552-2557
-
-
Levin, B.E.1
Magnan, C.2
Dunn-Meynell, A.3
Le Foll, C.4
-
60
-
-
77249131674
-
Hypothalamic nutrient sensing in the control of energy homeostasis
-
Blouet, C. & G.J. Schwartz. 2010. Hypothalamic nutrient sensing in the control of energy homeostasis. Behav. Brain Res. 209: 1–12.
-
(2010)
Behav. Brain Res
, vol.209
, pp. 1-12
-
-
Blouet, C.1
Schwartz, G.J.2
-
61
-
-
77955597981
-
Central nervous system nutrient signaling: the regulation of energy balance and the future of dietary therapies
-
Stefater, M.A. & R.J. Seeley. 2010. Central nervous system nutrient signaling: the regulation of energy balance and the future of dietary therapies. Ann. Rev. Nutr. 30: 219–235.
-
(2010)
Ann. Rev. Nutr
, vol.30
, pp. 219-235
-
-
Stefater, M.A.1
Seeley, R.J.2
-
62
-
-
84888201148
-
The hypothalamus and metabolism: integrating signals to control energy and glucose homeostasis
-
Coll, A.P. & G.S. Yeo. 2013. The hypothalamus and metabolism: integrating signals to control energy and glucose homeostasis. Curr. Opin. Pharmacol. 13: 970–976.
-
(2013)
Curr. Opin. Pharmacol
, vol.13
, pp. 970-976
-
-
Coll, A.P.1
Yeo, G.S.2
-
63
-
-
0035851851
-
The hypothalamus and the control of energy homeostasis: different circuits, different purposes
-
Williams, G. et al. 2001. The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol. Behav. 74: 683–701.
-
(2001)
Physiol. Behav
, vol.74
, pp. 683-701
-
-
Williams, G.1
-
64
-
-
84924060988
-
The hypothalamic arcuate nucleus and the control of peripheral substrates
-
Joly-Amado, A. et al. 2014. The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Pract. Res. Clin. Endocrinol. Metab. 28: 725–737.
-
(2014)
Best Pract. Res. Clin. Endocrinol. Metab
, vol.28
, pp. 725-737
-
-
Joly-Amado, A.1
-
65
-
-
72449161077
-
Role of the arcuate nucleus of the hypothalamus in regulation of body weight during energy deficit
-
Sainsbury, A. & L. Zhang. 2010. Role of the arcuate nucleus of the hypothalamus in regulation of body weight during energy deficit. Mol. Cell. Endocrinol. 316: 109–119.
-
(2010)
Mol. Cell. Endocrinol
, vol.316
, pp. 109-119
-
-
Sainsbury, A.1
Zhang, L.2
-
66
-
-
84874141984
-
Genetic labeling of steroidogenic factor-1 (SF-1) neurons in mice reveals ventromedial nucleus of the hypothalamus (VMH) circuitry beginning at neurogenesis and development of a separate non-SF-1 neuronal cluster in the ventrolateral VMH
-
Cheung, C.C., D.M. Kurrasch, J.K. Liang & H.A. Ingraham. 2013. Genetic labeling of steroidogenic factor-1 (SF-1) neurons in mice reveals ventromedial nucleus of the hypothalamus (VMH) circuitry beginning at neurogenesis and development of a separate non-SF-1 neuronal cluster in the ventrolateral VMH. J. Comp. Neurol. 521: 1268–1288.
-
(2013)
J. Comp. Neurol
, vol.521
, pp. 1268-1288
-
-
Cheung, C.C.1
Kurrasch, D.M.2
Liang, J.K.3
Ingraham, H.A.4
-
67
-
-
78651063747
-
Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin
-
Ghamari-Langroudi, M., D. Srisai & R.D. Cone. 2011. Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin. Proc. Natl. Acad. Sci. U.S.A. 108: 355–360.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A
, vol.108
, pp. 355-360
-
-
Ghamari-Langroudi, M.1
Srisai, D.2
Cone, R.D.3
-
68
-
-
84906979430
-
MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus
-
Shah, B.P. et al. 2014. MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. Proc. Natl. Acad. Sci. U.S.A. 111: 13193–13198.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A
, vol.111
, pp. 13193-13198
-
-
Shah, B.P.1
-
69
-
-
84887407770
-
Genetic identification of a neural circuit that suppresses appetite
-
Carter, M.E., M.E. Soden, L.S. Zweifel & R.D. Palmiter. 2013. Genetic identification of a neural circuit that suppresses appetite. Nature 503: 111–114.
-
(2013)
Nature
, vol.503
, pp. 111-114
-
-
Carter, M.E.1
Soden, M.E.2
Zweifel, L.S.3
Palmiter, R.D.4
-
70
-
-
77649212149
-
Brainstem integrative function in the central nervous system control of food intake
-
Schwartz, G.J. 2010. Brainstem integrative function in the central nervous system control of food intake. Forum Nutr. 63: 141–151.
-
(2010)
Forum Nutr
, vol.63
, pp. 141-151
-
-
Schwartz, G.J.1
-
71
-
-
77649223913
-
Hypothalamic-brainstem circuits controlling eating
-
Blevins, J.E. & D.G. Baskin. 2010. Hypothalamic-brainstem circuits controlling eating. Forum Nutr. 63: 133–140.
-
(2010)
Forum Nutr
, vol.63
, pp. 133-140
-
-
Blevins, J.E.1
Baskin, D.G.2
-
72
-
-
84962882994
-
Central nervous system regulation of brown adipose tissue
-
Morrison, S.F. & C.J. Madden. 2014. Central nervous system regulation of brown adipose tissue. Compr. Physiol. 4: 1677–1713.
-
(2014)
Compr. Physiol
, vol.4
, pp. 1677-1713
-
-
Morrison, S.F.1
Madden, C.J.2
-
73
-
-
68649112368
-
Parabrachial coding of sapid sucrose: relevance to reward and obesity
-
Hajnal, A., R. Norgren & P. Kovacs. 2009. Parabrachial coding of sapid sucrose: relevance to reward and obesity. Ann. N.Y. Acad. Sci. 1170: 347–364.
-
(2009)
Ann. N.Y. Acad. Sci
, vol.1170
, pp. 347-364
-
-
Hajnal, A.1
Norgren, R.2
Kovacs, P.3
-
74
-
-
84255199265
-
Central nervous control of energy and glucose balance: focus on the central melanocortin system
-
Xu, Y., J.K. Elmquist & M. Fukuda. 2011. Central nervous control of energy and glucose balance: focus on the central melanocortin system. Ann. N.Y. Acad. Sci. 1243: 1–14.
-
(2011)
Ann. N.Y. Acad. Sci
, vol.1243
, pp. 1-14
-
-
Xu, Y.1
Elmquist, J.K.2
Fukuda, M.3
-
75
-
-
84961381209
-
Melanocortin-4 receptor-regulated energy homeostasis
-
Krashes, M.J., B.B. Lowell & A.S. Garfield. 2016. Melanocortin-4 receptor-regulated energy homeostasis. Nat. Neurosci. 19: 206–219.
-
(2016)
Nat. Neurosci
, vol.19
, pp. 206-219
-
-
Krashes, M.J.1
Lowell, B.B.2
Garfield, A.S.3
-
77
-
-
33748931457
-
Central nervous system control of food intake and body weight
-
Morton, G.J., D.E. Cummings, D.G. Baskin, G.S. Barsh & M.W. Schwartz. 2006. Central nervous system control of food intake and body weight. Nature 443: 289–295.
-
(2006)
Nature
, vol.443
, pp. 289-295
-
-
Morton, G.J.1
Cummings, D.E.2
Baskin, D.G.3
Barsh, G.S.4
Schwartz, M.W.5
-
78
-
-
79960939354
-
Melanocortin control of energy balance: evidence from rodent models
-
De Jonghe, B.C., M.R. Hayes & K.K. Bence. 2011. Melanocortin control of energy balance: evidence from rodent models. Cell. Mol. Life Sci. 68: 2569–2588.
-
(2011)
Cell. Mol. Life Sci
, vol.68
, pp. 2569-2588
-
-
De Jonghe, B.C.1
Hayes, M.R.2
Bence, K.K.3
-
79
-
-
33845572889
-
Studies on the physiological functions of the melanocortin system
-
Cone, R.D. 2006. Studies on the physiological functions of the melanocortin system. Endocr. Rev. 27: 736–749.
-
(2006)
Endocr. Rev
, vol.27
, pp. 736-749
-
-
Cone, R.D.1
-
80
-
-
33845222715
-
The MC4 receptor and control of appetite
-
Adan, R.A. et al. 2006. The MC4 receptor and control of appetite. Br. J. Pharmacol. 149: 815–827.
-
(2006)
Br. J. Pharmacol
, vol.149
, pp. 815-827
-
-
Adan, R.A.1
-
81
-
-
31544465224
-
The melanocortin system and energy balance
-
Butler, A.A. 2006. The melanocortin system and energy balance. Peptides 27: 281–290.
-
(2006)
Peptides
, vol.27
, pp. 281-290
-
-
Butler, A.A.1
-
82
-
-
0030889192
-
Targeted disruption of the melanocortin-4 receptor results in obesity in mice
-
Huszar, D. et al. 1997. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88: 131–141.
-
(1997)
Cell
, vol.88
, pp. 131-141
-
-
Huszar, D.1
-
83
-
-
33845567553
-
Genetics of obesity in humans
-
Farooqi, S. & S. O'Rahilly. 2006. Genetics of obesity in humans. Endocr. Rev. 27: 710–718.
-
(2006)
Endocr. Rev
, vol.27
, pp. 710-718
-
-
Farooqi, S.1
O'Rahilly, S.2
-
84
-
-
11244289511
-
Neuropeptide Y Y1 receptor mRNA in rodent brain: distribution and colocalization with melanocortin-4 receptor
-
Kishi, T. et al. 2005. Neuropeptide Y Y1 receptor mRNA in rodent brain: distribution and colocalization with melanocortin-4 receptor. J. Comp. Neurol. 482: 217–243.
-
(2005)
J. Comp. Neurol
, vol.482
, pp. 217-243
-
-
Kishi, T.1
-
85
-
-
33748448079
-
Distribution of NPY Y5-like immunoreactivity in the rat brain
-
Morin, S.M. & D.R. Gehlert. 2006. Distribution of NPY Y5-like immunoreactivity in the rat brain. J. Mol. Neurosci. 29: 109–114.
-
(2006)
J. Mol. Neurosci
, vol.29
, pp. 109-114
-
-
Morin, S.M.1
Gehlert, D.R.2
-
86
-
-
3242744417
-
Opioids as agents of reward-related feeding: a consideration of the evidence
-
Levine, A.S. & C.J. Billington. 2004. Opioids as agents of reward-related feeding: a consideration of the evidence. Physiol. Behav. 82: 57–61.
-
(2004)
Physiol. Behav
, vol.82
, pp. 57-61
-
-
Levine, A.S.1
Billington, C.J.2
-
87
-
-
0027319108
-
Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse
-
Wilding, J.P. et al. 1993. Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse. Endocrinology 132: 1939–1944.
-
(1993)
Endocrinology
, vol.132
, pp. 1939-1944
-
-
Wilding, J.P.1
-
88
-
-
0025072899
-
Increased hypothalamic content of preproneuropeptide Y messenger ribonucleic acid in genetically obese Zucker rats and its regulation by food deprivation
-
Sanacora, G., M. Kershaw, J.A. Finkelstein & J.D. White. 1990. Increased hypothalamic content of preproneuropeptide Y messenger ribonucleic acid in genetically obese Zucker rats and its regulation by food deprivation. Endocrinology 127: 730–737.
-
(1990)
Endocrinology
, vol.127
, pp. 730-737
-
-
Sanacora, G.1
Kershaw, M.2
Finkelstein, J.A.3
White, J.D.4
-
89
-
-
27344431720
-
NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates
-
Luquet, S., F.A. Perez, T.S. Hnasko & R.D. Palmiter. 2005. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685.
-
(2005)
Science
, vol.310
, pp. 683-685
-
-
Luquet, S.1
Perez, F.A.2
Hnasko, T.S.3
Palmiter, R.D.4
-
90
-
-
84926393022
-
G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons
-
Ghamari-Langroudi, M. et al. 2015. G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons. Nature 520: 94–98.
-
(2015)
Nature
, vol.520
, pp. 94-98
-
-
Ghamari-Langroudi, M.1
-
91
-
-
79951999061
-
GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism
-
Wu, Q. & R.D. Palmiter. 2011. GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. Eur. J. Pharmacol. 660: 21–27.
-
(2011)
Eur. J. Pharmacol
, vol.660
, pp. 21-27
-
-
Wu, Q.1
Palmiter, R.D.2
-
92
-
-
84927618698
-
RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals
-
Chen, K.Y. et al. 2015. RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals. J. Clin. Endocrinol. Metab. 100: 1639–1645.
-
(2015)
J. Clin. Endocrinol. Metab
, vol.100
, pp. 1639-1645
-
-
Chen, K.Y.1
-
93
-
-
79956282385
-
Prader–Willi syndrome: obesity due to genomic imprinting
-
Butler, M.G. 2011. Prader–Willi syndrome: obesity due to genomic imprinting. Curr. Genomics 12: 204–215.
-
(2011)
Curr. Genomics
, vol.12
, pp. 204-215
-
-
Butler, M.G.1
-
94
-
-
84979666715
-
Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist
-
Kuhnen, P. et al. 2016. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N. Engl. J. Med. 375: 240–246.
-
(2016)
N. Engl. J. Med
, vol.375
, pp. 240-246
-
-
Kuhnen, P.1
-
95
-
-
79960190012
-
Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons
-
Vong, L. et al. 2011. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71: 142–154.
-
(2011)
Neuron
, vol.71
, pp. 142-154
-
-
Vong, L.1
-
96
-
-
84860652458
-
Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance
-
Leshan, R.L., M. Greenwald-Yarnell, C.M. Patterson, et al. 2012. Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance. Nat. Med. 18: 820–823.
-
(2012)
Nat. Med
, vol.18
, pp. 820-823
-
-
Leshan, R.L.1
Greenwald-Yarnell, M.2
Patterson, C.M.3
-
97
-
-
84979583901
-
Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice
-
Lanfray, D. et al. 2016. Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice. eLife 5.
-
(2016)
eLife
, vol.5
-
-
Lanfray, D.1
-
98
-
-
77249146406
-
Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons
-
Williams, K.W. et al. 2010. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J. Neurosci. 30: 2472–2479.
-
(2010)
J. Neurosci
, vol.30
, pp. 2472-2479
-
-
Williams, K.W.1
-
99
-
-
84990756135
-
Hypothalamic lesions and adiposity in the rat
-
Hetherington, A.W. & S.W. Ranson. 1940. Hypothalamic lesions and adiposity in the rat. Anat. Rec. 78: 149–172.
-
(1940)
Anat. Rec
, vol.78
, pp. 149-172
-
-
Hetherington, A.W.1
Ranson, S.W.2
-
100
-
-
31944452253
-
The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight
-
King, B.M. 2006. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol. Behav. 87: 221–244.
-
(2006)
Physiol. Behav
, vol.87
, pp. 221-244
-
-
King, B.M.1
-
101
-
-
84878819433
-
Revisiting the ventral medial nucleus of the hypothalamus: the roles of sf-1 neurons in energy homeostasis
-
Choi, Y.H., T. Fujikawa, J. Lee, et al. 2013. Revisiting the ventral medial nucleus of the hypothalamus: the roles of sf-1 neurons in energy homeostasis. Front. Neurosci. 7: 71.
-
(2013)
Front. Neurosci
, vol.7
, pp. 71
-
-
Choi, Y.H.1
Fujikawa, T.2
Lee, J.3
-
102
-
-
0032958372
-
RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue
-
Morrison, S.F. 1999. RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am. J. Physiol. 276: R962–R973.
-
(1999)
Am. J. Physiol
, vol.276
, pp. R962-R973
-
-
Morrison, S.F.1
-
103
-
-
84896317618
-
An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger
-
Krashes, M.J. et al. 2014. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507: 238–242.
-
(2014)
Nature
, vol.507
, pp. 238-242
-
-
Krashes, M.J.1
-
104
-
-
0028959656
-
The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus
-
Ikeda, Y., X. Luo, R. Abbud, et al. 1995. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol. Endocrinol. 9: 478–486.
-
(1995)
Mol. Endocrinol
, vol.9
, pp. 478-486
-
-
Ikeda, Y.1
Luo, X.2
Abbud, R.3
-
105
-
-
30644473109
-
Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis
-
Dhillon, H. et al. 2006. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49: 191–203.
-
(2006)
Neuron
, vol.49
, pp. 191-203
-
-
Dhillon, H.1
-
106
-
-
42449086900
-
Selective loss of leptin receptors in the ventromedial hypothalamic nucleus results in increased adiposity and a metabolic syndrome
-
Bingham, N.C., K.K. Anderson, A.L. Reuter, et al. 2008. Selective loss of leptin receptors in the ventromedial hypothalamic nucleus results in increased adiposity and a metabolic syndrome. Endocrinology 149: 2138–2148.
-
(2008)
Endocrinology
, vol.149
, pp. 2138-2148
-
-
Bingham, N.C.1
Anderson, K.K.2
Reuter, A.L.3
-
107
-
-
0036153668
-
Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity
-
Majdic, G. et al. 2002. Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity. Endocrinology 143: 607–614.
-
(2002)
Endocrinology
, vol.143
, pp. 607-614
-
-
Majdic, G.1
-
108
-
-
77956627976
-
PI3K signaling in the ventromedial hypothalamic nucleus is required for normal energy homeostasis
-
Xu, Y. et al. 2010. PI3K signaling in the ventromedial hypothalamic nucleus is required for normal energy homeostasis. Cell Metab. 12: 88–95.
-
(2010)
Cell Metab
, vol.12
, pp. 88-95
-
-
Xu, Y.1
-
109
-
-
79952068857
-
SF-1 in the ventral medial hypothalamic nucleus: a key regulator of homeostasis
-
Kim, K.W. et al. 2011. SF-1 in the ventral medial hypothalamic nucleus: a key regulator of homeostasis. Mol. Cell. Endocrinol. 336: 219–223.
-
(2011)
Mol. Cell. Endocrinol
, vol.336
, pp. 219-223
-
-
Kim, K.W.1
-
110
-
-
0021186883
-
Quantitative contribution of brown adipose tissue thermogenesis to overall metabolism
-
Foster, D.O. 1984. Quantitative contribution of brown adipose tissue thermogenesis to overall metabolism. Can. J. Biochem. Cell Biol. 62: 618–622.
-
(1984)
Can. J. Biochem. Cell Biol
, vol.62
, pp. 618-622
-
-
Foster, D.O.1
-
112
-
-
78650100807
-
Determinants of brown adipocyte development and thermogenesis
-
Richard, D., A.C. Carpentier, G. Dore, et al. 2010. Determinants of brown adipocyte development and thermogenesis. Int. J. Obes. 34(Suppl. 2): S59–S66.
-
(2010)
Int. J. Obes
, vol.34
, pp. S59-S66
-
-
Richard, D.1
Carpentier, A.C.2
Dore, G.3
-
113
-
-
0347989317
-
Brown adipose tissue: function and physiological significance
-
Cannon, B. & J. Nedergaard. 2004. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84: 277–359.
-
(2004)
Physiol. Rev
, vol.84
, pp. 277-359
-
-
Cannon, B.1
Nedergaard, J.2
-
114
-
-
18844458927
-
Respiration uncoupling and metabolism in the control of energy expenditure
-
Ricquier, D. 2005. Respiration uncoupling and metabolism in the control of energy expenditure. Proc. Nutr. Soc. 64: 47–52.
-
(2005)
Proc. Nutr. Soc
, vol.64
, pp. 47-52
-
-
Ricquier, D.1
-
115
-
-
78449285575
-
Sympathetic and sensory innervation of brown adipose tissue
-
Bartness, T.J., C.H. Vaughan & C.K. Song. 2010. Sympathetic and sensory innervation of brown adipose tissue. Int. J. Obes. 34(Suppl. 1): S36–S42.
-
(2010)
Int. J. Obes
, vol.34
, pp. S36-S42
-
-
Bartness, T.J.1
Vaughan, C.H.2
Song, C.K.3
-
116
-
-
84880930448
-
Understanding the brown adipocyte as a contributor to energy homeostasis
-
Chechi, K., A.C. Carpentier & D. Richard. 2013. Understanding the brown adipocyte as a contributor to energy homeostasis. Trends Endocrinol. Metab. 24: 408–420.
-
(2013)
Trends Endocrinol. Metab
, vol.24
, pp. 408-420
-
-
Chechi, K.1
Carpentier, A.C.2
Richard, D.3
-
117
-
-
84877585823
-
Beyond the sympathetic tone: the new brown fat activators
-
Villarroya, F. & A. Vidal-Puig. 2013. Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 17: 638–643.
-
(2013)
Cell Metab
, vol.17
, pp. 638-643
-
-
Villarroya, F.1
Vidal-Puig, A.2
-
118
-
-
84892795525
-
Brown adipose tissue as an anti-obesity tissue in humans
-
Chechi, K., J. Nedergaard & D. Richard. 2014. Brown adipose tissue as an anti-obesity tissue in humans. Obes. Rev. 15: 92–106.
-
(2014)
Obes. Rev
, vol.15
, pp. 92-106
-
-
Chechi, K.1
Nedergaard, J.2
Richard, D.3
-
120
-
-
64349123664
-
Functional brown adipose tissue in healthy adults
-
Virtanen, K.A. et al. 2009. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360: 1518–1525.
-
(2009)
N. Engl. J. Med
, vol.360
, pp. 1518-1525
-
-
Virtanen, K.A.1
-
121
-
-
64349095231
-
Cold-activated brown adipose tissue in healthy men
-
van Marken Lichtenbelt, W.D. et al. 2009. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360: 1500–1508.
-
(2009)
N. Engl. J. Med
, vol.360
, pp. 1500-1508
-
-
van Marken Lichtenbelt, W.D.1
-
122
-
-
64349105205
-
Identification and importance of brown adipose tissue in adult humans
-
Cypess, A.M. et al. 2009. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360: 1509–1517.
-
(2009)
N. Engl. J. Med
, vol.360
, pp. 1509-1517
-
-
Cypess, A.M.1
-
123
-
-
84856529575
-
Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans
-
Ouellet, V. et al. 2012. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 122: 545–552.
-
(2012)
J. Clin. Invest
, vol.122
, pp. 545-552
-
-
Ouellet, V.1
-
124
-
-
84895792999
-
Increased brown adipose tissue oxidative capacity in cold-acclimated humans
-
Blondin, D.P. et al. 2014. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J. Clin. Endocrinol. Metab. 99: E438–E446.
-
(2014)
J. Clin. Endocrinol. Metab
, vol.99
, pp. E438-E446
-
-
Blondin, D.P.1
-
125
-
-
84932626659
-
In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis
-
Labbe, S.M. et al. 2015. In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis. FASEB J. 29: 2046–2058.
-
(2015)
FASEB J
, vol.29
, pp. 2046-2058
-
-
Labbe, S.M.1
-
126
-
-
84922391798
-
Brown adipose tissue and its therapeutic potential
-
Lidell, M.E., M.J. Betz & S. Enerback. 2014. Brown adipose tissue and its therapeutic potential. J. Intern. Med. 276: 364–377.
-
(2014)
J. Intern. Med
, vol.276
, pp. 364-377
-
-
Lidell, M.E.1
Betz, M.J.2
Enerback, S.3
-
127
-
-
84896866771
-
Recent advance in brown adipose physiology and its therapeutic potential
-
Lee, Y.H., Y.S. Jung & D. Choi. 2014. Recent advance in brown adipose physiology and its therapeutic potential. Exp. Mol. Med. 46: e78.
-
(2014)
Exp. Mol. Med
, vol.46
-
-
Lee, Y.H.1
Jung, Y.S.2
Choi, D.3
-
128
-
-
84887431711
-
Brown and beige fat: development, function and therapeutic potential
-
Harms, M. & P. Seale. 2013. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19: 1252–1263.
-
(2013)
Nat. Med
, vol.19
, pp. 1252-1263
-
-
Harms, M.1
Seale, P.2
-
129
-
-
84861845111
-
Brown adipose tissue: mechanisms and potential therapeutic targets
-
Tam, C.S., V. Lecoultre & E. Ravussin. 2012. Brown adipose tissue: mechanisms and potential therapeutic targets. Circulation 125: 2782–2791.
-
(2012)
Circulation
, vol.125
, pp. 2782-2791
-
-
Tam, C.S.1
Lecoultre, V.2
Ravussin, E.3
-
130
-
-
84904356069
-
The medial preoptic nucleus as a site of the thermogenic and metabolic actions of melanotan II in male rats
-
Monge-Roffarello, B. et al. 2014. The medial preoptic nucleus as a site of the thermogenic and metabolic actions of melanotan II in male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307: R158–R166.
-
(2014)
Am. J. Physiol. Regul. Integr. Comp. Physiol
, vol.307
, pp. R158-R166
-
-
Monge-Roffarello, B.1
-
131
-
-
84881257127
-
Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain
-
Lindberg, D., P. Chen & C. Li. 2013. Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain. J. Comp. Neurol. 521: 3167–3190.
-
(2013)
J. Comp. Neurol
, vol.521
, pp. 3167-3190
-
-
Lindberg, D.1
Chen, P.2
Li, C.3
-
132
-
-
0034611732
-
Central nervous system control of food intake
-
Schwartz, M.W., S.C. Woods, D. Porte, Jr., R.J. Seeley & D.G. Baskin. 2000. Central nervous system control of food intake. Nature 404: 661–671.
-
(2000)
Nature
, vol.404
, pp. 661-671
-
-
Schwartz, M.W.1
Woods, S.C.2
Porte, D.3
Seeley, R.J.4
Baskin, D.G.5
-
133
-
-
0032967165
-
Brain glucose sensing and body energy homeostasis: role in obesity and diabetes
-
Levin, B.E., A.A. Dunn-Meynell & V.H. Routh. 1999. Brain glucose sensing and body energy homeostasis: role in obesity and diabetes. Am. J. Physiol. 276: R1223–R1231.
-
(1999)
Am. J. Physiol
, vol.276
, pp. R1223-R1231
-
-
Levin, B.E.1
Dunn-Meynell, A.A.2
Routh, V.H.3
-
137
-
-
84877577992
-
The regulation of food intake by the gut–brain axis: implications for obesity
-
Hussain, S.S. & S.R. Bloom. 2013. The regulation of food intake by the gut–brain axis: implications for obesity. Int. J. Obes. 37: 625–633.
-
(2013)
Int. J. Obes
, vol.37
, pp. 625-633
-
-
Hussain, S.S.1
Bloom, S.R.2
-
138
-
-
84868303198
-
Hypothalamic dysfunction in obesity
-
Williams, L.M. 2012. Hypothalamic dysfunction in obesity. Proc. Nutr. Soc. 71: 521–533.
-
(2012)
Proc. Nutr. Soc
, vol.71
, pp. 521-533
-
-
Williams, L.M.1
-
139
-
-
84879916109
-
Role of leptin resistance in the development of obesity in older patients
-
Carter, S., A. Caron, D. Richard & F. Picard. 2013. Role of leptin resistance in the development of obesity in older patients. Clin. Interv. Aging 8: 829–844.
-
(2013)
Clin. Interv. Aging
, vol.8
, pp. 829-844
-
-
Carter, S.1
Caron, A.2
Richard, D.3
Picard, F.4
-
140
-
-
84873198464
-
CNS insulin signaling in the control of energy homeostasis and glucose metabolism—from embryo to old age
-
Vogt, M.C. & J.C. Bruning. 2013. CNS insulin signaling in the control of energy homeostasis and glucose metabolism—from embryo to old age. Trends Endocrinol. Metab. 24: 76–84.
-
(2013)
Trends Endocrinol. Metab
, vol.24
, pp. 76-84
-
-
Vogt, M.C.1
Bruning, J.C.2
-
141
-
-
33748755428
-
Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer's disease
-
de la Monte, S.M., M. Tong, N. Lester-Coll. 2006. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer's disease. J. Alzheimers Dis. 10: 89–109.
-
(2006)
J. Alzheimers Dis
, vol.10
, pp. 89-109
-
-
de la Monte, S.M.1
Tong, M.2
Lester-Coll, N.3
-
142
-
-
84860390335
-
Insulin sensitivity of the human brain
-
Ketterer, C. et al. 2011. Insulin sensitivity of the human brain. Diabetes Res. Clin. Pract. 93(Suppl. 1): S47–S51.
-
(2011)
Diabetes Res. Clin. Pract
, vol.93
, pp. S47-S51
-
-
Ketterer, C.1
-
143
-
-
84951859618
-
Obesity impairs the action of the neuroendocrine ghrelin system
-
Zigman, J.M., S.G. Bouret & Z.B. Andrews. 2016. Obesity impairs the action of the neuroendocrine ghrelin system. Trends Endocrinol. Metab. 27: 54–63.
-
(2016)
Trends Endocrinol. Metab
, vol.27
, pp. 54-63
-
-
Zigman, J.M.1
Bouret, S.G.2
Andrews, Z.B.3
-
144
-
-
0018139377
-
Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice
-
Coleman, D.L. 1978. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14: 141–148.
-
(1978)
Diabetologia
, vol.14
, pp. 141-148
-
-
Coleman, D.L.1
-
145
-
-
0028139089
-
Positional cloning of the mouse obese gene and its human homologue
-
Zhang, Y. et al. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–432.
-
(1994)
Nature
, vol.372
, pp. 425-432
-
-
Zhang, Y.1
-
146
-
-
0030878110
-
Congenital leptin deficiency is associated with severe early-onset obesity in humans
-
Montague, C.T. et al. 1997. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387: 903–908.
-
(1997)
Nature
, vol.387
, pp. 903-908
-
-
Montague, C.T.1
-
147
-
-
0029066265
-
Effects of the obese gene product on body weight regulation in ob/ob mice
-
Pelleymounter, M.A. et al. 1995. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269: 540–543.
-
(1995)
Science
, vol.269
, pp. 540-543
-
-
Pelleymounter, M.A.1
-
148
-
-
0029048408
-
Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks
-
Campfield, L.A., F.J. Smith, Y. Guisez, 1995. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269: 546–549.
-
(1995)
Science
, vol.269
, pp. 546-549
-
-
Campfield, L.A.1
Smith, F.J.2
Guisez, Y.3
-
149
-
-
0033575993
-
Effects of recombinant leptin therapy in a child with congenital leptin deficiency
-
Farooqi, I.S. et al. 1999. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341: 879–884.
-
(1999)
N. Engl. J. Med
, vol.341
, pp. 879-884
-
-
Farooqi, I.S.1
-
150
-
-
0030942844
-
The leptin receptor
-
Tartaglia, L.A. 1997. The leptin receptor. J. Biol. Chem. 272: 6093–6096.
-
(1997)
J. Biol. Chem
, vol.272
, pp. 6093-6096
-
-
Tartaglia, L.A.1
-
151
-
-
0032558725
-
Leptin and the regulation of body weight in mammals
-
Friedman, J.M. & J.L. Halaas. 1998. Leptin and the regulation of body weight in mammals. Nature 395: 763–770.
-
(1998)
Nature
, vol.395
, pp. 763-770
-
-
Friedman, J.M.1
Halaas, J.L.2
-
152
-
-
0029762615
-
Coexpression of leptin receptor and preproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus
-
Mercer, J.G. et al. 1996. Coexpression of leptin receptor and preproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus. J. Neuroendocrinol. 8: 733–735.
-
(1996)
J. Neuroendocrinol
, vol.8
, pp. 733-735
-
-
Mercer, J.G.1
-
153
-
-
0029895233
-
Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization
-
Mercer, J.G. et al. 1996. Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett. 387: 113–116.
-
(1996)
FEBS Lett
, vol.387
, pp. 113-116
-
-
Mercer, J.G.1
-
154
-
-
0032527071
-
Distributions of leptin receptor mRNA isoforms in the rat brain
-
Elmquist, J.K., C. Bjorbaek, R.S. Ahima, et al. 1998. Distributions of leptin receptor mRNA isoforms in the rat brain. J. Comp. Neurol. 395: 535–547.
-
(1998)
J. Comp. Neurol
, vol.395
, pp. 535-547
-
-
Elmquist, J.K.1
Bjorbaek, C.2
Ahima, R.S.3
-
155
-
-
33748540764
-
Leptin receptor signaling in midbrain dopamine neurons regulates feeding
-
Hommel, J.D. et al. 2006. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51: 801–810.
-
(2006)
Neuron
, vol.51
, pp. 801-810
-
-
Hommel, J.D.1
-
156
-
-
77954316996
-
Leptin promotes dopamine transporter and tyrosine hydroxylase activity in the nucleus accumbens of Sprague–Dawley rats
-
Perry, M.L. et al. 2010. Leptin promotes dopamine transporter and tyrosine hydroxylase activity in the nucleus accumbens of Sprague–Dawley rats. J. Neurochem. 114: 666–674.
-
(2010)
J. Neurochem
, vol.114
, pp. 666-674
-
-
Perry, M.L.1
-
157
-
-
0029073613
-
Weight-reducing effects of the plasma protein encoded by the obese gene
-
Halaas, J.L. et al. 1995. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269: 543–546.
-
(1995)
Science
, vol.269
, pp. 543-546
-
-
Halaas, J.L.1
-
158
-
-
0033038418
-
Interacting appetite-regulating pathways in the hypothalamic regulation of body weight
-
Kalra, S.P. et al. 1999. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev. 20: 68–100.
-
(1999)
Endocr. Rev
, vol.20
, pp. 68-100
-
-
Kalra, S.P.1
-
159
-
-
17044370492
-
Leptin receptor action and mechanisms of leptin resistance
-
Munzberg, H., M. Bjornholm, S.H. Bates & M.G. Myers, Jr. 2005. Leptin receptor action and mechanisms of leptin resistance. Cell. Mol. Life Sci. 62: 642–652.
-
(2005)
Cell. Mol. Life Sci
, vol.62
, pp. 642-652
-
-
Munzberg, H.1
Bjornholm, M.2
Bates, S.H.3
Myers, M.G.4
-
160
-
-
78049311283
-
Obesity and leptin resistance: distinguishing cause from effect
-
Myers, M.G., Jr., R.L. Leibel, R.J. Seeley & M.W. Schwartz. 2010. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol. Metab. 21: 643–651.
-
(2010)
Trends Endocrinol. Metab
, vol.21
, pp. 643-651
-
-
Myers, M.G.1
Leibel, R.L.2
Seeley, R.J.3
Schwartz, M.W.4
-
161
-
-
79957896666
-
Sixteen years and counting: an update on leptin in energy balance
-
Gautron, L. & J.K. Elmquist. 2011. Sixteen years and counting: an update on leptin in energy balance. J. Clin. Investig. 121: 2087–2093.
-
(2011)
J. Clin. Investig
, vol.121
, pp. 2087-2093
-
-
Gautron, L.1
Elmquist, J.K.2
-
162
-
-
78650839802
-
A treasure trove of hypothalamic neurocircuitries governing body weight homeostasis
-
Vianna, C.R. & R. Coppari. 2011. A treasure trove of hypothalamic neurocircuitries governing body weight homeostasis. Endocrinology 152: 11–18.
-
(2011)
Endocrinology
, vol.152
, pp. 11-18
-
-
Vianna, C.R.1
Coppari, R.2
-
163
-
-
84866076374
-
Leptin revisited: its mechanism of action and potential for treating diabetes
-
Coppari, R. & C. Bjorbaek. 2012. Leptin revisited: its mechanism of action and potential for treating diabetes. Nat. Rev. Drug Discov. 11: 692–708.
-
(2012)
Nat. Rev. Drug Discov
, vol.11
, pp. 692-708
-
-
Coppari, R.1
Bjorbaek, C.2
-
164
-
-
27744436291
-
Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis
-
Elmquist, J.K., R. Coppari, N. Balthasar, et al. 2005. Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J. Comp. Neurol. 493: 63–71.
-
(2005)
J. Comp. Neurol
, vol.493
, pp. 63-71
-
-
Elmquist, J.K.1
Coppari, R.2
Balthasar, N.3
-
165
-
-
0036553037
-
The melanocortin receptors: lessons from knockout models
-
Butler, A.A. & R.D. Cone. 2002. The melanocortin receptors: lessons from knockout models. Neuropeptides 36: 77–84.
-
(2002)
Neuropeptides
, vol.36
, pp. 77-84
-
-
Butler, A.A.1
Cone, R.D.2
-
166
-
-
0034614698
-
Modulation of brain reward circuitry by leptin
-
Fulton, S., B. Woodside & P. Shizgal. 2000. Modulation of brain reward circuitry by leptin. Science 287: 125–128.
-
(2000)
Science
, vol.287
, pp. 125-128
-
-
Fulton, S.1
Woodside, B.2
Shizgal, P.3
-
167
-
-
0037458468
-
Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat
-
Figlewicz, D.P., S.B. Evans, J. Murphy, et al. 2003. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res. 964: 107–115.
-
(2003)
Brain Res
, vol.964
, pp. 107-115
-
-
Figlewicz, D.P.1
Evans, S.B.2
Murphy, J.3
-
168
-
-
29144464338
-
Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit
-
Jo, Y.H., Y.J. Chen, S.C. Chua, Jr. et al. 2005. Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron 48: 1055–1066.
-
(2005)
Neuron
, vol.48
, pp. 1055-1066
-
-
Jo, Y.H.1
Chen, Y.J.2
Chua, S.C.3
-
169
-
-
33748541108
-
Leptin regulation of the mesoaccumbens dopamine pathway
-
Fulton, S. et al. 2006. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51: 811–822.
-
(2006)
Neuron
, vol.51
, pp. 811-822
-
-
Fulton, S.1
-
170
-
-
84943369863
-
Leptin suppresses the rewarding effects of running via STAT3 signaling in dopamine neurons
-
Fernandes, M.F. et al. 2015. Leptin suppresses the rewarding effects of running via STAT3 signaling in dopamine neurons. Cell Metab. 22: 741–749.
-
(2015)
Cell Metab
, vol.22
, pp. 741-749
-
-
Fernandes, M.F.1
-
171
-
-
77952503211
-
Pathogenesis of insulin resistance in skeletal muscle
-
Abdul-Ghani, M.A. & R.A. DeFronzo. 2010. Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol. 2010: 476279.
-
(2010)
J. Biomed. Biotechnol
, vol.2010
, pp. 476279
-
-
Abdul-Ghani, M.A.1
DeFronzo, R.A.2
-
173
-
-
84859778293
-
mTOR signaling in growth control and disease
-
Laplante, M. & D.M. Sabatini. 2012. mTOR signaling in growth control and disease. Cell 149: 274–293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
174
-
-
84870624154
-
Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis
-
Varela, L. & T.L. Horvath. 2012. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep. 13: 1079–1086.
-
(2012)
EMBO Rep
, vol.13
, pp. 1079-1086
-
-
Varela, L.1
Horvath, T.L.2
-
175
-
-
0034703229
-
Role of brain insulin receptor in control of body weight and reproduction
-
Bruning, J.C. et al. 2000. Role of brain insulin receptor in control of body weight and reproduction. Science 289: 2122–2125.
-
(2000)
Science
, vol.289
, pp. 2122-2125
-
-
Bruning, J.C.1
-
176
-
-
0018621289
-
Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons
-
Woods, S.C., E.C. Lotter, L.D. McKay & D. Porte, Jr. 1979. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282: 503–505.
-
(1979)
Nature
, vol.282
, pp. 503-505
-
-
Woods, S.C.1
Lotter, E.C.2
McKay, L.D.3
Porte, D.4
-
177
-
-
0027524524
-
Chronic intrahypothalamic insulin infusion in the rat: behavioral specificity
-
McGowan, M.K., K.M. Andrews, D. Fenner & S.P. Grossman. 1993. Chronic intrahypothalamic insulin infusion in the rat: behavioral specificity. Physiol. Behav. 54: 1031–1034.
-
(1993)
Physiol. Behav
, vol.54
, pp. 1031-1034
-
-
McGowan, M.K.1
Andrews, K.M.2
Fenner, D.3
Grossman, S.P.4
-
178
-
-
7044241101
-
Intranasal insulin reduces body fat in men but not in women
-
Hallschmid, M. et al. 2004. Intranasal insulin reduces body fat in men but not in women. Diabetes 53: 3024–3029.
-
(2004)
Diabetes
, vol.53
, pp. 3024-3029
-
-
Hallschmid, M.1
-
179
-
-
0037109670
-
The catabolic action of insulin in the brain is mediated by melanocortins
-
Benoit, S.C. et al. 2002. The catabolic action of insulin in the brain is mediated by melanocortins. J. Neurosci. 22: 9048–9052.
-
(2002)
J. Neurosci
, vol.22
, pp. 9048-9052
-
-
Benoit, S.C.1
-
180
-
-
0026670206
-
Insulin in the brain: a hormonal regulator of energy balance
-
Schwartz, M.W., D.P. Figlewicz, D.G. Baskin, 1992. Insulin in the brain: a hormonal regulator of energy balance. Endocr. Rev. 13: 387–414.
-
(1992)
Endocr. Rev
, vol.13
, pp. 387-414
-
-
Schwartz, M.W.1
Figlewicz, D.P.2
Baskin, D.G.3
-
181
-
-
0026710057
-
Inhibition of hypothalamic neuropeptide Y gene expression by insulin
-
Schwartz, M.W. et al. 1992. Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology 130: 3608–3616.
-
(1992)
Endocrinology
, vol.130
, pp. 3608-3616
-
-
Schwartz, M.W.1
-
182
-
-
0028924906
-
Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression
-
Sipols, A.J., D.G. Baskin & M.W. Schwartz. 1995. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 44: 147–151.
-
(1995)
Diabetes
, vol.44
, pp. 147-151
-
-
Sipols, A.J.1
Baskin, D.G.2
Schwartz, M.W.3
-
183
-
-
34249651956
-
Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production
-
Konner, A.C. et al. 2007. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5: 438–449.
-
(2007)
Cell Metab
, vol.5
, pp. 438-449
-
-
Konner, A.C.1
-
184
-
-
77950264425
-
Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility
-
Hill, J.W. et al. 2010. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab. 11: 286–297.
-
(2010)
Cell Metab
, vol.11
, pp. 286-297
-
-
Hill, J.W.1
-
185
-
-
79959652223
-
High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons
-
Klockener, T. et al. 2011. High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat. Neurosci. 14: 911–918.
-
(2011)
Nat. Neurosci
, vol.14
, pp. 911-918
-
-
Klockener, T.1
-
186
-
-
84864816408
-
Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake
-
Mebel, D.M., J.C. Wong, Y.J. Dong & S.L. Borgland. 2012. Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake. Eur. J. Neurosci. 36: 2336–2346.
-
(2012)
Eur. J. Neurosci
, vol.36
, pp. 2336-2346
-
-
Mebel, D.M.1
Wong, J.C.2
Dong, Y.J.3
Borgland, S.L.4
-
187
-
-
84904129264
-
Effect of insulin on excitatory synaptic transmission onto dopamine neurons of the ventral tegmental area in a mouse model of hyperinsulinemia
-
Liu, S., G. Labouebe, S. Karunakaran, et al. 2013. Effect of insulin on excitatory synaptic transmission onto dopamine neurons of the ventral tegmental area in a mouse model of hyperinsulinemia. Nutr. Diabetes 3: e97.
-
(2013)
Nutr. Diabetes
, vol.3
-
-
Liu, S.1
Labouebe, G.2
Karunakaran, S.3
-
188
-
-
84925307917
-
Insulin resistance in brain alters dopamine turnover and causes behavioral disorders
-
Kleinridders, A. et al. 2015. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc. Natl. Acad. Sci. U.S.A. 112: 3463–3468.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A
, vol.112
, pp. 3463-3468
-
-
Kleinridders, A.1
-
189
-
-
84929964936
-
Ghrelin
-
Muller, T.D. et al. 2015. Ghrelin. Mol. Metab. 4: 437–460.
-
(2015)
Mol. Metab
, vol.4
, pp. 437-460
-
-
Muller, T.D.1
-
190
-
-
0034687376
-
Ghrelin induces adiposity in rodents
-
Tschop, M., D.L. Smiley & M.L. Heiman. 2000. Ghrelin induces adiposity in rodents. Nature 407: 908–913.
-
(2000)
Nature
, vol.407
, pp. 908-913
-
-
Tschop, M.1
Smiley, D.L.2
Heiman, M.L.3
-
191
-
-
33745834734
-
Ghrelin action in the brain controls adipocyte metabolism
-
Theander-Carrillo, C. et al. 2006. Ghrelin action in the brain controls adipocyte metabolism. J. Clin. Invest. 116: 1983–1993.
-
(2006)
J. Clin. Invest
, vol.116
, pp. 1983-1993
-
-
Theander-Carrillo, C.1
-
192
-
-
84866239096
-
Thermogenic characterization of ghrelin receptor null mice
-
Lin, L. & Y. Sun. 2012. Thermogenic characterization of ghrelin receptor null mice. Methods Enzymol. 514: 355–370.
-
(2012)
Methods Enzymol
, vol.514
, pp. 355-370
-
-
Lin, L.1
Sun, Y.2
-
193
-
-
0032744366
-
Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat
-
Willesen, M.G., P. Kristensen & J. Romer. 1999. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology 70: 306–316.
-
(1999)
Neuroendocrinology
, vol.70
, pp. 306-316
-
-
Willesen, M.G.1
Kristensen, P.2
Romer, J.3
-
194
-
-
33750115577
-
Ghrelin: a hormone regulating food intake and energy homeostasis
-
Gil-Campos, M., C.M. Aguilera, R. Canete & A. Gil. 2006. Ghrelin: a hormone regulating food intake and energy homeostasis. Br. J. Nutr. 96: 201–226.
-
(2006)
Br. J. Nutr
, vol.96
, pp. 201-226
-
-
Gil-Campos, M.1
Aguilera, C.M.2
Canete, R.3
Gil, A.4
-
195
-
-
0035513696
-
Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA levels and body weight in rats
-
Kamegai, J. et al. 2001. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA levels and body weight in rats. Diabetes 50: 2438–2443.
-
(2001)
Diabetes
, vol.50
, pp. 2438-2443
-
-
Kamegai, J.1
-
196
-
-
84895099544
-
Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin
-
Wang, Q. et al. 2014. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Mol. Metab. 3: 64–72.
-
(2014)
Mol. Metab
, vol.3
, pp. 64-72
-
-
Wang, Q.1
-
197
-
-
29044434688
-
Expression of ghrelin receptor mRNA in the rat and the mouse brain
-
Zigman, J.M., J.E. Jones, C.E. Lee, et al. 2006. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 494: 528–548.
-
(2006)
J. Comp. Neurol
, vol.494
, pp. 528-548
-
-
Zigman, J.M.1
Jones, J.E.2
Lee, C.E.3
-
198
-
-
84926681508
-
Ghrelin signalling on food reward: a salient link between the gut and the mesolimbic system
-
Perello, M. & S.L. Dickson. 2015. Ghrelin signalling on food reward: a salient link between the gut and the mesolimbic system. J. Neuroendocrinol. 27: 424–434.
-
(2015)
J. Neuroendocrinol
, vol.27
, pp. 424-434
-
-
Perello, M.1
Dickson, S.L.2
-
199
-
-
79958079915
-
The role of the central ghrelin system in reward from food and chemical drugs
-
Dickson, S.L. et al. 2011. The role of the central ghrelin system in reward from food and chemical drugs. Mol. Cell. Endocrinol. 340: 80–87.
-
(2011)
Mol. Cell. Endocrinol
, vol.340
, pp. 80-87
-
-
Dickson, S.L.1
-
200
-
-
82255186756
-
Leptin regulates the reward value of nutrient
-
Domingos, A.I. et al. 2011. Leptin regulates the reward value of nutrient. Nat. Neurosci. 14: 1562–1568.
-
(2011)
Nat. Neurosci
, vol.14
, pp. 1562-1568
-
-
Domingos, A.I.1
-
201
-
-
48849107624
-
Brain circuits regulating energy homeostasis
-
Abizaid, A. & T.L. Horvath. 2008. Brain circuits regulating energy homeostasis. Regul. Pept. 149: 3–10.
-
(2008)
Regul. Pept
, vol.149
, pp. 3-10
-
-
Abizaid, A.1
Horvath, T.L.2
-
202
-
-
33748362868
-
Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward
-
Jerlhag, E. et al. 2006. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict. Biol. 11: 45–54.
-
(2006)
Addict. Biol
, vol.11
, pp. 45-54
-
-
Jerlhag, E.1
-
203
-
-
79953198914
-
Ghrelin directly targets the ventral tegmental area to increase food motivation
-
Skibicka, K.P., C. Hansson, M. Alvarez-Crespo, et al. 2011. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience 180: 129–137.
-
(2011)
Neuroscience
, vol.180
, pp. 129-137
-
-
Skibicka, K.P.1
Hansson, C.2
Alvarez-Crespo, M.3
-
204
-
-
77950371376
-
Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner
-
Perello, M. et al. 2010. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol. Psychiatry 67: 880–886.
-
(2010)
Biol. Psychiatry
, vol.67
, pp. 880-886
-
-
Perello, M.1
-
205
-
-
84864589380
-
The role of ghrelin in reward-based eating
-
Perello, M. & J.M. Zigman. 2012. The role of ghrelin in reward-based eating. Biol. Psychiatry 72: 347–353.
-
(2012)
Biol. Psychiatry
, vol.72
, pp. 347-353
-
-
Perello, M.1
Zigman, J.M.2
-
207
-
-
70350418625
-
mTOR signaling at a glance
-
Laplante, M. & D.M. Sabatini. 2009. mTOR signaling at a glance. J. Cell Sci. 122: 3589–3594.
-
(2009)
J. Cell Sci
, vol.122
, pp. 3589-3594
-
-
Laplante, M.1
Sabatini, D.M.2
-
208
-
-
80555143078
-
+-ATPase
-
+-ATPase. Science 334: 678–683.
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
-
209
-
-
84937542416
-
The roles of mTOR complexes in lipid metabolism
-
Caron, A., D. Richard & M. Laplante. 2015. The roles of mTOR complexes in lipid metabolism. Ann. Rev. Nutr. 35: 321–348.
-
(2015)
Ann. Rev. Nutr
, vol.35
, pp. 321-348
-
-
Caron, A.1
Richard, D.2
Laplante, M.3
-
210
-
-
14644429670
-
Leptin action in the forebrain regulates the hindbrain response to satiety signals
-
Morton, G.J. et al. 2005. Leptin action in the forebrain regulates the hindbrain response to satiety signals. J. Clin. Investig. 115: 703–710.
-
(2005)
J. Clin. Investig
, vol.115
, pp. 703-710
-
-
Morton, G.J.1
-
211
-
-
0037315042
-
Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia
-
Niswender, K.D. et al. 2003. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52: 227–231.
-
(2003)
Diabetes
, vol.52
, pp. 227-231
-
-
Niswender, K.D.1
-
212
-
-
0035950093
-
Intracellular signalling. Key enzyme in leptin-induced anorexia
-
Niswender, K.D. et al. 2001. Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature 413: 794–795.
-
(2001)
Nature
, vol.413
, pp. 794-795
-
-
Niswender, K.D.1
-
213
-
-
0036321620
-
A phosphatidylinositol 3-kinase phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding
-
Zhao, A.Z., J.N. Huan, S. Gupta, et al. 2002. A phosphatidylinositol 3-kinase phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding. Nat. Neurosci. 5: 727–728.
-
(2002)
Nat. Neurosci
, vol.5
, pp. 727-728
-
-
Zhao, A.Z.1
Huan, J.N.2
Gupta, S.3
-
214
-
-
30044447631
-
Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons
-
Morton, G.J. et al. 2005. Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons. Cell Metab. 2: 411–420.
-
(2005)
Cell Metab
, vol.2
, pp. 411-420
-
-
Morton, G.J.1
-
215
-
-
44949163013
-
Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms
-
Buettner, C. et al. 2008. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat. Med. 14: 667–675.
-
(2008)
Nat. Med
, vol.14
, pp. 667-675
-
-
Buettner, C.1
-
216
-
-
33645071314
-
Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes
-
Gelling, R.W. et al. 2006. Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes. Cell Metab. 3: 67–73.
-
(2006)
Cell Metab
, vol.3
, pp. 67-73
-
-
Gelling, R.W.1
-
217
-
-
70350317881
-
Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis
-
Hill, J.W. et al. 2009. Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis. Endocrinology 150: 4874–4882.
-
(2009)
Endocrinology
, vol.150
, pp. 4874-4882
-
-
Hill, J.W.1
-
218
-
-
43049116846
-
Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice
-
Hill, J.W. et al. 2008. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J. Clin. Investig. 118: 1796–1805.
-
(2008)
J. Clin. Investig
, vol.118
, pp. 1796-1805
-
-
Hill, J.W.1
-
219
-
-
68949128765
-
Mammalian target of rapamycin complex 1 (mTORC1) signaling in energy balance and obesity
-
Cota, D. 2009. Mammalian target of rapamycin complex 1 (mTORC1) signaling in energy balance and obesity. Physiol. Behav. 97: 520–524.
-
(2009)
Physiol. Behav
, vol.97
, pp. 520-524
-
-
Cota, D.1
-
220
-
-
33646582664
-
Hypothalamic mTOR signaling regulates food intake
-
Cota, D. et al. 2006. Hypothalamic mTOR signaling regulates food intake. Science 312: 927–930.
-
(2006)
Science
, vol.312
, pp. 927-930
-
-
Cota, D.1
-
221
-
-
84902329648
-
Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis
-
Kocalis, H.E. et al. 2014. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis. Mol. Metab. 3: 394–407.
-
(2014)
Mol. Metab
, vol.3
, pp. 394-407
-
-
Kocalis, H.E.1
-
222
-
-
56449115916
-
Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis
-
Blouet, C., H. Ono & G.J. Schwartz. 2008. Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metab. 8: 459–467.
-
(2008)
Cell Metab
, vol.8
, pp. 459-467
-
-
Blouet, C.1
Ono, H.2
Schwartz, G.J.3
-
223
-
-
49049114337
-
The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity
-
Cota, D., E.K. Matter, S.C. Woods & R.J. Seeley. 2008. The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. J. Neurosci. 28: 7202–7208.
-
(2008)
J. Neurosci
, vol.28
, pp. 7202-7208
-
-
Cota, D.1
Matter, E.K.2
Woods, S.C.3
Seeley, R.J.4
-
224
-
-
84868288958
-
Coupling nutrient sensing to metabolic homoeostasis: the role of the mammalian target of rapamycin complex 1 pathway
-
Andre, C. & D. Cota. 2012. Coupling nutrient sensing to metabolic homoeostasis: the role of the mammalian target of rapamycin complex 1 pathway. Proc. Nutr. Soc. 71: 502–510.
-
(2012)
Proc. Nutr. Soc
, vol.71
, pp. 502-510
-
-
Andre, C.1
Cota, D.2
-
225
-
-
79960761944
-
An emerging role for TOR signaling in mammalian tissue and stem cell physiology
-
Russell, R.C., C. Fang & K.L. Guan. 2011. An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development 138: 3343–3356.
-
(2011)
Development
, vol.138
, pp. 3343-3356
-
-
Russell, R.C.1
Fang, C.2
Guan, K.L.3
-
226
-
-
33745052121
-
mTOR tells the brain that the body is hungry
-
Kahn, B.B. & M.G. Myers, Jr. 2006. mTOR tells the brain that the body is hungry. Nat. Med. 12: 615–617.
-
(2006)
Nat. Med
, vol.12
, pp. 615-617
-
-
Kahn, B.B.1
Myers, M.G.2
-
227
-
-
84926431715
-
The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight and sympathetic nerve activity in male mice
-
Muta, K., D.A. Morgan & K. Rahmouni. 2015. The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight and sympathetic nerve activity in male mice. Endocrinology 156: 1398–1407.
-
(2015)
Endocrinology
, vol.156
, pp. 1398-1407
-
-
Muta, K.1
Morgan, D.A.2
Rahmouni, K.3
-
228
-
-
84884231872
-
Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling
-
Stevanovic, D. et al. 2013. Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling. Mol. Cell. Endocrinol. 381: 280–290.
-
(2013)
Mol. Cell. Endocrinol
, vol.381
, pp. 280-290
-
-
Stevanovic, D.1
-
229
-
-
84877965001
-
Regulation of mTORC1 and its impact on gene expression at a glance
-
Laplante, M. & D.M. Sabatini. 2013. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126: 1713–1719.
-
(2013)
J. Cell Sci
, vol.126
, pp. 1713-1719
-
-
Laplante, M.1
Sabatini, D.M.2
-
230
-
-
84877682466
-
Age-dependent modulation of central ghrelin effects on food intake and lipid metabolism in rats
-
Nesic, D.M. et al. 2013. Age-dependent modulation of central ghrelin effects on food intake and lipid metabolism in rats. Eur. J. Pharmacol. 710: 85–91.
-
(2013)
Eur. J. Pharmacol
, vol.710
, pp. 85-91
-
-
Nesic, D.M.1
-
231
-
-
84928211330
-
Ribosomal S6K1 in POMC and AgRP neurons regulates glucose homeostasis but not feeding behavior in mice
-
Smith, M.A. et al. 2015. Ribosomal S6K1 in POMC and AgRP neurons regulates glucose homeostasis but not feeding behavior in mice. Cell Rep. 11: 335–343.
-
(2015)
Cell Rep
, vol.11
, pp. 335-343
-
-
Smith, M.A.1
-
232
-
-
84938422541
-
mTORC1 signaling in Agrp neurons mediates circadian expression of Agrp and NPY but is dispensable for regulation of feeding behavior
-
Albert, V., M. Cornu & M.N. Hall. 2015. mTORC1 signaling in Agrp neurons mediates circadian expression of Agrp and NPY but is dispensable for regulation of feeding behavior. Biochem. Biophys. Res. Commun. 464: 480–486.
-
(2015)
Biochem. Biophys. Res. Commun
, vol.464
, pp. 480-486
-
-
Albert, V.1
Cornu, M.2
Hall, M.N.3
-
233
-
-
84857418759
-
Capricious Cre: the devil is in the details
-
Morrison, C.D. & H. Munzberg. 2012. Capricious Cre: the devil is in the details. Endocrinology 153: 1005–1007.
-
(2012)
Endocrinology
, vol.153
, pp. 1005-1007
-
-
Morrison, C.D.1
Munzberg, H.2
-
234
-
-
84879868603
-
Metabolic pitfalls of CNS Cre-based technology
-
Harno, E., E.C. Cottrell & A. White. 2013. Metabolic pitfalls of CNS Cre-based technology. Cell Metab. 18: 21–28.
-
(2013)
Cell Metab
, vol.18
, pp. 21-28
-
-
Harno, E.1
Cottrell, E.C.2
White, A.3
-
235
-
-
84869412459
-
Hypothalamic Akt/PKB signaling in regulation of food intake
-
Kim, D.H., S.C. Woods & R.J. Seeley. 2012. Hypothalamic Akt/PKB signaling in regulation of food intake. Front. Biosci. (Schol. Ed.) 4: 953–966.
-
(2012)
Front. Biosci. (Schol. Ed.)
, vol.4
, pp. 953-966
-
-
Kim, D.H.1
Woods, S.C.2
Seeley, R.J.3
-
236
-
-
33745576798
-
Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis
-
Kim, M.S. et al. 2006. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat. Neurosci. 9: 901–906.
-
(2006)
Nat. Neurosci
, vol.9
, pp. 901-906
-
-
Kim, M.S.1
-
237
-
-
60749130864
-
The role of transcriptional regulators in central control of appetite and body weight
-
Coppari, R., G. Ramadori & J.K. Elmquist. 2009. The role of transcriptional regulators in central control of appetite and body weight. Nat. Clin. Pract. Endocrinol. Metab. 5: 160–166.
-
(2009)
Nat. Clin. Pract. Endocrinol. Metab
, vol.5
, pp. 160-166
-
-
Coppari, R.1
Ramadori, G.2
Elmquist, J.K.3
-
238
-
-
58149391976
-
Monitoring FoxO1 localization in chemically identified neurons
-
Fukuda, M. et al. 2008. Monitoring FoxO1 localization in chemically identified neurons. J. Neurosci. 28: 13640–13648.
-
(2008)
J. Neurosci
, vol.28
, pp. 13640-13648
-
-
Fukuda, M.1
-
239
-
-
33646590947
-
Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake
-
Kitamura, T. et al. 2006. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat. Med. 12: 534–540.
-
(2006)
Nat. Med
, vol.12
, pp. 534-540
-
-
Kitamura, T.1
-
240
-
-
70350369729
-
The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake
-
Plum, L. et al. 2009. The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nat. Med. 15: 1195–1201.
-
(2009)
Nat. Med
, vol.15
, pp. 1195-1201
-
-
Plum, L.1
-
241
-
-
84863549071
-
FOXO1 in the ventromedial hypothalamus regulates energy balance
-
Kim, K.W. et al. 2012. FOXO1 in the ventromedial hypothalamus regulates energy balance. J. Clin. Investig. 122: 2578–2589.
-
(2012)
J. Clin. Investig
, vol.122
, pp. 2578-2589
-
-
Kim, K.W.1
-
242
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
Peterson, T.R. et al. 2009. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137: 873–886.
-
(2009)
Cell
, vol.137
, pp. 873-886
-
-
Peterson, T.R.1
-
243
-
-
84864692282
-
DEPTOR cell-autonomously promotes adipogenesis, and its expression is associated with obesity
-
Laplante, M. et al. 2012. DEPTOR cell-autonomously promotes adipogenesis, and its expression is associated with obesity. Cell Metab. 16: 202–212.
-
(2012)
Cell Metab
, vol.16
, pp. 202-212
-
-
Laplante, M.1
-
244
-
-
84877587720
-
Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation
-
Meng, Z.X. et al. 2013. Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation. Nat. Med. 19: 640–645.
-
(2013)
Nat. Med
, vol.19
, pp. 640-645
-
-
Meng, Z.X.1
-
245
-
-
84899094563
-
The Baf60c/Deptor pathway links skeletal muscle inflammation to glucose homeostasis in obesity
-
Meng, Z.X., L. Wang, Y. Xiao & J.D. Lin. 2014. The Baf60c/Deptor pathway links skeletal muscle inflammation to glucose homeostasis in obesity. Diabetes 63: 1533–1545.
-
(2014)
Diabetes
, vol.63
, pp. 1533-1545
-
-
Meng, Z.X.1
Wang, L.2
Xiao, Y.3
Lin, J.D.4
-
246
-
-
81855167585
-
DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(βTrCP) E3 ubiquitin ligase and regulates survival and autophagy
-
Zhao, Y., X. Xiong & Y. Sun. 2011. DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(βTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol. Cell 44: 304–316.
-
(2011)
Mol. Cell
, vol.44
, pp. 304-316
-
-
Zhao, Y.1
Xiong, X.2
Sun, Y.3
-
247
-
-
84860855581
-
Functional characterization of glycine N-methyltransferase and its interactive protein DEPDC6/DEPTOR in hepatocellular carcinoma
-
Yen, C.H. et al. 2012. Functional characterization of glycine N-methyltransferase and its interactive protein DEPDC6/DEPTOR in hepatocellular carcinoma. Mol. Med. 18: 286–296.
-
(2012)
Mol. Med
, vol.18
, pp. 286-296
-
-
Yen, C.H.1
-
248
-
-
84909607931
-
DEP domain-containing mTOR-interacting protein in the rat brain: distribution of expression and potential implication
-
Caron, A., E.D. Baraboi, M. Laplante & D. Richard. 2015. DEP domain-containing mTOR-interacting protein in the rat brain: distribution of expression and potential implication. J. Comp. Neurol. 523: 93–107.
-
(2015)
J. Comp. Neurol
, vol.523
, pp. 93-107
-
-
Caron, A.1
Baraboi, E.D.2
Laplante, M.3
Richard, D.4
-
249
-
-
84958047525
-
Mediobasal hypothalamic overexpression of DEPTOR protects against high-fat diet-induced obesity
-
Caron, A. et al. 2016. Mediobasal hypothalamic overexpression of DEPTOR protects against high-fat diet-induced obesity. Mol. Metab. 5: 102–112.
-
(2016)
Mol. Metab
, vol.5
, pp. 102-112
-
-
Caron, A.1
-
250
-
-
84984806980
-
Deptor in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance
-
Caron, A. et al. 2016. Deptor in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310: R1322–R1331.
-
(2016)
Am. J. Physiol. Regul. Integr. Comp. Physiol
, vol.310
, pp. R1322-R1331
-
-
Caron, A.1
-
251
-
-
84962949589
-
Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19 2 million participants
-
NCD Risk Factor Collaboration. 2016. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19 2 million participants. Lancet 387: 1377–1396.
-
(2016)
Lancet
, vol.387
, pp. 1377-1396
-
-
|