-
1
-
-
77649223913
-
Hypothalamic-brainstem circuits controlling eating
-
Langhans W, Geary N, Basel, Karger
-
Blevins JE, Baskin DG: Hypothalamic-brainstem circuits controlling eating; in Langhans W, Geary N: Frontiers in Eating and Weight Regulation. Forum Nutr. Basel, Karger, 2010, vol 63, pp 133-140.
-
(2010)
Frontiers in Eating and Weight Regulation. Forum. Nutr.
, vol.63
, pp. 133-140
-
-
Blevins, J.E.1
Baskin, D.G.2
-
2
-
-
0035984071
-
3 receptors in the rat gastrointestinal tract
-
3 receptors in the rat gastrointestinal tract. Gastroenterology, 2002;123:217-226.
-
(2002)
Gastroenterology
, vol.123
, pp. 217-226
-
-
Glatzle, J.1
-
3
-
-
17744388313
-
Primary afferent response to signals in the intestinal lumen
-
Raybould H: Primary afferent response to signals in the intestinal lumen. J Physiol 2001;530:343.
-
(2001)
J. Physiol.
, vol.530
, pp. 343
-
-
Raybould, H.1
-
5
-
-
0038116505
-
Chylomicron components activate duodenal vagal afferents via a cholecystokinin A receptor-mediated pathway to inhibit gastric motor function in the rat
-
Glatzle J, et al: Chylomicron components activate duodenal vagal afferents via a cholecystokinin A receptor-mediated pathway to inhibit gastric motor function in the rat. J Physiol 2003;550:657-664.
-
(2003)
J. Physiol.
, vol.550
, pp. 657-664
-
-
Glatzle, J.1
-
6
-
-
5444230702
-
3 receptors participate in CCK-induced suppression of food intake by delaying gastric emptying
-
3 receptors participate in CCK-induced suppression of food intake by delaying gastric emptying. Am J Physiol Regul Integr Comp Physiol 2004;287: R817-R823.
-
(2004)
Am. J. Physiol. Regul Integr. Comp. Physiol.
, vol.287
-
-
Hayes, M.R.1
-
7
-
-
33746092906
-
3 receptors participate in control of meal size and mediate CCK-induced satiation
-
3 receptors participate in control of meal size and mediate CCK-induced satiation. Brain Res 2006;1103:99-107.
-
(2006)
Brain Res.
, vol.1103
, pp. 99-107
-
-
Hayes, M.R.1
Covasa, M.2
-
8
-
-
10044285236
-
Neurochemical phenotype of vagal afferent neurons activated to express C-FOS in response to luminal stimulation in the rat
-
Wu XY, et al: Neurochemical phenotype of vagal afferent neurons activated to express C-FOS in response to luminal stimulation in the rat. Neuroscience 2005;130:757-767.
-
(2005)
Neuroscience
, vol.130
, pp. 757-767
-
-
Wu, X.Y.1
-
9
-
-
33751049378
-
Vagal afferent neurons projecting to the stomach and small intestine exhibit multiple N-methyl-d-aspartate receptor subunit phenotypes
-
Czaja K, Ritter RC, Burns GA: Vagal afferent neurons projecting to the stomach and small intestine exhibit multiple N-methyl-d-aspartate receptor subunit phenotypes. Brain Res 2006;1119:86-93.
-
(2006)
Brain Res.
, vol.1119
, pp. 86-93
-
-
Czaja, K.1
Ritter, R.C.2
Burns, G.A.3
-
10
-
-
33646502366
-
N-methyl-d-aspartate receptor subunit phenotypes of vagal afferent neurons in nodose ganglia of the rat
-
Czaja K, Ritter RC, Burns GA: N-methyl-d-aspartate receptor subunit phenotypes of vagal afferent neurons in nodose ganglia of the rat. J Comp Neurol 2006;496:877-885.
-
(2006)
J. Comp. Neurol.
, vol.496
, pp. 877-885
-
-
Czaja, K.1
Ritter, R.C.2
Burns, G.A.3
-
11
-
-
33750739519
-
Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors
-
Slattery JA, et al: Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors. J Physiol 2006;577:295-306.
-
(2006)
J. Physiol.
, vol.577
, pp. 295-306
-
-
Slattery, J.A.1
-
12
-
-
0034725926
-
Lesions of the dorsal vagal complex abolish increases in meal size induced by NMDA receptor blockade
-
Treece BR, Ritter RC, Burns GA: Lesions of the dorsal vagal complex abolish increases in meal size induced by NMDA receptor blockade. Brain Res 2000;872:37-43.
-
(2000)
Brain Res.
, vol.872
, pp. 37-43
-
-
Treece, B.R.1
Ritter, R.C.2
Burns, G.A.3
-
14
-
-
0035850809
-
Food-related gastrointestinal signals activate caudal brainstem neurons expressing both NMDA and AMPA receptors
-
Berthoud HR, et al: Food-related gastrointestinal signals activate caudal brainstem neurons expressing both NMDA and AMPA receptors. Brain Res 2001;915:143-154.
-
(2001)
Brain Res.
, vol.915
, pp. 143-154
-
-
Berthoud, H.R.1
-
15
-
-
33645388427
-
Hindbrain administration of NMDA receptor antagonist AP-5 increases food intake in the rat
-
Hung CY, et al: Hindbrain administration of NMDA receptor antagonist AP-5 increases food intake in the rat. Am J Physiol Regul Integr Comp Physiol 2006;290: R642-R651.
-
(2006)
Am. J. Physiol. Regul Integr. Comp. Physiol.
, vol.290
-
-
Hung, C.Y.1
-
17
-
-
65949090281
-
Blockade of hindbrain NMDA receptors containing NR2 subunits increases sucrose intake
-
Guard DB, et al: Blockade of hindbrain NMDA receptors containing NR2 subunits increases sucrose intake. Am J Physiol Regul Integr Comp Physiol 2009;296: R921-R928.
-
(2009)
Am. J. Physiol. Regul Integr. Comp. Physiol.
, vol.296
-
-
Guard, D.B.1
-
18
-
-
63249100823
-
NMDA NR2 receptors participate in CCK-induced reduction of food intake and hindbrain neuronal activation
-
Guard DB, et al: NMDA NR2 receptors participate in CCK-induced reduction of food intake and hindbrain neuronal activation. Brain Res 2009;1266:37-44.
-
(2009)
Brain Res.
, vol.1266
, pp. 37-44
-
-
Guard, D.B.1
-
19
-
-
41549099580
-
d-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers
-
Wan S, Browning KN: d-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers. Am J Physiol Gastrointest Liver Physiol 2008;294: G757-G763.
-
(2008)
Am. J. Physiol. Gastrointest Liver Physiol.
, vol.294
-
-
Wan, S.1
Browning, K.N.2
-
20
-
-
57349126777
-
Glucose increases synaptic transmission from vagal afferent central nerve terminals via modulation of 5-HT3 receptors
-
Wan S, Browning KN: Glucose increases synaptic transmission from vagal afferent central nerve terminals via modulation of 5-HT3 receptors. Am J Physiol Gastrointest Liver Physiol 2008;295: G1050-G1057.
-
(2008)
Am. J. Physiol. Gastrointest Liver Physiol.
, vol.295
-
-
Wan, S.1
Browning, K.N.2
-
21
-
-
33745771673
-
Biologic actions and therapeutic potential of the proglucagon-derived peptides
-
Drucker DJ, Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat Clin Pract Endocrinol Metab 2005;1:22-31.
-
(2005)
Nat. Clin. Pract. Endocrinol. Metab.
, vol.1
, pp. 22-31
-
-
Drucker, D.J.1
-
22
-
-
67449169287
-
Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat
-
Bucinskaite V, et al: Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat. Neurogastroenterol Motil 2009, p 978-e78.
-
(2009)
Neurogastroenterol Motil
-
-
Bucinskaite, V.1
-
23
-
-
0034639946
-
The hepatic vagal reception of intraportal GLP-1 is via receptor different from the pancreatic GLP-1 receptor
-
Nishizawa M, et al: The hepatic vagal reception of intraportal GLP-1 is via receptor different from the pancreatic GLP-1 receptor. J Auton Nerv Syst 2000;80:14-21.
-
(2000)
J. Auton Nerv Syst.
, vol.80
, pp. 14-21
-
-
Nishizawa, M.1
-
24
-
-
67649636449
-
Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms
-
Ruttimann EB, et al: Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology 2009;150:1174-1181.
-
(2009)
Endocrinology
, vol.150
, pp. 1174-1181
-
-
Ruttimann, E.B.1
-
25
-
-
0028867442
-
Distribution of GLP-1 binding sites in the rat brain: Evidence that exendin-4 is a ligand of brain GLP-1 binding sites
-
Goke R, et al: Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci, 1995;7:2294-2300.
-
(1995)
Eur. J. Neurosci.
, vol.7
, pp. 2294-2300
-
-
Goke, R.1
-
26
-
-
0041307370
-
Gastric distension induces c-Fos in medullary GLP-1/2-containing neurons
-
Vrang N, et al: Gastric distension induces c-Fos in medullary GLP-1/2-containing neurons. Am J Physiol Regul Integr Comp Physiol 2003;285: R470-R478.
-
(2003)
Am. J. Physiol. Regul Integr. Comp. Physiol.
, vol.285
-
-
Vrang, N.1
-
27
-
-
57749169279
-
Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI)
-
Parkinson JR, et al: Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI). Neuroimage 2009;44:1022-1031.
-
(2009)
Neuroimage
, vol.44
, pp. 1022-1031
-
-
Parkinson, J.R.1
-
28
-
-
47949104953
-
Caudal brainstem processing is sufficient for behavioral, sympathetic, and parasympathetic responses driven by peripheral and hindbrain glucagon-like-peptide-1 receptor stimulation
-
Hayes MR, Skibicka K P, Grill HJ: Caudal brainstem processing is sufficient for behavioral, sympathetic, and parasympathetic responses driven by peripheral and hindbrain glucagon-like-peptide-1 receptor stimulation. Endocrinology 2008;149:4059-4068.
-
(2008)
Endocrinology
, vol.149
, pp. 4059-4068
-
-
Hayes, M.R.1
Skibicka, K.P.2
Grill, H.J.3
-
29
-
-
66649088029
-
Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling
-
Hayes MR, Bradley L, Grill HJ: Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology 2009;150:2654-2659.
-
(2009)
Endocrinology
, vol.150
, pp. 2654-2659
-
-
Hayes, M.R.1
Bradley, L.2
Grill, H.J.3
-
30
-
-
77649215791
-
Blood-brain barrier as a regulatory interface
-
Langhans W, Geary N
-
Banks WA: Blood-brain barrier as a regulatory interface; in Langhans W, Geary N: Frontiers in Eating and Weight Regulation. Forum Nutr. Basel, Karger, 2010, vol 63, pp 102-110.
-
(2010)
Frontiers in Eating and Weight Regulation. Forum. Nutr. Basel, Karger
, vol.63
, pp. 102-110
-
-
Banks, W.A.1
-
31
-
-
0037185624
-
Expression of the leptin receptor in rat and human nodose ganglion neurones
-
Burdyga G, et al: Expression of the leptin receptor in rat and human nodose ganglion neurones. Neuroscience, 2002;109:339-347.
-
(2002)
Neuroscience
, vol.109
, pp. 339-347
-
-
Burdyga, G.1
-
32
-
-
0034909166
-
Expression and regulation of leptin receptor proteins in afferent and efferent neurons of the vagus nerve
-
Buyse M, et al: Expression and regulation of leptin receptor proteins in afferent and efferent neurons of the vagus nerve. Eur J Neurosci 2001;14:64-72.
-
(2001)
Eur. J. Neurosci.
, vol.14
, pp. 64-72
-
-
Buyse, M.1
-
34
-
-
33750300106
-
Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin
-
Peters JH, Simasko SM, Ritter RC: Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin. Physiol Behav 2006;89:477-485.
-
(2006)
Physiol. Behav.
, vol.89
, pp. 477-485
-
-
Peters, J.H.1
Simasko, S.M.2
Ritter, R.C.3
-
35
-
-
15544375005
-
Leptin-induced satiation mediated by abdominal vagal afferents
-
Peters JH, et al: Leptin-induced satiation mediated by abdominal vagal afferents. Am J Physiol Regul Integr Comp Physiol 2005;288: R879-R884.
-
(2005)
Am. J. Physiol. Regul Integr. Comp. Physiol.
, vol.288
-
-
Peters, J.H.1
-
36
-
-
66149141484
-
Leptin targets in the mouse brain
-
Scott MM, et al: Leptin targets in the mouse brain. J Comp Neurol 2009;514:518-532.
-
(2009)
J. Comp. Neurol.
, vol.514
, pp. 518-532
-
-
Scott, M.M.1
-
37
-
-
34249785695
-
Leptin and the control of food intake: Neurons in the nucleus of the solitary tract are activated by both gastric distension and leptin
-
Huo L, et al: Leptin and the control of food intake: neurons in the nucleus of the solitary tract are activated by both gastric distension and leptin. Endocrinology, 2007;148:2189-2197.
-
(2007)
Endocrinology
, vol.148
, pp. 2189-2197
-
-
Huo, L.1
-
38
-
-
33751018247
-
Leptin modulation of peripheral controls of meal size
-
Moran TH, Aja S, Ladenheim EE: Leptin modulation of peripheral controls of meal size. Physiol Behav 2006;89:511-516.
-
(2006)
Physiol. Behav.
, vol.89
, pp. 511-516
-
-
Moran, T.H.1
Aja, S.2
Ladenheim, E.E.3
-
39
-
-
0036854550
-
Central melanocortin receptor agonist reduces spontaneous and scheduled meal size but does not augment duodenal preload-induced feeding inhibition
-
Azzara AV, Sokolnicki JP, Schwartz GJ: Central melanocortin receptor agonist reduces spontaneous and scheduled meal size but does not augment duodenal preload-induced feeding inhibition. Physiol Behav 2002;77:411-416.
-
(2002)
Physiol. Behav.
, vol.77
, pp. 411-416
-
-
Azzara, A.V.1
Sokolnicki, J.P.2
Schwartz, G.J.3
-
40
-
-
33748423509
-
Distribution of insulin receptor substrate-2 in brain areas involved in energy homeostasis
-
Pardini AW, et al: Distribution of insulin receptor substrate-2 in brain areas involved in energy homeostasis. Brain Res 2006;1112:169-178.
-
(2006)
Brain Res.
, vol.1112
, pp. 169-178
-
-
Pardini, A.W.1
-
41
-
-
0037430140
-
Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat
-
Kishi T, et al: Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol 2003;457:213-235.
-
(2003)
J. Comp. Neurol.
, vol.457
, pp. 213-235
-
-
Kishi, T.1
-
42
-
-
34547103515
-
Melanocortin activation of nucleus of the solitary tract avoids anorectic tachyphylaxis and induces prolonged weight loss
-
Li G, et al: Melanocortin activation of nucleus of the solitary tract avoids anorectic tachyphylaxis and induces prolonged weight loss. Am J Physiol Endocrinol Metab 2007;293: E252-E258.
-
(2007)
Am. J. Physiol. Endocrinol. Metab.
, vol.293
-
-
Li, G.1
-
43
-
-
0036233770
-
Behavioral processes underlying the intake suppressive effects of melanocortin 3/4 receptor activation in the rat
-
Williams DL, et al: Behavioral processes underlying the intake suppressive effects of melanocortin 3/4 receptor activation in the rat. Psycho pharmacology (Berl), 2002;161:47-53.
-
(2002)
Psycho Pharmacology (Berl)
, vol.161
, pp. 47-53
-
-
Williams, D.L.1
-
44
-
-
21044433027
-
Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections
-
Zheng H, et al: Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections. Am J Physiol Regul Integr Comp Physiol 2005;289: R247-R258.
-
(2005)
Am. J. Physiol. Regul Integr. Comp. Physiol.
, vol.289
-
-
Zheng, H.1
-
45
-
-
23844542825
-
Melanocortinergic modulation of cholecystokinin-induced suppression of feeding through extracellular signal-regulated kinase signaling in rat solitary nucleus
-
Sutton GM, et al: Melanocortinergic modulation of cholecystokinin-induced suppression of feeding through extracellular signal-regulated kinase signaling in rat solitary nucleus. Endocrinology 2005;146:3739-3747.
-
(2005)
Endocrinology
, vol.146
, pp. 3739-3747
-
-
Sutton, G.M.1
-
46
-
-
17044427583
-
Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: Regulation by cholecystokinin and opioids
-
Appleyard SM, et al: Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: regulation by cholecystokinin and opioids. J Neurosci 2005;25:3578-3585.
-
(2005)
J. Neurosci.
, vol.25
, pp. 3578-3585
-
-
Appleyard, S.M.1
-
47
-
-
1842560331
-
Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system
-
Fan W, et al: Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci 2004;7:335-336.
-
(2004)
Nat. Neurosci.
, vol.7
, pp. 335-336
-
-
Fan, W.1
-
48
-
-
65949084230
-
Phenotype of neurons in the nucleus of the solitary tract that express CCK-induced activation of the ERK signaling pathway
-
Babic T, et al: Phenotype of neurons in the nucleus of the solitary tract that express CCK-induced activation of the ERK signaling pathway. Am J Physiol Regul Integr Comp Physiol 2009;296: R845-R854.
-
(2009)
Am. J. Physiol. Regul Integr. Comp. Physiol.
, vol.296
-
-
Babic, T.1
-
49
-
-
8544257050
-
Extracellular signal-regulated kinase 1/2 signaling pathway in solitary nucleus mediates cholecystokinin-induced suppression of food intake in rats
-
Sutton GM, Patterson LM, Berthoud HR: Extracellular signal-regulated kinase 1/2 signaling pathway in solitary nucleus mediates cholecystokinin- induced suppression of food intake in rats. J Neurosci 2004;24:10240-10247.
-
(2004)
J. Neurosci.
, vol.24
, pp. 10240-10247
-
-
Sutton, G.M.1
Patterson, L.M.2
Berthoud, H.R.3
-
50
-
-
44949136337
-
Presynaptic melanocortin-4 receptors on vagal afferent fibers modulate the excitability of rat nucleus tractus solitarius neurons
-
Wa n S, et al: Presynaptic melanocortin-4 receptors on vagal afferent fibers modulate the excitability of rat nucleus tractus solitarius neurons. J Neurosci 2008;28:4957-4966.
-
(2008)
J. Neurosci.
, vol.28
, pp. 4957-4966
-
-
Wa, N.S.1
-
51
-
-
0034456725
-
The role of the dorsal vagal complex and the vagus nerve in feeding effects of melanocortin-3/4 receptor stimulation
-
Williams DL, Kaplan JM, Grill HJ: The role of the dorsal vagal complex and the vagus nerve in feeding effects of melanocortin-3/4 receptor stimulation. Endocrinology 2000;141:1332-1337.
-
(2000)
Endocrinology
, vol.141
, pp. 1332-1337
-
-
Williams, D.L.1
Kaplan, J.M.2
Grill, H.J.3
-
52
-
-
33745142241
-
Characterization of leptin-responsive neurons in the caudal brainstem
-
Ellacott KL, Halatchev IG, Cone RD: Characterization of leptin-responsive neurons in the caudal brainstem. Endocrinology 2006;147:3190-3195.
-
(2006)
Endocrinology
, vol.147
, pp. 3190-3195
-
-
Ellacott, K.L.1
Halatchev, I.G.2
Cone, R.D.3
-
53
-
-
63849112609
-
Hindbrain leptin stimulation induces anorexia and hyperthermia mediated by hindbrain melanocortin receptors
-
Skibicka K P, Grill HJ: Hindbrain leptin stimulation induces anorexia and hyperthermia mediated by hindbrain melanocortin receptors. Endocrinology 2009;150:1705-1711.
-
(2009)
Endocrinology
, vol.150
, pp. 1705-1711
-
-
Skibicka, K.P.1
Grill, H.J.2
-
54
-
-
14644429670
-
Leptin action in the forebrain regulates the hindbrain response to satiety signals
-
Morton GJ, et al: Leptin action in the forebrain regulates the hindbrain response to satiety signals. J Clin Invest 2005;115:703-710.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 703-710
-
-
Morton, G.J.1
-
55
-
-
0037733115
-
Arcuate nucleus-specific leptin receptor gene therapy attenuates the obesity phenotype of Koletsky (fa (k)/fa (k)) rats
-
Morton GJ, et al: Arcuate nucleus-specific leptin receptor gene therapy attenuates the obesity phenotype of Koletsky (fa (k)/fa (k)) rats. Endocrinology 2003;144:2016-2024.
-
(2003)
Endocrinology
, vol.144
, pp. 2016-2024
-
-
Morton, G.J.1
-
56
-
-
3042819531
-
Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size
-
Blevins JE, Schwartz MW, Baskin DG: Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am J Physiol Regul Integr Comp Physiol 2004;287: R87-R96.
-
(2004)
Am. J. Physiol. Regul Integr. Comp. Physiol.
, vol.287
-
-
Blevins, J.E.1
Schwartz, M.W.2
Baskin, D.G.3
-
57
-
-
0345283110
-
Oxytocin innervation of caudal brainstem nuclei activated by cholecystokinin
-
Blevins JE, et al: Oxytocin innervation of caudal brainstem nuclei activated by cholecystokinin. Brain Res 2003;993:30-41.
-
(2003)
Brain Res.
, vol.993
, pp. 30-41
-
-
Blevins, J.E.1
-
58
-
-
67649962153
-
Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit
-
Blouet C, et al: Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci 2009;29:8302-8311.
-
(2009)
J. Neurosci.
, vol.29
, pp. 8302-8311
-
-
Blouet, C.1
-
59
-
-
64149130097
-
Forebrain melanocortin signaling enhances the hindbrain satiety response to CCK-8
-
Blevins JE, et al: Forebrain melanocortin signaling enhances the hindbrain satiety response to CCK-8. Am J Physiol Regul Integr Comp Physiol 2009;296: R476-R484.
-
(2009)
Am. J. Physiol. Regul Integr. Comp. Physiol.
, vol.296
-
-
Blevins, J.E.1
|