메뉴 건너뛰기




Volumn 5, Issue 3, 2009, Pages 160-166

The role of transcriptional regulators in central control of appetite and body weight

Author keywords

Body weight homeostasis; Feeding; Melanocortin system; Obesity; Transcription factors

Indexed keywords

AGOUTI RELATED PROTEIN; ALPHA INTERMEDIN; HEPATOCYTE NUCLEAR FACTOR 4ALPHA; MELANOCORTIN; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; SIRTUIN 1; STAT3 PROTEIN; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR FKHR;

EID: 60749130864     PISSN: 17458366     EISSN: 17458374     Source Type: Journal    
DOI: 10.1038/ncpendmet1070     Document Type: Review
Times cited : (31)

References (70)
  • 1
    • 33748931457 scopus 로고    scopus 로고
    • Central nervous system control of food intake and body weight
    • Morton GJ et al. (2006) Central nervous system control of food intake and body weight. Nature 443: 289-295
    • (2006) Nature , vol.443 , pp. 289-295
    • Morton, G.J.1
  • 2
    • 33845572889 scopus 로고    scopus 로고
    • Studies on the physiological functions of the melanocortin system
    • Cone RD (2006) Studies on the physiological functions of the melanocortin system. Endocr Rev 27: 736-749
    • (2006) Endocr Rev , vol.27 , pp. 736-749
    • Cone, R.D.1
  • 3
    • 0030893647 scopus 로고    scopus 로고
    • Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice
    • Shutter JR et al. (1997) Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev 11: 593-602
    • (1997) Genes Dev , vol.11 , pp. 593-602
    • Shutter, J.R.1
  • 4
    • 0026702956 scopus 로고
    • Evidence that beta-endorphin is synthesized in cells in the nucleus tractus solitarius: Detection of POMC mRNA
    • Bronstein DM et al. (1992) Evidence that beta-endorphin is synthesized in cells in the nucleus tractus solitarius: detection of POMC mRNA. Brain Res 587: 269-275
    • (1992) Brain Res , vol.587 , pp. 269-275
    • Bronstein, D.M.1
  • 5
    • 0033180532 scopus 로고    scopus 로고
    • Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area
    • Elias CF et al. (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23: 775-786
    • (1999) Neuron , vol.23 , pp. 775-786
    • Elias, C.F.1
  • 6
    • 2942733252 scopus 로고    scopus 로고
    • Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis
    • Balthasar N et al. (2004) Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42: 983-991
    • (2004) Neuron , vol.42 , pp. 983-991
    • Balthasar, N.1
  • 7
    • 0033015188 scopus 로고    scopus 로고
    • Neuroendocrine regulation of food intake
    • Seeley RJ and Schwartz MW (1999) Neuroendocrine regulation of food intake. Acta Paediatr Suppl 88: 58-61
    • (1999) Acta Paediatr Suppl , vol.88 , pp. 58-61
    • Seeley, R.J.1    Schwartz, M.W.2
  • 8
    • 0033567543 scopus 로고    scopus 로고
    • Anatomy of an endogenous antagonist: Relationship between Agouti-related protein and proopiomelanocortin in brain
    • Bagnol D et al. (1999) Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J Neurosci 19: RC26
    • (1999) J Neurosci , vol.19
    • Bagnol, D.1
  • 9
    • 0030764741 scopus 로고    scopus 로고
    • Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein
    • Ollmann MM et al. (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278: 135-138
    • (1997) Science , vol.278 , pp. 135-138
    • Ollmann, M.M.1
  • 10
    • 0029706921 scopus 로고    scopus 로고
    • The melanocortin receptors: Agonists, antagonists, and the hormonal control of pigmentation
    • Cone RD et al. (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res 51: 287-318
    • (1996) Recent Prog Horm Res , vol.51 , pp. 287-318
    • Cone, R.D.1
  • 11
    • 0031662163 scopus 로고    scopus 로고
    • A frameshift mutation in human MC4R is associated with a dominant form of obesity
    • Vaisse C et al. (1998) A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 20: 113-114
    • (1998) Nat Genet , vol.20 , pp. 113-114
    • Vaisse, C.1
  • 12
    • 0030889192 scopus 로고    scopus 로고
    • Targeted disruption of the melanocortin-4 receptor results in obesity in mice
    • Huszar D et al. (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88: 131-141
    • (1997) Cell , vol.88 , pp. 131-141
    • Huszar, D.1
  • 13
    • 0343953074 scopus 로고    scopus 로고
    • Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency
    • Farooqi IS et al. (2000) Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 106: 271-279
    • (2000) J Clin Invest , vol.106 , pp. 271-279
    • Farooqi, I.S.1
  • 14
    • 0031668219 scopus 로고    scopus 로고
    • A frameshift mutation in MC4R associated with dominantly inherited human obesity
    • Yeo GS et al. (1998) A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 20: 111-112
    • (1998) Nat Genet , vol.20 , pp. 111-112
    • Yeo, G.S.1
  • 15
    • 0037341511 scopus 로고    scopus 로고
    • Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms
    • Yeo GS et al. (2003) Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms. Hum Mol Genet 12: 561-574
    • (2003) Hum Mol Genet , vol.12 , pp. 561-574
    • Yeo, G.S.1
  • 16
    • 27544450765 scopus 로고    scopus 로고
    • Divergence of melanocortin pathways in the control of food intake and energy expenditure
    • Balthasar N et al. (2005) Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123: 493-505
    • (2005) Cell , vol.123 , pp. 493-505
    • Balthasar, N.1
  • 17
    • 25144438002 scopus 로고    scopus 로고
    • Regulation of thermogenesis by the central melanocortin system
    • Fan W et al. (2005) Regulation of thermogenesis by the central melanocortin system. Peptides 26: 1800-1813
    • (2005) Peptides , vol.26 , pp. 1800-1813
    • Fan, W.1
  • 18
    • 0032436307 scopus 로고    scopus 로고
    • Leptin activates hypothalamic CART neurons projecting to the spinal cord
    • Elias CF et al. (1998) Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21: 1375-1385
    • (1998) Neuron , vol.21 , pp. 1375-1385
    • Elias, C.F.1
  • 19
    • 41549111593 scopus 로고    scopus 로고
    • Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion
    • van de Wall E et al. (2008) Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149: 1773-1785
    • (2008) Endocrinology , vol.149 , pp. 1773-1785
    • van de Wall, E.1
  • 20
    • 0038747134 scopus 로고    scopus 로고
    • Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin
    • Munzberg H et al. (2003) Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology 144: 2121-2131
    • (2003) Endocrinology , vol.144 , pp. 2121-2131
    • Munzberg, H.1
  • 21
    • 33646590947 scopus 로고    scopus 로고
    • Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake
    • Kitamura T et al. (2006) Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med 12: 534-540
    • (2006) Nat Med , vol.12 , pp. 534-540
    • Kitamura, T.1
  • 22
    • 0039425278 scopus 로고    scopus 로고
    • Negative regulation of the forkhead transcription factor FKHR by Akt
    • Tang ED et al. (1999) Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 274: 16741-16746
    • (1999) J Biol Chem , vol.274 , pp. 16741-16746
    • Tang, E.D.1
  • 23
    • 4544312844 scopus 로고    scopus 로고
    • Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins
    • Aoki M et al. (2004) Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc Natl Acad Sci USA 101: 13613-13617
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 13613-13617
    • Aoki, M.1
  • 24
    • 33745576798 scopus 로고    scopus 로고
    • Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis
    • Kim MS et al. (2006) Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nature Neurosci 9: 901-906
    • (2006) Nature Neurosci , vol.9 , pp. 901-906
    • Kim, M.S.1
  • 25
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver P et al. (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829-839
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1
  • 26
    • 47949104798 scopus 로고    scopus 로고
    • The role of exercise and PGC1α in inflammation and chronic disease
    • Handschin C and Spiegelman BM (2008) The role of exercise and PGC1α in inflammation and chronic disease. Nature 454: 463-469
    • (2008) Nature , vol.454 , pp. 463-469
    • Handschin, C.1    Spiegelman, B.M.2
  • 27
    • 0037102256 scopus 로고    scopus 로고
    • Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres
    • Lin J et al. (2002) Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418: 797-801
    • (2002) Nature , vol.418 , pp. 797-801
    • Lin, J.1
  • 28
    • 5344252327 scopus 로고    scopus 로고
    • Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
    • Lin J et al. (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119: 121-135
    • (2004) Cell , vol.119 , pp. 121-135
    • Lin, J.1
  • 29
    • 22144434964 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle
    • Arany Z et al. (2005) Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab 1: 259-271
    • (2005) Cell Metab , vol.1 , pp. 259-271
    • Arany, Z.1
  • 30
    • 0038187621 scopus 로고    scopus 로고
    • Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction
    • Puigserver P et al. (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423: 550-555
    • (2003) Nature , vol.423 , pp. 550-555
    • Puigserver, P.1
  • 31
    • 23944476164 scopus 로고    scopus 로고
    • Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α
    • Handschin C et al. (2005) Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α. Cell 122: 505-515
    • (2005) Cell , vol.122 , pp. 505-515
    • Handschin, C.1
  • 32
    • 0035855858 scopus 로고    scopus 로고
    • Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
    • Yoon JC et al. (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413: 131-138
    • (2001) Nature , vol.413 , pp. 131-138
    • Yoon, J.C.1
  • 33
    • 0034116143 scopus 로고    scopus 로고
    • A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen
    • Knutti D et al. (2000) A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol 20: 2411-2422
    • (2000) Mol Cell Biol , vol.20 , pp. 2411-2422
    • Knutti, D.1
  • 34
    • 0037610288 scopus 로고    scopus 로고
    • Molecular basis of skeletal muscle plasticity - from gene to form and function
    • Flück M and Hoppeler H (2003) Molecular basis of skeletal muscle plasticity - from gene to form and function. Rev Physiol Biochem Pharmacol 146: 159-216
    • (2003) Rev Physiol Biochem Pharmacol , vol.146 , pp. 159-216
    • Flück, M.1    Hoppeler, H.2
  • 35
    • 23944456384 scopus 로고    scopus 로고
    • Skeletal muscle hypertrophy and atrophy signaling pathways
    • Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37: 1974-1984
    • (2005) Int J Biochem Cell Biol , vol.37 , pp. 1974-1984
    • Glass, D.J.1
  • 36
    • 10744228606 scopus 로고    scopus 로고
    • Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle
    • Russell AP et al. (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52: 2874-2881
    • (2003) Diabetes , vol.52 , pp. 2874-2881
    • Russell, A.P.1
  • 37
    • 0037322888 scopus 로고    scopus 로고
    • Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle
    • Pilegaard H et al. (2003) Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 546: 851-858
    • (2003) J Physiol , vol.546 , pp. 851-858
    • Pilegaard, H.1
  • 38
    • 45149108625 scopus 로고    scopus 로고
    • Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake
    • Calvo JA et al. (2008) Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake. J Appl Physiol 104: 1304-1312
    • (2008) J Appl Physiol , vol.104 , pp. 1304-1312
    • Calvo, J.A.1
  • 39
    • 35648937073 scopus 로고    scopus 로고
    • Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals
    • Handschin C et al. (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282: 30014-30021
    • (2007) J Biol Chem , vol.282 , pp. 30014-30021
    • Handschin, C.1
  • 40
    • 33751400561 scopus 로고    scopus 로고
    • Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance
    • Vianna CR et al. (2006) Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance. Cell Metab 4: 453-464
    • (2006) Cell Metab , vol.4 , pp. 453-464
    • Vianna, C.R.1
  • 41
    • 21144446106 scopus 로고    scopus 로고
    • PGC-1α deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
    • Leone TC et al. (2005) PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3: e101
    • (2005) PLoS Biol , vol.3
    • Leone, T.C.1
  • 42
    • 0036152683 scopus 로고    scopus 로고
    • Interleukin-6-deficient mice develop mature-onset obesity
    • Wallenius V et al. (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8: 75-79
    • (2002) Nat Med , vol.8 , pp. 75-79
    • Wallenius, V.1
  • 43
    • 44749084540 scopus 로고    scopus 로고
    • Overexpression of Il6 leads to hyperinsulinaemia, liver inflammation and reduced body weight in mice
    • Franckhauser S et al. (2008) Overexpression of Il6 leads to hyperinsulinaemia, liver inflammation and reduced body weight in mice. Diabetologia 51: 1306-1316
    • (2008) Diabetologia , vol.51 , pp. 1306-1316
    • Franckhauser, S.1
  • 44
    • 36048931015 scopus 로고    scopus 로고
    • Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout-mice reveals skeletal muscle-pancreatic beta cell crosstalk
    • Handschin C et al. (2007) Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout-mice reveals skeletal muscle-pancreatic beta cell crosstalk. J Clin Invest 117: 3463-3474
    • (2007) J Clin Invest , vol.117 , pp. 3463-3474
    • Handschin, C.1
  • 45
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S et al. (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403: 795-800
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1
  • 46
    • 34249083199 scopus 로고    scopus 로고
    • Sirtuins in mammals: Insights into their biological function
    • Michan S and Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404: 1-13
    • (2007) Biochem J , vol.404 , pp. 1-13
    • Michan, S.1    Sinclair, D.2
  • 47
    • 0141814680 scopus 로고    scopus 로고
    • Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
    • Cheng HL et al. (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100: 10794-10799
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 10794-10799
    • Cheng, H.L.1
  • 48
    • 0035913911 scopus 로고    scopus 로고
    • Negative control of p53 by Sir2α promotes cell survival under stress
    • Luo J et al. (2001) Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107: 137-148
    • (2001) Cell , vol.107 , pp. 137-148
    • Luo, J.1
  • 49
    • 3042681042 scopus 로고    scopus 로고
    • Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ
    • Picard F et al. (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429: 771-776
    • (2004) Nature , vol.429 , pp. 771-776
    • Picard, F.1
  • 50
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
    • Rodgers JT et al. (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434: 113-118
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1
  • 51
    • 34247259630 scopus 로고    scopus 로고
    • Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
    • Gerhart-Hines Z et al. (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26: 1913-1923
    • (2007) EMBO J , vol.26 , pp. 1913-1923
    • Gerhart-Hines, Z.1
  • 52
    • 47549088250 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134: 329-340
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1
  • 53
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher G et al. (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317-328
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1
  • 54
    • 33746824192 scopus 로고    scopus 로고
    • Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction
    • Qin W et al. (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281: 21745-21754
    • (2006) J Biol Chem , vol.281 , pp. 21745-21754
    • Qin, W.1
  • 55
    • 34447308268 scopus 로고    scopus 로고
    • SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis
    • Kim D et al. (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 26: 3169-3179
    • (2007) EMBO J , vol.26 , pp. 3169-3179
    • Kim, D.1
  • 56
    • 4043165678 scopus 로고    scopus 로고
    • Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
    • Araki T et al. (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305: 1010-1013
    • (2004) Science , vol.305 , pp. 1010-1013
    • Araki, T.1
  • 57
    • 34547906123 scopus 로고    scopus 로고
    • Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1
    • Rodgers JT and Puigserver P (2007) Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA 104: 12861-12866
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 12861-12866
    • Rodgers, J.T.1    Puigserver, P.2
  • 58
    • 42349085704 scopus 로고    scopus 로고
    • Sirt1 contributes critically to the redox-dependent fate of neural progenitors
    • Prozorovski T et al. (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10: 385-394
    • (2008) Nat Cell Biol , vol.10 , pp. 385-394
    • Prozorovski, T.1
  • 59
    • 55749095213 scopus 로고    scopus 로고
    • Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation
    • Hisahara S et al. (2008) Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA 105: 15599-15604
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 15599-15604
    • Hisahara, S.1
  • 60
    • 0037207475 scopus 로고    scopus 로고
    • The mammalian SIR2α protein has a role in embryogenesis and gametogenesis
    • McBurney MW et al. (2003) The mammalian SIR2α protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 23: 38-54
    • (2003) Mol Cell Biol , vol.23 , pp. 38-54
    • McBurney, M.W.1
  • 61
    • 28844469898 scopus 로고    scopus 로고
    • Increase in activity during calorie restriction requires Sirt1
    • Chen D Steele et al. (2005) Increase in activity during calorie restriction requires Sirt1. Science 310: 1641
    • (2005) Science , vol.310 , pp. 1641
    • Chen, S.D.1
  • 62
    • 33244486764 scopus 로고    scopus 로고
    • Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
    • Bordone L et al. (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 4: e31
    • (2006) PLoS Biol , vol.4
    • Bordone, L.1
  • 63
    • 45549096918 scopus 로고    scopus 로고
    • SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons
    • Li Y et al. (2008) SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8: 38-48
    • (2008) Cell Metab , vol.8 , pp. 38-48
    • Li, Y.1
  • 64
    • 54049158932 scopus 로고    scopus 로고
    • Brain SIRT1: Anatomical distribution and regulation by energy availability
    • Ramadori G et al. (2008) Brain SIRT1: anatomical distribution and regulation by energy availability. J Neurosci 28: 9989-9996
    • (2008) J Neurosci , vol.28 , pp. 9989-9996
    • Ramadori, G.1
  • 65
    • 33646582664 scopus 로고    scopus 로고
    • Hypothalamic mTOR signaling regulates food intake
    • Cota D et al. (2006) Hypothalamic mTOR signaling regulates food intake. Science 312: 927-930
    • (2006) Science , vol.312 , pp. 927-930
    • Cota, D.1
  • 66
    • 1842484296 scopus 로고    scopus 로고
    • AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus
    • Minokoshi Y et al. (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428: 569-574
    • (2004) Nature , vol.428 , pp. 569-574
    • Minokoshi, Y.1
  • 67
    • 34547651092 scopus 로고    scopus 로고
    • AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons
    • Claret M et al. (2007) AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest 117: 2325-2336
    • (2007) J Clin Invest , vol.117 , pp. 2325-2336
    • Claret, M.1
  • 68
    • 33751072349 scopus 로고    scopus 로고
    • Resveratrol improves health and survival of mice on a high-calorie diet
    • Baur JA et al. (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444: 337-342
    • (2006) Nature , vol.444 , pp. 337-342
    • Baur, J.A.1
  • 69
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
    • Lagouge M et al. (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127: 1109-1122
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1
  • 70
    • 36749087548 scopus 로고    scopus 로고
    • Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
    • Milne JC et al. (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450: 712-716
    • (2007) Nature , vol.450 , pp. 712-716
    • Milne, J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.