-
1
-
-
33748931457
-
Central nervous system control of food intake and body weight
-
Morton GJ et al. (2006) Central nervous system control of food intake and body weight. Nature 443: 289-295
-
(2006)
Nature
, vol.443
, pp. 289-295
-
-
Morton, G.J.1
-
2
-
-
33845572889
-
Studies on the physiological functions of the melanocortin system
-
Cone RD (2006) Studies on the physiological functions of the melanocortin system. Endocr Rev 27: 736-749
-
(2006)
Endocr Rev
, vol.27
, pp. 736-749
-
-
Cone, R.D.1
-
3
-
-
0030893647
-
Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice
-
Shutter JR et al. (1997) Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev 11: 593-602
-
(1997)
Genes Dev
, vol.11
, pp. 593-602
-
-
Shutter, J.R.1
-
4
-
-
0026702956
-
Evidence that beta-endorphin is synthesized in cells in the nucleus tractus solitarius: Detection of POMC mRNA
-
Bronstein DM et al. (1992) Evidence that beta-endorphin is synthesized in cells in the nucleus tractus solitarius: detection of POMC mRNA. Brain Res 587: 269-275
-
(1992)
Brain Res
, vol.587
, pp. 269-275
-
-
Bronstein, D.M.1
-
5
-
-
0033180532
-
Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area
-
Elias CF et al. (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23: 775-786
-
(1999)
Neuron
, vol.23
, pp. 775-786
-
-
Elias, C.F.1
-
6
-
-
2942733252
-
Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis
-
Balthasar N et al. (2004) Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42: 983-991
-
(2004)
Neuron
, vol.42
, pp. 983-991
-
-
Balthasar, N.1
-
8
-
-
0033567543
-
Anatomy of an endogenous antagonist: Relationship between Agouti-related protein and proopiomelanocortin in brain
-
Bagnol D et al. (1999) Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J Neurosci 19: RC26
-
(1999)
J Neurosci
, vol.19
-
-
Bagnol, D.1
-
9
-
-
0030764741
-
Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein
-
Ollmann MM et al. (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278: 135-138
-
(1997)
Science
, vol.278
, pp. 135-138
-
-
Ollmann, M.M.1
-
10
-
-
0029706921
-
The melanocortin receptors: Agonists, antagonists, and the hormonal control of pigmentation
-
Cone RD et al. (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res 51: 287-318
-
(1996)
Recent Prog Horm Res
, vol.51
, pp. 287-318
-
-
Cone, R.D.1
-
11
-
-
0031662163
-
A frameshift mutation in human MC4R is associated with a dominant form of obesity
-
Vaisse C et al. (1998) A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 20: 113-114
-
(1998)
Nat Genet
, vol.20
, pp. 113-114
-
-
Vaisse, C.1
-
12
-
-
0030889192
-
Targeted disruption of the melanocortin-4 receptor results in obesity in mice
-
Huszar D et al. (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88: 131-141
-
(1997)
Cell
, vol.88
, pp. 131-141
-
-
Huszar, D.1
-
13
-
-
0343953074
-
Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency
-
Farooqi IS et al. (2000) Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 106: 271-279
-
(2000)
J Clin Invest
, vol.106
, pp. 271-279
-
-
Farooqi, I.S.1
-
14
-
-
0031668219
-
A frameshift mutation in MC4R associated with dominantly inherited human obesity
-
Yeo GS et al. (1998) A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 20: 111-112
-
(1998)
Nat Genet
, vol.20
, pp. 111-112
-
-
Yeo, G.S.1
-
15
-
-
0037341511
-
Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms
-
Yeo GS et al. (2003) Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms. Hum Mol Genet 12: 561-574
-
(2003)
Hum Mol Genet
, vol.12
, pp. 561-574
-
-
Yeo, G.S.1
-
16
-
-
27544450765
-
Divergence of melanocortin pathways in the control of food intake and energy expenditure
-
Balthasar N et al. (2005) Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123: 493-505
-
(2005)
Cell
, vol.123
, pp. 493-505
-
-
Balthasar, N.1
-
17
-
-
25144438002
-
Regulation of thermogenesis by the central melanocortin system
-
Fan W et al. (2005) Regulation of thermogenesis by the central melanocortin system. Peptides 26: 1800-1813
-
(2005)
Peptides
, vol.26
, pp. 1800-1813
-
-
Fan, W.1
-
18
-
-
0032436307
-
Leptin activates hypothalamic CART neurons projecting to the spinal cord
-
Elias CF et al. (1998) Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21: 1375-1385
-
(1998)
Neuron
, vol.21
, pp. 1375-1385
-
-
Elias, C.F.1
-
19
-
-
41549111593
-
Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion
-
van de Wall E et al. (2008) Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149: 1773-1785
-
(2008)
Endocrinology
, vol.149
, pp. 1773-1785
-
-
van de Wall, E.1
-
20
-
-
0038747134
-
Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin
-
Munzberg H et al. (2003) Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology 144: 2121-2131
-
(2003)
Endocrinology
, vol.144
, pp. 2121-2131
-
-
Munzberg, H.1
-
21
-
-
33646590947
-
Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake
-
Kitamura T et al. (2006) Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med 12: 534-540
-
(2006)
Nat Med
, vol.12
, pp. 534-540
-
-
Kitamura, T.1
-
22
-
-
0039425278
-
Negative regulation of the forkhead transcription factor FKHR by Akt
-
Tang ED et al. (1999) Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 274: 16741-16746
-
(1999)
J Biol Chem
, vol.274
, pp. 16741-16746
-
-
Tang, E.D.1
-
23
-
-
4544312844
-
Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins
-
Aoki M et al. (2004) Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc Natl Acad Sci USA 101: 13613-13617
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 13613-13617
-
-
Aoki, M.1
-
24
-
-
33745576798
-
Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis
-
Kim MS et al. (2006) Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nature Neurosci 9: 901-906
-
(2006)
Nature Neurosci
, vol.9
, pp. 901-906
-
-
Kim, M.S.1
-
25
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver P et al. (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829-839
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
-
26
-
-
47949104798
-
The role of exercise and PGC1α in inflammation and chronic disease
-
Handschin C and Spiegelman BM (2008) The role of exercise and PGC1α in inflammation and chronic disease. Nature 454: 463-469
-
(2008)
Nature
, vol.454
, pp. 463-469
-
-
Handschin, C.1
Spiegelman, B.M.2
-
27
-
-
0037102256
-
Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres
-
Lin J et al. (2002) Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418: 797-801
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
-
28
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
-
Lin J et al. (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119: 121-135
-
(2004)
Cell
, vol.119
, pp. 121-135
-
-
Lin, J.1
-
29
-
-
22144434964
-
Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle
-
Arany Z et al. (2005) Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab 1: 259-271
-
(2005)
Cell Metab
, vol.1
, pp. 259-271
-
-
Arany, Z.1
-
30
-
-
0038187621
-
Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction
-
Puigserver P et al. (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423: 550-555
-
(2003)
Nature
, vol.423
, pp. 550-555
-
-
Puigserver, P.1
-
31
-
-
23944476164
-
Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α
-
Handschin C et al. (2005) Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α. Cell 122: 505-515
-
(2005)
Cell
, vol.122
, pp. 505-515
-
-
Handschin, C.1
-
32
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
-
Yoon JC et al. (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413: 131-138
-
(2001)
Nature
, vol.413
, pp. 131-138
-
-
Yoon, J.C.1
-
33
-
-
0034116143
-
A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen
-
Knutti D et al. (2000) A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol 20: 2411-2422
-
(2000)
Mol Cell Biol
, vol.20
, pp. 2411-2422
-
-
Knutti, D.1
-
34
-
-
0037610288
-
Molecular basis of skeletal muscle plasticity - from gene to form and function
-
Flück M and Hoppeler H (2003) Molecular basis of skeletal muscle plasticity - from gene to form and function. Rev Physiol Biochem Pharmacol 146: 159-216
-
(2003)
Rev Physiol Biochem Pharmacol
, vol.146
, pp. 159-216
-
-
Flück, M.1
Hoppeler, H.2
-
35
-
-
23944456384
-
Skeletal muscle hypertrophy and atrophy signaling pathways
-
Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37: 1974-1984
-
(2005)
Int J Biochem Cell Biol
, vol.37
, pp. 1974-1984
-
-
Glass, D.J.1
-
36
-
-
10744228606
-
Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle
-
Russell AP et al. (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52: 2874-2881
-
(2003)
Diabetes
, vol.52
, pp. 2874-2881
-
-
Russell, A.P.1
-
37
-
-
0037322888
-
Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle
-
Pilegaard H et al. (2003) Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 546: 851-858
-
(2003)
J Physiol
, vol.546
, pp. 851-858
-
-
Pilegaard, H.1
-
38
-
-
45149108625
-
Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake
-
Calvo JA et al. (2008) Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake. J Appl Physiol 104: 1304-1312
-
(2008)
J Appl Physiol
, vol.104
, pp. 1304-1312
-
-
Calvo, J.A.1
-
39
-
-
35648937073
-
Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals
-
Handschin C et al. (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282: 30014-30021
-
(2007)
J Biol Chem
, vol.282
, pp. 30014-30021
-
-
Handschin, C.1
-
40
-
-
33751400561
-
Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance
-
Vianna CR et al. (2006) Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance. Cell Metab 4: 453-464
-
(2006)
Cell Metab
, vol.4
, pp. 453-464
-
-
Vianna, C.R.1
-
41
-
-
21144446106
-
PGC-1α deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
-
Leone TC et al. (2005) PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3: e101
-
(2005)
PLoS Biol
, vol.3
-
-
Leone, T.C.1
-
42
-
-
0036152683
-
Interleukin-6-deficient mice develop mature-onset obesity
-
Wallenius V et al. (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8: 75-79
-
(2002)
Nat Med
, vol.8
, pp. 75-79
-
-
Wallenius, V.1
-
43
-
-
44749084540
-
Overexpression of Il6 leads to hyperinsulinaemia, liver inflammation and reduced body weight in mice
-
Franckhauser S et al. (2008) Overexpression of Il6 leads to hyperinsulinaemia, liver inflammation and reduced body weight in mice. Diabetologia 51: 1306-1316
-
(2008)
Diabetologia
, vol.51
, pp. 1306-1316
-
-
Franckhauser, S.1
-
44
-
-
36048931015
-
Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout-mice reveals skeletal muscle-pancreatic beta cell crosstalk
-
Handschin C et al. (2007) Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout-mice reveals skeletal muscle-pancreatic beta cell crosstalk. J Clin Invest 117: 3463-3474
-
(2007)
J Clin Invest
, vol.117
, pp. 3463-3474
-
-
Handschin, C.1
-
45
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
Imai S et al. (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403: 795-800
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
-
46
-
-
34249083199
-
Sirtuins in mammals: Insights into their biological function
-
Michan S and Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404: 1-13
-
(2007)
Biochem J
, vol.404
, pp. 1-13
-
-
Michan, S.1
Sinclair, D.2
-
47
-
-
0141814680
-
Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
-
Cheng HL et al. (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100: 10794-10799
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 10794-10799
-
-
Cheng, H.L.1
-
48
-
-
0035913911
-
Negative control of p53 by Sir2α promotes cell survival under stress
-
Luo J et al. (2001) Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107: 137-148
-
(2001)
Cell
, vol.107
, pp. 137-148
-
-
Luo, J.1
-
49
-
-
3042681042
-
Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ
-
Picard F et al. (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429: 771-776
-
(2004)
Nature
, vol.429
, pp. 771-776
-
-
Picard, F.1
-
50
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
-
Rodgers JT et al. (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434: 113-118
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
-
51
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
-
Gerhart-Hines Z et al. (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26: 1913-1923
-
(2007)
EMBO J
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
-
52
-
-
47549088250
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134: 329-340
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
53
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G et al. (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317-328
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
-
54
-
-
33746824192
-
Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction
-
Qin W et al. (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281: 21745-21754
-
(2006)
J Biol Chem
, vol.281
, pp. 21745-21754
-
-
Qin, W.1
-
55
-
-
34447308268
-
SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis
-
Kim D et al. (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 26: 3169-3179
-
(2007)
EMBO J
, vol.26
, pp. 3169-3179
-
-
Kim, D.1
-
56
-
-
4043165678
-
Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
-
Araki T et al. (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305: 1010-1013
-
(2004)
Science
, vol.305
, pp. 1010-1013
-
-
Araki, T.1
-
57
-
-
34547906123
-
Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1
-
Rodgers JT and Puigserver P (2007) Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA 104: 12861-12866
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 12861-12866
-
-
Rodgers, J.T.1
Puigserver, P.2
-
58
-
-
42349085704
-
Sirt1 contributes critically to the redox-dependent fate of neural progenitors
-
Prozorovski T et al. (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10: 385-394
-
(2008)
Nat Cell Biol
, vol.10
, pp. 385-394
-
-
Prozorovski, T.1
-
59
-
-
55749095213
-
Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation
-
Hisahara S et al. (2008) Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA 105: 15599-15604
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 15599-15604
-
-
Hisahara, S.1
-
60
-
-
0037207475
-
The mammalian SIR2α protein has a role in embryogenesis and gametogenesis
-
McBurney MW et al. (2003) The mammalian SIR2α protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 23: 38-54
-
(2003)
Mol Cell Biol
, vol.23
, pp. 38-54
-
-
McBurney, M.W.1
-
61
-
-
28844469898
-
Increase in activity during calorie restriction requires Sirt1
-
Chen D Steele et al. (2005) Increase in activity during calorie restriction requires Sirt1. Science 310: 1641
-
(2005)
Science
, vol.310
, pp. 1641
-
-
Chen, S.D.1
-
62
-
-
33244486764
-
Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
-
Bordone L et al. (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 4: e31
-
(2006)
PLoS Biol
, vol.4
-
-
Bordone, L.1
-
63
-
-
45549096918
-
SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons
-
Li Y et al. (2008) SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8: 38-48
-
(2008)
Cell Metab
, vol.8
, pp. 38-48
-
-
Li, Y.1
-
64
-
-
54049158932
-
Brain SIRT1: Anatomical distribution and regulation by energy availability
-
Ramadori G et al. (2008) Brain SIRT1: anatomical distribution and regulation by energy availability. J Neurosci 28: 9989-9996
-
(2008)
J Neurosci
, vol.28
, pp. 9989-9996
-
-
Ramadori, G.1
-
65
-
-
33646582664
-
Hypothalamic mTOR signaling regulates food intake
-
Cota D et al. (2006) Hypothalamic mTOR signaling regulates food intake. Science 312: 927-930
-
(2006)
Science
, vol.312
, pp. 927-930
-
-
Cota, D.1
-
66
-
-
1842484296
-
AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus
-
Minokoshi Y et al. (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428: 569-574
-
(2004)
Nature
, vol.428
, pp. 569-574
-
-
Minokoshi, Y.1
-
67
-
-
34547651092
-
AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons
-
Claret M et al. (2007) AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest 117: 2325-2336
-
(2007)
J Clin Invest
, vol.117
, pp. 2325-2336
-
-
Claret, M.1
-
68
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Baur JA et al. (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444: 337-342
-
(2006)
Nature
, vol.444
, pp. 337-342
-
-
Baur, J.A.1
-
69
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
-
Lagouge M et al. (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127: 1109-1122
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
-
70
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne JC et al. (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450: 712-716
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
|