-
1
-
-
84874900503
-
Biochemistry and pathophysiology of intravascular and intracellular lipolysis
-
Young, S. G., and R. Zechner. 2013. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 27: 459-484.
-
(2013)
Genes Dev.
, vol.27
, pp. 459-484
-
-
Young, S.G.1
Zechner, R.2
-
2
-
-
74949084316
-
Membrane fatty acid transporters as regulators of lipid metabolism: Implications for metabolic disease
-
Glatz, J. F., J. J. Luiken, and A. Bonen. 2010. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol. Rev. 90: 367-417.
-
(2010)
Physiol. Rev.
, vol.90
, pp. 367-417
-
-
Glatz, J.F.1
Luiken, J.J.2
Bonen, A.3
-
3
-
-
66949160825
-
Lipid droplets at a glance
-
Guo, Y., K. R. Cordes, R. V. Farese, Jr., and T. C. Walther. 2009.Lipid droplets at a glance. J. Cell Sci. 122: 749-752.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 749-752
-
-
Guo, Y.1
Cordes, K.R.2
Farese, R.V.3
Walther, T.C.4
-
4
-
-
84905175079
-
Energy metabolism in the liver
-
Rui, L. 2014. Energy metabolism in the liver. Compr. Physiol. 4: 177-197.
-
(2014)
Compr. Physiol.
, vol.4
, pp. 177-197
-
-
Rui, L.1
-
5
-
-
34248581989
-
Disordered lipid metabolism and the pathogenesis of insulin resistance
-
Savage, D. B., K. F. Petersen, and G. I. Shulman. 2007. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 87: 507-520.
-
(2007)
Physiol. Rev.
, vol.87
, pp. 507-520
-
-
Savage, D.B.1
Petersen, K.F.2
Shulman, G.I.3
-
7
-
-
0036217052
-
Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes
-
Lewis, G. F., A. Carpentier, K. Adeli, and A. Giacca. 2002.Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr. Rev. 23: 201-229.
-
(2002)
Endocr. Rev.
, vol.23
, pp. 201-229
-
-
Lewis, G.F.1
Carpentier, A.2
Adeli, K.3
Giacca, A.4
-
8
-
-
0345374579
-
Minireview: Weapons of lean body mass destruction: The role of ectopic lipids in the metabolic syndrome
-
Unger, R. H. 2003. Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology. 144: 5159-5165.
-
(2003)
Endocrinology
, vol.144
, pp. 5159-5165
-
-
Unger, R.H.1
-
9
-
-
84870542800
-
Mechanisms of lipotoxicity in the cardiovascular system
-
Wende, A. R., J. D. Symons, and E. D. Abel. 2012. Mechanisms of lipotoxicity in the cardiovascular system. Curr. Hypertens. Rep. 14: 517-531.
-
(2012)
Curr. Hypertens. Rep.
, vol.14
, pp. 517-531
-
-
Wende, A.R.1
Symons, J.D.2
Abel, E.D.3
-
10
-
-
84861873152
-
Lipid metabolism in skeletal muscle: Generation of adaptive and maladaptive intracellular signals for cellular function
-
Watt, M. J., and A. J. Hoy. 2012. Lipid metabolism in skeletal muscle: generation of adaptive and maladaptive intracellular signals for cellular function. Am. J. Physiol. Endocrinol. Metab. 302: E1315-E1328.
-
(2012)
Am. J. Physiol. Endocrinol. Metab.
, vol.302
, pp. E1315-E1328
-
-
Watt, M.J.1
Hoy, A.J.2
-
12
-
-
0035061419
-
A novel mouse model of lipotoxic cardiomyopathy
-
Chiu, H. C., A. Kovacs, D. A. Ford, F. F. Hsu, R. Garcia, P. Herrero, J. E. Saffitz, and J. E. Schaffer. 2001. A novel mouse model of lipotoxic cardiomyopathy. J. Clin. Invest. 107: 813-822.
-
(2001)
J. Clin. Invest.
, vol.107
, pp. 813-822
-
-
Chiu, H.C.1
Kovacs, A.2
Ford, D.A.3
Hsu, F.F.4
Garcia, R.5
Herrero, P.6
Saffitz, J.E.7
Schaffer, J.E.8
-
13
-
-
49649084031
-
Initiation and execution of lipotoxic ER stress in pancreatic beta-cells
-
Cunha, D. A., P. Hekerman, L. Ladriere, A. Bazarra-Castro, F. Ortis, M. C. Wakeham, F. Moore, J. Rasschaert, A. K. Cardozo, E. Bellomo, et al. 2008. Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J. Cell Sci. 121: 2308-2318.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 2308-2318
-
-
Cunha, D.A.1
Hekerman, P.2
Ladriere, L.3
Bazarra-Castro, A.4
Ortis, F.5
Wakeham, M.C.6
Moore, F.7
Rasschaert, J.8
Cardozo, A.K.9
Bellomo, E.10
-
14
-
-
84857687489
-
Linking mitochondrial bioenergetics to insulin resistance via redox biology
-
Fisher-Wellman, K. H., and P. D. Neufer. 2012. Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol. Metab. 23: 142-153.
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 142-153
-
-
Fisher-Wellman, K.H.1
Neufer, P.D.2
-
15
-
-
85030434746
-
Increased oxidative stress in obesity and its impact on metabolic syndrome
-
Furukawa, S., T. Fujita, M. Shimabukuro, M. Iwaki, Y. Yamada, Y. Nakajima, O. Nakayama, M. Makishima, M. Matsuda, and I. Shimomura. 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114: 1752-1761.
-
(2004)
J. Clin. Invest.
, vol.114
, pp. 1752-1761
-
-
Furukawa, S.1
Fujita, T.2
Shimabukuro, M.3
Iwaki, M.4
Yamada, Y.5
Nakajima, Y.6
Nakayama, O.7
Makishima, M.8
Matsuda, M.9
Shimomura, I.10
-
16
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh, R., S. Kaushik, Y. Wang, Y. Xiang, I. Novak, M. Komatsu, K. Tanaka, A. M. Cuervo, and M. J. Czaja. 2009. Autophagy regulates lipid metabolism. Nature. 458: 1131-1135.
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
Tanaka, K.7
Cuervo, A.M.8
Czaja, M.J.9
-
17
-
-
73949124173
-
Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis
-
Zhang, Y., S. Goldman, R. Baerga, Y. Zhao, M. Komatsu, and S. Jin.2009. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl. Acad. Sci. USA. 106: 19860-19865.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 19860-19865
-
-
Zhang, Y.1
Goldman, S.2
Baerga, R.3
Zhao, Y.4
Komatsu, M.5
Jin, S.6
-
18
-
-
63349104160
-
The MAP1-LC3 conjugation system is involved in lipid droplet formation
-
Shibata, M., K. Yoshimura, N. Furuya, M. Koike, T. Ueno, M. Komatsu, H. Arai, K. Tanaka, E. Kominami, and Y. Uchiyama.2009. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem. Biophys. Res. Commun. 382: 419-423.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.382
, pp. 419-423
-
-
Shibata, M.1
Yoshimura, K.2
Furuya, N.3
Koike, M.4
Ueno, T.5
Komatsu, M.6
Arai, H.7
Tanaka, K.8
Kominami, E.9
Uchiyama, Y.10
-
19
-
-
77956400005
-
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
-
Yang, L., P. Li, S. Fu, E. S. Calay, and G. S. Hotamisligil. 2010.Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11: 467-478.
-
(2010)
Cell Metab.
, vol.11
, pp. 467-478
-
-
Yang, L.1
Li, P.2
Fu, S.3
Calay, E.S.4
Hotamisligil, G.S.5
-
20
-
-
84872057896
-
Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
-
Kim, K. H., Y. T. Jeong, H. Oh, S. H. Kim, J. M. Cho, Y-N. Kim, S. S. Kim, D. H. Kim, K. Y. Hur, H. K. Kim, et al. 2013. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19: 83-92.
-
(2013)
Nat. Med.
, vol.19
, pp. 83-92
-
-
Kim, K.H.1
Jeong, Y.T.2
Oh, H.3
Kim, S.H.4
Cho, J.M.5
Kim, Y.-N.6
Kim, S.S.7
Kim, D.H.8
Hur, K.Y.9
Kim, H.K.10
-
21
-
-
84887849242
-
Defective regulation of adipose tissue autophagy in obesity
-
Nuñez, C. E., V. S. Rodrigues, F. S. Gomes, R. F. de Moura, S. C. Victorio, B. Bombassaro, E. A. Chaim, J. C. Pareja, B. Geloneze, L. A. Velloso, et al. 2013. Defective regulation of adipose tissue autophagy in obesity. Int. J. Obes. (Lond). 37: 1473-1480.
-
(2013)
Int. J. Obes.(Lond)
, vol.37
, pp. 1473-1480
-
-
Nuñez, C.E.1
Rodrigues, V.S.2
Gomes, F.S.3
De Moura, R.F.4
Victorio, S.C.5
Bombassaro, B.6
Chaim, E.A.7
Pareja, J.C.8
Geloneze, B.9
Velloso, L.A.10
Et, A.11
-
22
-
-
84920000938
-
Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during highfat diet feeding in mice
-
Liu, Y., R. Palanivel, E. Rai, M. Park, T. V. Gabor, M. P. Scheid, A. Xu, and G. Sweeney. 2015. Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during highfat diet feeding in mice. Diabetes. 64: 36-48.
-
(2015)
Diabetes
, vol.64
, pp. 36-48
-
-
Liu, Y.1
Palanivel, R.2
Rai, E.3
Park, M.4
Gabor, T.V.5
Scheid, M.P.6
Xu, A.7
Sweeney, G.8
-
23
-
-
84870415840
-
Lipids and lysosomes
-
Hamer, I., G. Van Beersel, T. Arnould, and M. Jadot. 2012. Lipids and lysosomes. Curr. Drug Metab. 13: 1371-1387.
-
(2012)
Curr. Drug Metab.
, vol.13
, pp. 1371-1387
-
-
Hamer, I.1
Van Beersel, G.2
Arnould, T.3
Jadot, M.4
-
24
-
-
77951924919
-
Lysosomal degradation of membrane lipids
-
Kolter, T., and K. Sandhoff. 2010. Lysosomal degradation of membrane lipids. FEBS Lett. 584: 1700-1712.
-
(2010)
FEBS Lett.
, vol.584
, pp. 1700-1712
-
-
Kolter, T.1
Sandhoff, K.2
-
25
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine, B., and G. Kroemer. 2008. Autophagy in the pathogenesis of disease. Cell. 132: 27-42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
26
-
-
84864318195
-
Chaperone-mediated autophagy: A unique way to enter the lysosome world
-
Kaushik, S., and A. M. Cuervo. 2012. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22: 407-417.
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 407-417
-
-
Kaushik, S.1
Cuervo, A.M.2
-
27
-
-
84859161154
-
Microautophagy: Lesser-known self-eating
-
Li, W. W., J. Li, and J. K. Bao. 2012. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69: 1125-1136.
-
(2012)
Cell. Mol. Life Sci.
, vol.69
, pp. 1125-1136
-
-
Li, W.W.1
Li, J.2
Bao, J.K.3
-
28
-
-
79959415069
-
Biogenesis and cargo selectivity of autophagosomes
-
Weidberg, H., E. Shvets, and Z. Elazar. 2011. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 80: 125-156.
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 125-156
-
-
Weidberg, H.1
Shvets, E.2
Elazar, Z.3
-
29
-
-
0033791650
-
Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells
-
Kim, J., and D. J. Klionsky. 2000. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu. Rev. Biochem. 69: 303-342.
-
(2000)
Annu. Rev. Biochem.
, vol.69
, pp. 303-342
-
-
Kim, J.1
Klionsky, D.J.2
-
30
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa, N., T. Hara, T. Kaizuka, C. Kishi, A. Takamura, Y. Miura, S. Iemura, T. Natsume, K. Takehana, N. Yamada, et al.2009. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell. 20: 1981-1991.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
Iemura, S.7
Natsume, T.8
Takehana, K.9
Yamada, N.10
-
31
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung, C. H., C. B. Jun, S. H. Ro, Y. M. Kim, N. M. Otto, J. Cao, M. Kundu, and D. H. Kim. 2009. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell. 20: 1992-2003.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
Cao, J.6
Kundu, M.7
Kim, D.H.8
-
32
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim, J., M. Kundu, B. Viollet, and K. L. Guan. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13: 132-141.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
33
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
Russell, R. C., Y. Tian, H. Yuan, H. W. Park, Y. Y. Chang, J. Kim, H. Kim, T. P. Neufeld, A. Dillin, and K. L. Guan. 2013. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15: 741-750.
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 741-750
-
-
Russell, R.C.1
Tian, Y.2
Yuan, H.3
Park, H.W.4
Chang, Y.Y.5
Kim, J.6
Kim, H.7
Neufeld, T.P.8
Dillin, A.9
Guan, K.L.10
-
34
-
-
84869508398
-
Autophagy, signaling and obesity
-
Lavallard, V. J., A. J. Meijer, P. Codogno, and P. Gual. 2012.Autophagy, signaling and obesity. Pharmacol. Res. 66: 513-525.
-
(2012)
Pharmacol. Res
, vol.66
, pp. 513-525
-
-
Lavallard, V.J.1
Meijer, A.J.2
Codogno, P.3
Gual, P.4
-
35
-
-
34548259958
-
P62/ SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv, S., T. H. Clausen, T. Lamark, A. Brech, J. A. Bruun, H. Outzen, A. Overvatn, G. Bjorkoy, and T. Johansen. 2007. p62/ SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282: 24131-24145.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
Overvatn, A.7
Bjorkoy, G.8
Johansen, T.9
-
36
-
-
77951464621
-
Autophagy in health and disease 2. Regulation of lipid metabolism and storage by autophagy: Pathophysiological implications
-
Czaja, M. J. 2010. Autophagy in health and disease. 2. Regulation of lipid metabolism and storage by autophagy: pathophysiological implications. Am. J. Physiol. Cell Physiol. 298: C973-C978.
-
(2010)
Am. J. Physiol. Cell Physiol.
, Issue.298
, pp. C973-C978
-
-
Czaja, M.J.1
-
37
-
-
84930182353
-
Degradation of lipid dropletassociated proteins by chaperone-mediated autophagy facilitates lipolysis
-
Kaushik, S., and A. M. Cuervo. 2015. Degradation of lipid dropletassociated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17: 759-770.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 759-770
-
-
Kaushik, S.1
Cuervo, A.M.2
-
38
-
-
84883028352
-
Beta-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation
-
Lizaso, A., K. T. Tan, and Y. H. Lee. 2013. beta-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation. Autophagy. 9: 1228-1243.
-
(2013)
Autophagy
, vol.9
, pp. 1228-1243
-
-
Lizaso, A.1
Tan, K.T.2
Lee, Y.H.3
-
39
-
-
84929606449
-
The small GTPase Rab7 as a central regulator of hepatocellular lipophagy
-
Schroeder, B., R. J. Schulze, S. G. Weller, A. C. Sletten, C. A. Casey, and M. A. McNiven. 2015. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology. 61: 1896-1907.
-
(2015)
Hepatology
, vol.61
, pp. 1896-1907
-
-
Schroeder, B.1
Schulze, R.J.2
Weller, S.G.3
Sletten, A.C.4
Casey, C.A.5
McNiven, M.A.6
-
40
-
-
84878606239
-
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
-
Settembre, C., R. De Cegli, G. Mansueto, P. K. Saha, F. Vetrini, O. Visvikis, T. Huynh, A. Carissimo, D. Palmer, T. J. Klisch, et al. 2013.TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15: 647-658.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 647-658
-
-
Settembre, C.1
De Cegli, R.2
Mansueto, G.3
Saha, P.K.4
Vetrini, F.5
Visvikis, O.6
Huynh, T.7
Carissimo, A.8
Palmer, D.9
Klisch, T.J.10
-
41
-
-
84922968506
-
Transcriptional regulation of autophagy by an FXR-CREB axis
-
Seok, S., T. Fu, S. E. Choi, Y. Li, R. Zhu, S. Kumar, X. Sun, G. Yoon, Y. Kang, W. Zhong, et al. 2014. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature. 516: 108-111.
-
(2014)
Nature
, vol.516
, pp. 108-111
-
-
Seok, S.1
Fu, T.2
Choi, S.E.3
Li, Y.4
Zhu, R.5
Kumar, S.6
Sun, X.7
Yoon, G.8
Kang, Y.9
Zhong, W.10
-
42
-
-
84887447290
-
FoxO1 controls lysosomal acid lipase in adipocytes: Implication of lipophagy during nutrient restriction and metformin treatment
-
Lettieri Barbato, D., G. Tatulli, K. Aquilano, and M. R. Ciriolo.2013. FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis. 4: e861.
-
(2013)
Cell Death Dis
, vol.4
, pp. e861
-
-
Lettieri Barbato, D.1
Tatulli, G.2
Aquilano, K.3
Ciriolo, M.R.4
-
43
-
-
84925324049
-
Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
-
Rambold, A. S., S. Cohen, and J. Lippincott-Schwartz. 2015. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell. 32: 678-692.
-
(2015)
Dev. Cell
, vol.32
, pp. 678-692
-
-
Rambold, A.S.1
Cohen, S.2
Lippincott-Schwartz, J.3
-
44
-
-
77649185634
-
LC3, a microtubule-associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation
-
Shibata, M., K. Yoshimura, H. Tamura, T. Ueno, T. Nishimura, T. Inoue, M. Sasaki, M. Koike, H. Arai, E. Kominami, et al. 2010. LC3, a microtubule-associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation. Biochem. Biophys. Res. Commun. 393: 274-279.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.393
, pp. 274-279
-
-
Shibata, M.1
Yoshimura, K.2
Tamura, H.3
Ueno, T.4
Nishimura, T.5
Inoue, T.6
Sasaki, M.7
Koike, M.8
Arai, H.9
Kominami, E.10
-
45
-
-
84940777257
-
Ghrelin attenuated lipotoxicity via autophagy induction and nuclear factor-kappaB inhibition
-
Mao, Y., J. Cheng, F. Yu, H. Li, C. Guo, and X. Fan. 2015. Ghrelin attenuated lipotoxicity via autophagy induction and nuclear factor-kappaB inhibition. Cell. Physiol. Biochem. 37: 563-576.
-
(2015)
Cell. Physiol. Biochem.
, vol.37
, pp. 563-576
-
-
Mao, Y.1
Cheng, J.2
Yu, F.3
Li, H.4
Guo, C.5
Fan, X.6
-
46
-
-
77954230819
-
Macroautophagy and chaperone-mediated autophagy are required for hepatocyte resistance to oxidant stress
-
Wang, Y., R. Singh, Y. Xiang, and M. J. Czaja. 2010. Macroautophagy and chaperone-mediated autophagy are required for hepatocyte resistance to oxidant stress. Hepatology. 52: 266-277.
-
(2010)
Hepatology
, vol.52
, pp. 266-277
-
-
Wang, Y.1
Singh, R.2
Xiang, Y.3
Czaja, M.J.4
-
47
-
-
84864947432
-
Autophagy-lysosomal pathway is involved in lipid degradation in rat liver
-
Skop, V., M. Cahova, Z. Papackova, E. Palenickova, H. Dankova, M. Baranowski, P. Zabielski, J. Zdychova, J. Zidkova, and L. Kazdova.2012. Autophagy-lysosomal pathway is involved in lipid degradation in rat liver. Physiol. Res. 61: 287-297.
-
(2012)
Physiol. Res.
, vol.61
, pp. 287-297
-
-
Skop, V.1
Cahova, M.2
Papackova, Z.3
Palenickova, E.4
Dankova, H.5
Baranowski, M.6
Zabielski, P.7
Zdychova, J.8
Zidkova, J.9
Kazdova, L.10
-
48
-
-
70449448312
-
Autophagy regulates adipose mass and differentiation in mice
-
Singh, R., Y. Xiang, Y. Wang, K. Baikati, A. M. Cuervo, Y. K. Luu, Y. Tang, J. E. Pessin, G. J. Schwartz, and M. J. Czaja. 2009. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119: 3329-3339.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 3329-3339
-
-
Singh, R.1
Xiang, Y.2
Wang, Y.3
Baikati, K.4
Cuervo, A.M.5
Luu, Y.K.6
Tang, Y.7
Pessin, J.E.8
Schwartz, G.J.9
Czaja, M.J.10
-
49
-
-
84881299126
-
Transactivation of Atg4b by C/EBPbeta promotes autophagy to facilitate adipogenesis
-
Guo, L., J. X. Huang, Y. Liu, X. Li, S. R. Zhou, S. W. Qian, Y. Liu, H. Zhu, H. Y. Huang, Y. J. Dang, et al. 2013. Transactivation of Atg4b by C/EBPbeta promotes autophagy to facilitate adipogenesis. Mol. Cell. Biol. 33: 3180-3190.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 3180-3190
-
-
Guo, L.1
Huang, J.X.2
Liu, Y.3
Li, X.4
Zhou, S.R.5
Qian, S.W.6
Liu, Y.7
Zhu, H.8
Huang, H.Y.9
Dang, Y.J.10
-
50
-
-
84923668958
-
Palmitate induces endoplasmic reticulum stress and autophagy in mature adipocytes: Implications for apoptosis and inflammation
-
Yin, J., Y. Wang, L. Gu, N. Fan, Y. Ma, and Y. Peng. 2015. Palmitate induces endoplasmic reticulum stress and autophagy in mature adipocytes: implications for apoptosis and inflammation. Int. J. Mol. Med. 35: 932-940.
-
(2015)
Int. J. Mol. Med.
, vol.35
, pp. 932-940
-
-
Yin, J.1
Wang, Y.2
Gu, L.3
Fan, N.4
Ma, Y.5
Peng, Y.6
-
51
-
-
84870170324
-
Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression
-
Jansen, H. J., P. van Essen, T. Koenen, L. A. Joosten, M. G. Netea, C. J. Tack, and R. Stienstra. 2012. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. Endocrinology. 153: 5866-5874.
-
(2012)
Endocrinology
, vol.153
, pp. 5866-5874
-
-
Jansen, H.J.1
Van Essen, P.2
Koenen, T.3
Joosten, L.A.4
Netea, M.G.5
Tack, C.J.6
Stienstra, R.7
-
52
-
-
84953342388
-
DAPK2 downregulation associates with attenuated adipocyte autophagic clearance in human obesity
-
Soussi, H., S. Reggio, R. Alili, C. Prado, S. Mutel, M. Pini, C. Rouault, K. Clement, and I. Dugail. 2015. DAPK2 downregulation associates with attenuated adipocyte autophagic clearance in human obesity. Diabetes. 64: 3452-3463.
-
(2015)
Diabetes
, vol.64
, pp. 3452-3463
-
-
Soussi, H.1
Reggio, S.2
Alili, R.3
Prado, C.4
Mutel, S.5
Pini, M.6
Rouault, C.7
Clement, K.8
Dugail, I.9
-
53
-
-
79960951346
-
Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance
-
Kaushik, S., J. A. Rodriguez-Navarro, E. Arias, R. Kiffin, S. Sahu, G. J. Schwartz, A. M. Cuervo, and R. Singh. 2011. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 14: 173-183.
-
(2011)
Cell Metab
, vol.14
, pp. 173-183
-
-
Kaushik, S.1
Rodriguez-Navarro, J.A.2
Arias, E.3
Kiffin, R.4
Sahu, S.5
Schwartz, G.J.6
Cuervo, A.M.7
Singh, R.8
-
54
-
-
80052712323
-
Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway
-
Meng, Q., and D. Cai. 2011. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway. J. Biol. Chem. 286: 32324-32332.
-
(2011)
J. Biol. Chem
, vol.286
, pp. 32324-32332
-
-
Meng, Q.1
Cai, D.2
-
55
-
-
77950479450
-
Autophagy in skeletal muscle
-
Sandri, M. 2010. Autophagy in skeletal muscle. FEBS Lett. 584: 1411-1416.
-
(2010)
FEBS Lett.
, vol.584
, pp. 1411-1416
-
-
Sandri, M.1
-
56
-
-
57649173518
-
The role of autophagy in the heart
-
Nishida, K., S. Kyoi, O. Yamaguchi, J. Sadoshima, and K. Otsu.2009. The role of autophagy in the heart. Cell Death Differ. 16: 31-38.
-
(2009)
Cell Death Differ
, vol.16
, pp. 31-38
-
-
Nishida, K.1
Kyoi, S.2
Yamaguchi, O.3
Sadoshima, J.4
Otsu, K.5
-
57
-
-
79958030075
-
Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase
-
Ouimet, M., V. Franklin, E. Mak, X. Liao, I. Tabas, and Y. L. Marcel. 2011. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 13: 655-667.
-
(2011)
Cell Metab
, vol.13
, pp. 655-667
-
-
Ouimet, M.1
Franklin, V.2
Mak, E.3
Liao, X.4
Tabas, I.5
Marcel, Y.L.6
-
58
-
-
77956813124
-
Autophagy plays a protective role in free cholesterol overloadinduced death of smooth muscle cells
-
Xu, K., Y. Yang, M. Yan, J. Zhan, X. Fu, and X. Zheng. 2010.Autophagy plays a protective role in free cholesterol overloadinduced death of smooth muscle cells. J. Lipid Res. 51: 2581-2590.
-
(2010)
J. Lipid Res.
, vol.51
, pp. 2581-2590
-
-
Xu, K.1
Yang, Y.2
Yan, M.3
Zhan, J.4
Fu, X.5
Zheng, X.6
-
59
-
-
84872117614
-
The role of lipids in the control of autophagy
-
Dall'Armi, C., K. A. Devereaux, and G. Di Paolo. 2013. The role of lipids in the control of autophagy. Curr. Biol. 23: R33-R45.
-
(2013)
Curr. Biol
, vol.23
, pp. R33-R45
-
-
Dall'Armi, C.1
Devereaux, K.A.2
Paolo, G.D.3
-
60
-
-
84939209368
-
Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis
-
Shpilka, T., E. Welter, N. Borovsky, N. Amar, M. Mari, F. Reggiori, and Z. Elazar. 2015. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J. 34: 2117-2131.
-
(2015)
EMBO J
, vol.34
, pp. 2117-2131
-
-
Shpilka, T.1
Welter, E.2
Borovsky, N.3
Amar, N.4
Mari, M.5
Reggiori, F.6
Elazar, Z.7
-
61
-
-
58149463600
-
Protective role of autophagy in palmitate-induced INS-1 beta-cell death
-
Choi, S. E., S. M. Lee, Y. J. Lee, L. J. Li, S. J. Lee, J. H. Lee, Y. Kim, H. S. Jun, K. W. Lee, and Y. Kang. 2009. Protective role of autophagy in palmitate-induced INS-1 beta-cell death. Endocrinology. 150: 126-134.
-
(2009)
Endocrinology
, vol.150
, pp. 126-134
-
-
Choi, S.E.1
Lee, S.M.2
Lee, Y.J.3
Li, L.J.4
Lee, S.J.5
Lee, J.H.6
Kim, Y.7
Jun, H.S.8
Lee, K.W.9
Kang, Y.10
-
62
-
-
52749093177
-
Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
-
Ebato, C., T. Uchida, M. Arakawa, M. Komatsu, T. Ueno, K. Komiya, K. Azuma, T. Hirose, K. Tanaka, E. Kominami, et al. 2008.Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8: 325-332.
-
(2008)
Cell Metab.
, vol.8
, pp. 325-332
-
-
Ebato, C.1
Uchida, T.2
Arakawa, M.3
Komatsu, M.4
Ueno, T.5
Komiya, K.6
Azuma, K.7
Hirose, T.8
Tanaka, K.9
Kominami, E.10
-
63
-
-
84938739110
-
High-fat diet increases autophagic flux in pancreatic beta cells in vivo and ex vivo in mice
-
Chu, K. Y., L. O'Reilly, G. Ramm, and T. J. Biden. 2015. High-fat diet increases autophagic flux in pancreatic beta cells in vivo and ex vivo in mice. Diabetologia. 58: 2074-2078.
-
(2015)
Diabetologia
, vol.58
, pp. 2074-2078
-
-
Chu, K.Y.1
O'Reilly, L.2
Ramm, G.3
Biden, T.J.4
-
64
-
-
82755195229
-
Fatty acids suppress autophagic turnover in beta-cells
-
Las, G., S. B. Serada, J. D. Wikstrom, G. Twig, and O. S. Shirihai.2011. Fatty acids suppress autophagic turnover in beta-cells. J. Biol. Chem. 286: 42534-42544.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 42534-42544
-
-
Las, G.1
Serada, S.B.2
Wikstrom, J.D.3
Twig, G.4
Shirihai, O.S.5
-
65
-
-
84924911803
-
Inhibition of autophagic turnover in beta-cells by fatty acids and glucose leads to apoptotic cell death
-
Mir, S. U., N. M. George, L. Zahoor, R. Harms, Z. Guinn, and N. E. Sarvetnick. 2015. Inhibition of autophagic turnover in beta-cells by fatty acids and glucose leads to apoptotic cell death. J. Biol. Chem. 290: 6071-6085.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 6071-6085
-
-
Mir, S.U.1
George, N.M.2
Zahoor, L.3
Harms, R.4
Guinn, Z.5
Sarvetnick, N.E.6
-
66
-
-
0035156817
-
Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function
-
Maedler, K., G. A. Spinas, D. Dyntar, W. Moritz, N. Kaiser, and M. Y. Donath. 2001. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes. 50: 69-76.
-
(2001)
Diabetes
, vol.50
, pp. 69-76
-
-
Maedler, K.1
Spinas, G.A.2
Dyntar, D.3
Moritz, W.4
Kaiser, N.5
Donath, M.Y.6
-
67
-
-
84946479230
-
Mechanistic insights into pancreatic beta-cell mass regulation by glucose and free fatty acids
-
Oh, Y. S. 2015. Mechanistic insights into pancreatic beta-cell mass regulation by glucose and free fatty acids. Anat. Cell Biol. 48: 16-24.
-
(2015)
Anat. Cell Biol.
, vol.48
, pp. 16-24
-
-
Oh, Y.S.1
-
68
-
-
33750922694
-
Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice
-
Korsheninnikova, E., G. C. van der Zon, P. J. Voshol, G. M. Janssen, L. M. Havekes, A. Grefhorst, F. Kuipers, D. J. Reijngoud, J. A. Romijn, D. M. Ouwens, et al. 2006. Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice. Diabetologia. 49: 3049-3057.
-
(2006)
Diabetologia
, vol.49
, pp. 3049-3057
-
-
Korsheninnikova, E.1
Van Der Zon, G.C.2
Voshol, P.J.3
Janssen, G.M.4
Havekes, L.M.5
Grefhorst, A.6
Kuipers, F.7
Reijngoud, D.J.8
Romijn, J.A.9
Ouwens, D.M.10
-
69
-
-
77955789211
-
Altered lipid content inhibits autophagic vesicular fusion
-
Koga, H., S. Kaushik, and A. M. Cuervo. 2010. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24: 3052-3065.
-
(2010)
FASEB J
, vol.24
, pp. 3052-3065
-
-
Koga, H.1
Kaushik, S.2
Cuervo, A.M.3
-
70
-
-
71449091240
-
Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: Inhibition of FoxO1-dependent expression of key autophagy genes by insulin
-
Liu, H. Y., J. Han, S. Y. Cao, T. Hong, D. Zhuo, J. Shi, Z. Liu, and W. Cao. 2009. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J. Biol. Chem. 284: 31484-31492.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 31484-31492
-
-
Liu, H.Y.1
Han, J.2
Cao, S.Y.3
Hong, T.4
Zhuo, D.5
Shi, J.6
Liu, Z.7
Cao, W.8
-
71
-
-
0038509036
-
Lipotoxicity: When tissues overeat
-
Schaffer, J. E. 2003. Lipotoxicity: when tissues overeat. Curr. Opin. Lipidol. 14: 281-287.
-
(2003)
Curr. Opin. Lipidol.
, vol.14
, pp. 281-287
-
-
Schaffer, J.E.1
-
72
-
-
84875844957
-
High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle
-
Badin, P. M., I. K. Vila, K. Louche, A. Mairal, M. A. Marques, V. Bourlier, G. Tavernier, D. Langin, and C. Moro. 2013. High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle. Endocrinology. 154: 1444-1453.
-
(2013)
Endocrinology
, vol.154
, pp. 1444-1453
-
-
Badin, P.M.1
Vila, I.K.2
Louche, K.3
Mairal, A.4
Marques, M.A.5
Bourlier, V.6
Tavernier, G.7
Langin, D.8
Moro, C.9
-
73
-
-
84872450820
-
Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice
-
Yuzefovych, L. V., S. I. Musiyenko, G. L. Wilson, and L. I. Rachek.2013. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One. 8: e54059.
-
(2013)
PLoS One
, vol.8
, pp. e54059
-
-
Yuzefovych, L.V.1
Musiyenko, S.I.2
Wilson, G.L.3
Rachek, L.I.4
-
75
-
-
84930448675
-
High-fat feeding does not induce an autophagic or apoptotic phenotype in female rat skeletal muscle
-
Campbell, T. L., A. S. Mitchell, E. M. McMillan, D. Bloemberg, D. Pavlov, I. Messa, J. G. Mielke, and J. Quadrilatero. 2015. High-fat feeding does not induce an autophagic or apoptotic phenotype in female rat skeletal muscle. Exp. Biol. Med. (Maywood). 240: 657-668.
-
(2015)
Exp. Biol. Med.(Maywood)
, vol.240
, pp. 657-668
-
-
Campbell, T.L.1
Mitchell, A.S.2
McMillan, E.M.3
Bloemberg, D.4
Pavlov, D.5
Messa, I.6
Mielke, J.G.7
Quadrilatero, J.8
-
76
-
-
63849125553
-
Examination of 'lipotoxicity' in skeletal muscle of high-fat fed and ob/ob mice
-
Turpin, S. M., J. G. Ryall, R. Southgate, I. Darby, A. L. Hevener, M. A. Febbraio, B. E. Kemp, G. S. Lynch, and M. J. Watt. 2009. Examination of 'lipotoxicity' in skeletal muscle of high-fat fed and ob/ob mice. J. Physiol. 587: 1593-1605.
-
(2009)
J. Physiol.
, vol.587
, pp. 1593-1605
-
-
Turpin, S.M.1
Ryall, J.G.2
Southgate, R.3
Darby, I.4
Hevener, A.L.5
Febbraio, M.A.6
Kemp, B.E.7
Lynch, G.S.8
Watt, M.J.9
-
77
-
-
84857134886
-
Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice
-
Moresi, V., M. Carrer, C. E. Grueter, O. F. Rifki, J. M. Shelton, J. A. Richardson, R. Bassel-Duby, and E. N. Olson. 2012.Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice. Proc. Natl. Acad. Sci. USA. 109: 1649-1654.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 1649-1654
-
-
Moresi, V.1
Carrer, M.2
Grueter, C.E.3
Rifki, O.F.4
Shelton, J.M.5
Richardson, J.A.6
Bassel-Duby, R.7
Olson, E.N.8
-
78
-
-
84929860842
-
Skeletal muscle myotubes in severe obesity exhibit altered ubiquitin-proteasome and autophagic/lysosomal proteolytic flux
-
Bollinger, L. M., J. J. Powell, J. A. Houmard, C. A. Witczak, and J. J. Brault. 2015. Skeletal muscle myotubes in severe obesity exhibit altered ubiquitin-proteasome and autophagic/lysosomal proteolytic flux. Obesity (Silver Spring). 23: 1185-1193.
-
(2015)
Obesity (Silver Spring)
, vol.23
, pp. 1185-1193
-
-
Bollinger, L.M.1
Powell, J.J.2
Houmard, J.A.3
Witczak, C.A.4
Brault, J.J.5
-
79
-
-
36448940798
-
FoxO3 controls autophagy in skeletal muscle in vivo
-
Mammucari, C., G. Milan, V. Romanello, E. Masiero, R. Rudolf, P. Del Piccolo, S. J. Burden, R. Di Lisi, C. Sandri, J. Zhao, et al. 2007.FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6: 458-471.
-
(2007)
Cell Metab.
, vol.6
, pp. 458-471
-
-
Mammucari, C.1
Milan, G.2
Romanello, V.3
Masiero, E.4
Rudolf, R.5
Piccolo, P.D.6
Burden, S.J.7
Lisi, R.D.8
Sandri, C.9
Zhao, J.10
-
80
-
-
84903770282
-
Docosahexaenoic acid prevents palmitate-induced activation of proteolytic systems in C2C12 myotubes
-
Woodworth-Hobbs, M. E., M. B. Hudson, J. A. Rahnert, B. Zheng, H. A. Franch, and S. R. Price. 2014. Docosahexaenoic acid prevents palmitate-induced activation of proteolytic systems in C2C12 myotubes. J. Nutr. Biochem. 25: 868-874.
-
(2014)
J. Nutr. Biochem.
, vol.25
, pp. 868-874
-
-
Woodworth-Hobbs, M.E.1
Hudson, M.B.2
Rahnert, J.A.3
Zheng, B.4
Franch, H.A.5
Price, S.R.6
-
81
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
Nakai, A., O. Yamaguchi, T. Takeda, Y. Higuchi, S. Hikoso, M. Taniike, S. Omiya, I. Mizote, Y. Matsumura, M. Asahi, et al. 2007.The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13: 619-624.
-
(2007)
Nat. Med.
, vol.13
, pp. 619-624
-
-
Nakai, A.1
Yamaguchi, O.2
Takeda, T.3
Higuchi, Y.4
Hikoso, S.5
Taniike, M.6
Omiya, S.7
Mizote, I.8
Matsumura, Y.9
Asahi, M.10
-
82
-
-
84863393597
-
Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis
-
He, C., M. C. Bassik, V. Moresi, K. Sun, Y. Wei, Z. Zou, Z. An, J. Loh, J. Fisher, Q. Sun, et al. 2012. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. 481: 511-515.
-
(2012)
Nature
, vol.481
, pp. 511-515
-
-
He, C.1
Bassik, M.C.2
Moresi, V.3
Sun, K.4
Wei, Y.5
Zou, Z.6
An, Z.7
Loh, J.8
Fisher, J.9
Sun, Q.10
-
83
-
-
84862823783
-
Transition from obesity to metabolic syndrome is associated with altered myocardial autophagy and apoptosis
-
Li, Z. L., J. R. Woollard, B. Ebrahimi, J. A. Crane, K. L. Jordan, A. Lerman, S. M. Wang, and L. O. Lerman. 2012. Transition from obesity to metabolic syndrome is associated with altered myocardial autophagy and apoptosis. Arterioscler. Thromb. Vasc. Biol. 32: 1132-1141.
-
(2012)
Arterioscler. Thromb. Vasc. Biol.
, vol.32
, pp. 1132-1141
-
-
Li, Z.L.1
Woollard, J.R.2
Ebrahimi, B.3
Crane, J.A.4
Jordan, K.L.5
Lerman, A.6
Wang, S.M.7
Lerman, L.O.8
-
84
-
-
78650691023
-
Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes
-
Hariharan, N., Y. Maejima, J. Nakae, J. Paik, R. A. Depinho, and J. Sadoshima. 2010. Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes. Circ. Res. 107: 1470-1482.
-
(2010)
Circ. Res.
, vol.107
, pp. 1470-1482
-
-
Hariharan, N.1
Maejima, Y.2
Nakae, J.3
Paik, J.4
Depinho, R.A.5
Sadoshima, J.6
-
85
-
-
84874315293
-
Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation
-
Erratum. 2013 J. Mol. Cell Biol. 5: 212
-
Xu, X., Y. Hua, S. Nair, Y. Zhang, and J. Ren. 2013. Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation. J. Mol. Cell Biol. 5: 61-63. [Erratum. 2013. J. Mol. Cell Biol. 5: 212.]
-
(2013)
J. Mol. Cell Biol.
, vol.5
, pp. 61-63
-
-
Xu, X.1
Hua, Y.2
Nair, S.3
Zhang, Y.4
Ren, J.5
-
86
-
-
84941365692
-
High-fat diet induces cardiomyocyte apoptosis via the inhibition of autophagy
-
Epub ahead of print. September 10
-
Hsu, H. C., C. Y. Chen, B. C. Lee, and M. F. Chen. High-fat diet induces cardiomyocyte apoptosis via the inhibition of autophagy. Eur. J. Nutr. Epub ahead of print. September 10, 2015; doi: 10.1007/s00394-015-1034-7.
-
(2015)
Eur. J. Nutr.
-
-
Hsu, H.C.1
Chen, C.Y.2
Lee, B.C.3
Chen, M.F.4
-
87
-
-
84919815912
-
Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: Role of AMPK-dependent autophagy
-
Kandadi, M. R., E. Panzhinskiy, N. D. Roe, S. Nair, D. Hu, and A. Sun. 2015. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: Role of AMPK-dependent autophagy. Biochim. Biophys. Acta. 1852: 299-309.
-
(2015)
Biochim. Biophys. Acta
, vol.1852
, pp. 299-309
-
-
Kandadi, M.R.1
Panzhinskiy, E.2
Roe, N.D.3
Nair, S.4
Hu, D.5
Sun, A.6
-
88
-
-
84868628424
-
Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes
-
Russo, S. B., C. F. Baicu, A. Van Laer, T. Geng, H. Kasiganesan, M. R. Zile, and L. A. Cowart. 2012. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J. Clin. Invest. 122: 3919-3930.
-
(2012)
J. Clin. Invest
, vol.122
, pp. 3919-3930
-
-
Russo, S.B.1
Baicu, C.F.2
Van Laer, A.3
Geng, T.4
Kasiganesan, H.5
Zile, M.R.6
Cowart, L.A.7
-
89
-
-
84924618437
-
Lipidinduced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity
-
Jaishy, B., Q. Zhang, H. S. Chung, C. Riehle, J. Soto, S. Jenkins, P. Abel, L. A. Cowart, J. E. Van Eyk, and E. D. Abel. 2015. Lipidinduced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J. Lipid Res. 56: 546-561.
-
(2015)
J. Lipid Res.
, vol.56
, pp. 546-561
-
-
Jaishy, B.1
Zhang, Q.2
Chung, H.S.3
Riehle, C.4
Soto, J.5
Jenkins, S.6
Abel, P.7
Cowart, L.A.8
Van Eyk, J.E.9
Abel, E.D.10
-
90
-
-
84930930613
-
Palmitate promotes autophagy and apoptosis throughROS-dependent JNK and p38 MAPK
-
Liu, J., F. Chang, F. Li, H. Fu, J. Wang, S. Zhang, J. Zhao, and D. Yin. 2015. Palmitate promotes autophagy and apoptosis throughROS-dependent JNK and p38 MAPK. Biochem. Biophys. Res. Commun. 463: 262-267.
-
(2015)
Biochem. Biophys. Res. Commun.
, vol.463
, pp. 262-267
-
-
Liu, J.1
Chang, F.2
Li, F.3
Fu, H.4
Wang, J.5
Zhang, S.6
Zhao, J.7
Yin, D.8
-
91
-
-
84863482530
-
Lysosomal function and dysfunction: Mechanism and disease
-
Boya, P. 2012. Lysosomal function and dysfunction: mechanism and disease. Antioxid. Redox Signal. 17: 766-774.
-
(2012)
Antioxid. Redox Signal
, vol.17
, pp. 766-774
-
-
Boya, P.1
-
92
-
-
77952335030
-
Recent insights into factors affecting remnant lipoprotein uptake
-
Williams, K. J., and K. Chen. 2010. Recent insights into factors affecting remnant lipoprotein uptake. Curr. Opin. Lipidol. 21: 218-228.
-
(2010)
Curr. Opin. Lipidol.
, vol.21
, pp. 218-228
-
-
Williams, K.J.1
Chen, K.2
-
93
-
-
52449087975
-
Uptake of postprandial lipoproteins into bone in vivo: Impact on osteoblast function
-
Niemeier, A., D. Niedzielska, R. Secer, A. Schilling, M. Merkel, C. Enrich, P. C. Rensen, and J. Heeren. 2008. Uptake of postprandial lipoproteins into bone in vivo: impact on osteoblast function. Bone. 43: 230-237.
-
(2008)
Bone
, vol.43
, pp. 230-237
-
-
Niemeier, A.1
Niedzielska, D.2
Secer, R.3
Schilling, A.4
Merkel, M.5
Enrich, C.6
Rensen, P.C.7
Heeren, J.8
-
94
-
-
0021691363
-
Uptake and processing of remnants of chylomicrons and very low density lipoproteins by rat liver
-
Jones, A. L., G. T. Hradek, C. Hornick, G. Renaud, E. E. Windler, and R. J. Havel. 1984. Uptake and processing of remnants of chylomicrons and very low density lipoproteins by rat liver. J. Lipid Res. 25: 1151-1158.
-
(1984)
J. Lipid Res.
, vol.25
, pp. 1151-1158
-
-
Jones, A.L.1
Hradek, G.T.2
Hornick, C.3
Renaud, G.4
Windler, E.E.5
Havel, R.J.6
-
95
-
-
0022549920
-
A receptor-mediated pathway for cholesterol homeostasis
-
Brown, M. S., and J. L. Goldstein. 1986. A receptor-mediated pathway for cholesterol homeostasis. Science. 232: 34-47.
-
(1986)
Science
, vol.232
, pp. 34-47
-
-
Brown, M.S.1
Goldstein, J.L.2
-
96
-
-
33646544088
-
Apolipoprotein E recycling: Implications for dyslipidemia and atherosclerosis
-
Heeren, J., U. Beisiegel, and T. Grewal. 2006. Apolipoprotein E recycling: implications for dyslipidemia and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26: 442-448.
-
(2006)
Arterioscler. Thromb. Vasc. Biol.
, vol.26
, pp. 442-448
-
-
Heeren, J.1
Beisiegel, U.2
Grewal, T.3
-
97
-
-
0016836751
-
Role of lysosomal acid lipase in the metabolism of plasma low density lipoprotein. Observations in cultured fibroblasts from a patient with cholesteryl ester storage disease
-
Goldstein, J. L., S. E. Dana, J. R. Faust, A. L. Beaudet, and M. S. Brown. 1975. Role of lysosomal acid lipase in the metabolism of plasma low density lipoprotein. Observations in cultured fibroblasts from a patient with cholesteryl ester storage disease. J. Biol. Chem. 250: 8487-8495.
-
(1975)
J. Biol. Chem.
, vol.250
, pp. 8487-8495
-
-
Goldstein, J.L.1
Dana, S.E.2
Faust, J.R.3
Beaudet, A.L.4
Brown, M.S.5
-
98
-
-
0022968919
-
Synthesis and hydrolysis of cholesteryl esters by isolated rat-liver lysosomes and cell-free extracts of human lung fibroblasts
-
Slotte, J. P., and S. Ekman. 1986. Synthesis and hydrolysis of cholesteryl esters by isolated rat-liver lysosomes and cell-free extracts of human lung fibroblasts. Biochim. Biophys. Acta. 879: 221-228.
-
(1986)
Biochim. Biophys. Acta.
, vol.879
, pp. 221-228
-
-
Slotte, J.P.1
Ekman, S.2
-
99
-
-
15744390047
-
Modulation of endosomal cholesteryl ester metabolism by membrane cholesterol
-
Wang, Y., A. B. Castoreno, W. Stockinger, and A. Nohturfft. 2005.Modulation of endosomal cholesteryl ester metabolism by membrane cholesterol. J. Biol. Chem. 280: 11876-11886.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 11876-11886
-
-
Wang, Y.1
Castoreno, A.B.2
Stockinger, W.3
Nohturfft, A.4
-
100
-
-
23444460383
-
Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease
-
Anderson, R. A., R. S. Byrum, P. M. Coates, and G. N. Sando. 1994.Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease. Proc. Natl. Acad. Sci. USA. 91: 2718-2722.
-
(1994)
Proc. Natl. Acad. Sci. USA
, vol.91
, pp. 2718-2722
-
-
Anderson, R.A.1
Byrum, R.S.2
Coates, P.M.3
Sando, G.N.4
-
101
-
-
0019989749
-
Hydrolytic degradation of phosphatidylethanolamine and phosphatidylcholine by isolated rat-liver lysosomes
-
Kunze, H., B. Hesse, and E. Bohn. 1982. Hydrolytic degradation of phosphatidylethanolamine and phosphatidylcholine by isolated rat-liver lysosomes. Biochim. Biophys. Acta. 711: 10-18.
-
(1982)
Biochim. Biophys. Acta.
, vol.711
, pp. 10-18
-
-
Kunze, H.1
Hesse, B.2
Bohn, E.3
-
102
-
-
78649794770
-
Group XV phospholipase A(2), a lysosomal phospholipase A(2)
-
Shayman, J. A., R. Kelly, J. Kollmeyer, Y. He, and A. Abe. 2011.Group XV phospholipase A(2), a lysosomal phospholipase A(2).Prog. Lipid Res. 50: 1-13.
-
(2011)
Prog. Lipid Res.
, vol.50
, pp. 1-13
-
-
Shayman, J.A.1
Kelly, R.2
Kollmeyer, J.3
He, Y.4
Abe, A.5
-
103
-
-
0018871467
-
Properties of phospholipase C isolated from rat liver lysosomes
-
Matsuzawa, Y., and K. Y. Hostetler. 1980. Properties of phospholipase C isolated from rat liver lysosomes. J. Biol. Chem. 255: 646-652.
-
(1980)
J. Biol. Chem.
, vol.255
, pp. 646-652
-
-
Matsuzawa, Y.1
Hostetler, K.Y.2
-
104
-
-
0032474821
-
Phospholipase D1 localises to secretory granules and lysosomes and is plasmamembrane translocated on cellular stimulation
-
Brown, F. D., N. Thompson, K. M. Saqib, J. M. Clark, D. Powner, N. T. Thompson, R. Solari, and M. J. Wakelam. 1998. Phospholipase D1 localises to secretory granules and lysosomes and is plasmamembrane translocated on cellular stimulation. Curr. Biol. 8: 835-838.
-
(1998)
Curr. Biol
, vol.8
, pp. 835-838
-
-
Brown, F.D.1
Thompson, N.2
Saqib, K.M.3
Clark, J.M.4
Powner, D.5
Thompson, N.T.6
Solari, R.7
Wakelam, M.J.8
-
105
-
-
25444443570
-
Principles of lysosomal membrane digestion: Stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids
-
Kolter, T., and K. Sandhoff. 2005. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu. Rev. Cell Dev. Biol. 21: 81-103.
-
(2005)
Annu. Rev. Cell Dev. Biol
, vol.21
, pp. 81-103
-
-
Kolter, T.1
Sandhoff, K.2
-
106
-
-
80555143078
-
mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
Zoncu, R., L. Bar-Peled, A. Efeyan, S. Wang, Y. Sancak, and D. M. Sabatini. 2011. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science. 334: 678-683.
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
107
-
-
84925777835
-
SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
-
Rebsamen, M., L. Pochini, T. Stasyk, M. E. de Araujo, M. Galluccio, R. K. Kandasamy, B. Snijder, A. Fauster, E. L. Rudashevskaya, M. Bruckner, et al. 2015. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 519: 477-481.
-
(2015)
Nature
, vol.519
, pp. 477-481
-
-
Rebsamen, M.1
Pochini, L.2
Stasyk, T.3
De Araujo, M.E.4
Galluccio, M.5
Kandasamy, R.K.6
Snijder, B.7
Fauster, A.8
Rudashevskaya, E.L.9
Bruckner, M.10
-
108
-
-
84870938954
-
SnapShot: MTORC1 signaling at the lysosomal surface
-
1390-1390.e1
-
Bar-Peled, L., and D. M. Sabatini. 2012. SnapShot: mTORC1 signaling at the lysosomal surface. Cell. 151: 1390-1390.e1.
-
(2012)
Cell
, vol.151
-
-
Bar-Peled, L.1
Sabatini, D.M.2
-
109
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre, C., R. Zoncu, D. L. Medina, F. Vetrini, S. Erdin, S. Erdin, T. Huynh, M. Ferron, G. Karsenty, M. C. Vellard, et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31: 1095-1108.
-
(2012)
EMBO J
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
Zoncu, R.2
Medina, D.L.3
Vetrini, F.4
Erdin, S.5
Erdin, S.6
Huynh, T.7
Ferron, M.8
Karsenty, G.9
Vellard, M.C.10
-
110
-
-
78650848337
-
mTORC1 controls fasting-induced ketogenesis and its modulation by ageing
-
Sengupta, S., T. R. Peterson, M. Laplante, S. Oh, and D. M. Sabatini. 2010. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature. 468: 1100-1104.
-
(2010)
Nature
, vol.468
, pp. 1100-1104
-
-
Sengupta, S.1
Peterson, T.R.2
Laplante, M.3
Oh, S.4
Sabatini, D.M.5
-
111
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre, C., C. Di Malta, V. A. Polito, M. Garcia Arencibia, F. Vetrini, S. Erdin, S. U. Erdin, T. Huynh, D. Medina, P. Colella, et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science. 332: 1429-1433.
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
Malta, C.D.2
Polito, V.A.3
Arencibia, M.G.4
Vetrini, F.5
Erdin, S.6
Erdin, S.U.7
Huynh, T.8
Medina, D.9
Colella, P.10
-
112
-
-
80052716148
-
Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways
-
Palmieri, M., S. Impey, H. Kang, A. di Ronza, C. Pelz, M. Sardiello, and A. Ballabio. 2011. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20: 3852-3866.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 3852-3866
-
-
Palmieri, M.1
Impey, S.2
Kang, H.3
Di Ronza, A.4
Pelz, C.5
Sardiello, M.6
Ballabio, A.7
-
115
-
-
0000721551
-
A defect in cholesterol esterification in Niemann-Pick disease (type C) patients
-
Pentchev, P. G., M. E. Comly, H. S. Kruth, M. T. Vanier, D. A. Wenger, S. Patel, and R. O. Brady. 1985. A defect in cholesterol esterification in Niemann-Pick disease (type C) patients. Proc. Natl. Acad. Sci. USA. 82: 8247-8251.
-
(1985)
Proc. Natl. Acad. Sci. USA
, vol.82
, pp. 8247-8251
-
-
Pentchev, P.G.1
Comly, M.E.2
Kruth, H.S.3
Vanier, M.T.4
Wenger, D.A.5
Patel, S.6
Brady, R.O.7
-
116
-
-
11144355005
-
Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport
-
Sleat, D. E., J. A. Wiseman, M. El-Banna, S. M. Price, L. Verot, M. M. Shen, G. S. Tint, M. T. Vanier, S. U. Walkley, and P. Lobel.2004. Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc. Natl. Acad. Sci. USA. 101: 5886-5891.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 5886-5891
-
-
Sleat, D.E.1
Wiseman, J.A.2
El-Banna, M.3
Price, S.M.4
Verot, L.5
Shen, M.M.6
Tint, G.S.7
Vanier, M.T.8
Walkley, S.U.9
Lobel, P.10
-
117
-
-
38049011141
-
Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking
-
Sobo, K., I. Le Blanc, P. P. Luyet, M. Fivaz, C. Ferguson, R. G. Parton, J. Gruenberg, and F. G. van der Goot. 2007. Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking. PLoS One. 2: e851.
-
(2007)
PLoS One
, vol.2
, pp. e851
-
-
Sobo, K.1
Le Blanc, I.2
Luyet, P.P.3
Fivaz, M.4
Ferguson, C.5
Parton, R.G.6
Gruenberg, J.7
Van Der Goot, F.G.8
-
118
-
-
38549141572
-
Cellular cholesterol trafficking and compartmentalization
-
Ikonen, E. 2008. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9: 125-138.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 125-138
-
-
Ikonen, E.1
-
119
-
-
4644263342
-
Elevated endosomal cholesterol levels in Niemann-Pick cells inhibit rab4 and perturb membrane recycling
-
Choudhury, A., D. K. Sharma, D. L. Marks, and R. E. Pagano. 2004. Elevated endosomal cholesterol levels in Niemann-Pick cells inhibit rab4 and perturb membrane recycling. Mol. Biol. Cell. 15: 4500-4511.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 4500-4511
-
-
Choudhury, A.1
Sharma, D.K.2
Marks, D.L.3
Pagano, R.E.4
-
120
-
-
0033203501
-
Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases
-
Puri, V., R. Watanabe, M. Dominguez, X. Sun, C. L. Wheatley, D. L. Marks, and R. E. Pagano. 1999. Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nat. Cell Biol. 1: 386-388.
-
(1999)
Nat. Cell Biol.
, vol.1
, pp. 386-388
-
-
Puri, V.1
Watanabe, R.2
Dominguez, M.3
Sun, X.4
Wheatley, C.L.5
Marks, D.L.6
Pagano, R.E.7
-
121
-
-
78149282263
-
Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders
-
Fraldi, A., F. Annunziata, A. Lombardi, H. J. Kaiser, D. L. Medina, C. Spampanato, A. O. Fedele, R. Polishchuk, N. C. Sorrentino, K. Simons, et al. 2010. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J. 29: 3607-3620.
-
(2010)
EMBO J
, vol.29
, pp. 3607-3620
-
-
Fraldi, A.1
Annunziata, F.2
Lombardi, A.3
Kaiser, H.J.4
Medina, D.L.5
Spampanato, C.6
Fedele, A.O.7
Polishchuk, R.8
Sorrentino, N.C.9
Simons, K.10
-
122
-
-
33645776188
-
Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease
-
Fukuda, T., L. Ewan, M. Bauer, R. J. Mattaliano, K. Zaal, E. Ralston, P. H. Plotz, and N. Raben. 2006. Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease. Ann. Neurol. 59: 700-708.
-
(2006)
Ann. Neurol
, vol.59
, pp. 700-708
-
-
Fukuda, T.1
Ewan, L.2
Bauer, M.3
Mattaliano, R.J.4
Zaal, K.5
Ralston, E.6
Plotz, P.H.7
Raben, N.8
-
123
-
-
37549066697
-
A block of autophagy in lysosomal storage disorders
-
Settembre, C., A. Fraldi, L. Jahreiss, C. Spampanato, C. Venturi, D. Medina, R. de Pablo, C. Tacchetti, D. C. Rubinsztein, and A. Ballabio. 2008. A block of autophagy in lysosomal storage disorders. Hum. Mol. Genet. 17: 119-129.
-
(2008)
Hum. Mol. Genet.
, vol.17
, pp. 119-129
-
-
Settembre, C.1
Fraldi, A.2
Jahreiss, L.3
Spampanato, C.4
Venturi, C.5
Medina, D.6
De Pablo, R.7
Tacchetti, C.8
Rubinsztein, D.C.9
Ballabio, A.10
-
124
-
-
84890144959
-
Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease
-
Sarkar, S., B. Carroll, Y. Buganim, D. Maetzel, A. H. Ng, J. P. Cassady, M. A. Cohen, S. Chakraborty, H. Wang, E. Spooner, et al.2013. Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell Reports. 5: 1302-1315.
-
(2013)
Cell Reports
, vol.5
, pp. 1302-1315
-
-
Sarkar, S.1
Carroll, B.2
Buganim, Y.3
Maetzel, D.4
Ng, A.H.5
Cassady, J.P.6
Cohen, M.A.7
Chakraborty, S.8
Wang, H.9
Spooner, E.10
-
125
-
-
33750326147
-
Cholesterol depletion induces autophagy
-
Cheng, J., Y. Ohsaki, K. Tauchi-Sato, A. Fujita, and T. Fujimoto.2006. Cholesterol depletion induces autophagy. Biochem. Biophys. Res. Commun. 351: 246-252.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.351
, pp. 246-252
-
-
Cheng, J.1
Ohsaki, Y.2
Tauchi-Sato, K.3
Fujita, A.4
Fujimoto, T.5
-
126
-
-
84941906087
-
Statin-mediated inhibition of cholesterol synthesis induces cytoprotective autophagy in human leukemic cells
-
Vilimanovich, U., M. Bosnjak, A. Bogdanovic, I. Markovic, A. Isakovic, T. Kravic-Stevovic, A. Mircic, V. Trajkovic, and V. Bumbasirevic. 2015. Statin-mediated inhibition of cholesterol synthesis induces cytoprotective autophagy in human leukemic cells. Eur. J. Pharmacol. 765: 415-428.
-
(2015)
Eur. J. Pharmacol.
, vol.765
, pp. 415-428
-
-
Vilimanovich, U.1
Bosnjak, M.2
Bogdanovic, A.3
Markovic, I.4
Isakovic, A.5
Kravic-Stevovic, T.6
Mircic, A.7
Trajkovic, V.8
Bumbasirevic, V.9
-
127
-
-
84858659826
-
Inhibitory effect of dietary lipids on chaperone-mediated autophagy
-
Rodriguez-Navarro, J. A., S. Kaushik, H. Koga, C. Dall'Armi, G. Shui, M. R. Wenk, G. Di Paolo, and A. M. Cuervo. 2012. Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA. 109: E705-E714.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. E705-E714
-
-
Rodriguez-Navarro, J.A.1
Kaushik, S.2
Koga, H.3
Dall'Armi, C.4
Shui, G.5
Wenk, M.R.6
Di Paolo, G.7
Cuervo, A.M.8
-
128
-
-
84895078856
-
Regulation of lipid accumulation by AMP-activated kinase [corrected] in high fat diet-induced kidney injury
-
Declèves, A. E., Z. Zolkipli, J. Satriano, L. Wang, T. Nakayama, M. Rogac, T. P. Le, J. L. Nortier, M. G. Farquhar, R. K. Naviaux, et al.2014. Regulation of lipid accumulation by AMP-activated kinase [corrected] in high fat diet-induced kidney injury. Kidney Int. 85: 611-623.
-
(2014)
Kidney Int.
, vol.85
, pp. 611-623
-
-
Declèves, A.E.1
Zolkipli, Z.2
Satriano, J.3
Wang, L.4
Nakayama, T.5
Rogac, M.6
Le, T.P.7
Nortier, J.L.8
Farquhar, M.G.9
Naviaux, R.K.10
-
129
-
-
0033999818
-
Rab7: A key to lysosome biogenesis
-
Bucci, C., P. Thomsen, P. Nicoziani, J. McCarthy, and B. van Deurs. 2000. Rab7: a key to lysosome biogenesis. Mol. Biol. Cell. 11: 467-480.
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 467-480
-
-
Bucci, C.1
Thomsen, P.2
Nicoziani, P.3
McCarthy, J.4
Van Deurs, B.5
-
130
-
-
33646891970
-
Bax inhibition protects against free fatty acid-induced lysosomal permeabilization
-
Feldstein, A. E., N. W. Werneburg, Z. Li, S. F. Bronk, and G. J. Gores. 2006. Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G1339-G1346.
-
(2006)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.290
, pp. G1339-G1346
-
-
Feldstein, A.E.1
Werneburg, N.W.2
Li, Z.3
Bronk, S.F.4
Gores, G.J.5
-
131
-
-
34249978223
-
Lysosomal and mitochondrial pathways in miltefosine-induced apoptosis in U937 cells
-
Paris, C., J. Bertoglio, and J. Breard. 2007. Lysosomal and mitochondrial pathways in miltefosine-induced apoptosis in U937 cells. Apoptosis. 12: 1257-1267.
-
(2007)
Apoptosis
, vol.12
, pp. 1257-1267
-
-
Paris, C.1
Bertoglio, J.2
Breard, J.3
-
132
-
-
84865708477
-
Adipocyte hypertrophy is associated with lysosomal permeability both in vivo and in vitro: Role in adipose tissue inflammation
-
Gornicka, A., J. Fettig, A. Eguchi, M. P. Berk, S. Thapaliya, L. J. Dixon, and A. E. Feldstein. 2012. Adipocyte hypertrophy is associated with lysosomal permeability both in vivo and in vitro: role in adipose tissue inflammation. Am. J. Physiol. Endocrinol. Metab. 303: E597-E606.
-
(2012)
Am. J. Physiol. Endocrinol. Metab.
, vol.303
, pp. E597-E606
-
-
Gornicka, A.1
Fettig, J.2
Eguchi, A.3
Berk, M.P.4
Thapaliya, S.5
Dixon, L.J.6
Feldstein, A.E.7
-
133
-
-
84938513264
-
ASMase regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage non-alcoholic steatohepatitis
-
Fucho, R., L. Martinez, A. Baulies, S. Torres, N. Tarrats, A. Fernandez, V. Ribas, A. M. Astudillo, J. Balsinde, P. Garcia-Roves, et al. 2014. ASMase regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage non-alcoholic steatohepatitis. J. Hepatol. 61: 1126-1134.
-
(2014)
J. Hepatol.
, vol.61
, pp. 1126-1134
-
-
Fucho, R.1
Martinez, L.2
Baulies, A.3
Torres, S.4
Tarrats, N.5
Fernandez, A.6
Ribas, V.7
Astudillo, A.M.8
Balsinde, J.9
Garcia-Roves, P.10
-
134
-
-
84873025790
-
Cathepsin K knockout mitigates high-fat diet-induced cardiac hypertrophy and contractile dysfunction
-
Hua, Y., Y. Zhang, J. Dolence, G. P. Shi, J. Ren, and S. Nair.2013. Cathepsin K knockout mitigates high-fat diet-induced cardiac hypertrophy and contractile dysfunction. Diabetes. 62: 498-509.
-
(2013)
Diabetes
, vol.62
, pp. 498-509
-
-
Hua, Y.1
Zhang, Y.2
Dolence, J.3
Shi, G.P.4
Ren, J.5
Nair, S.6
-
135
-
-
84906935699
-
Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae
-
Emanuel, R., I. Sergin, S. Bhattacharya, J. N. Turner, S. Epelman, C. Settembre, A. Diwan, A. Ballabio, and B. Razani. 2014. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arterioscler. Thromb. Vasc. Biol. 34: 1942-1952.
-
(2014)
Arterioscler. Thromb. Vasc. Biol.
, vol.34
, pp. 1942-1952
-
-
Emanuel, R.1
Sergin, I.2
Bhattacharya, S.3
Turner, J.N.4
Epelman, S.5
Settembre, C.6
Diwan, A.7
Ballabio, A.8
Razani, B.9
-
136
-
-
3042824524
-
Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway
-
Feldstein, A. E., N. W. Werneburg, A. Canbay, M. E. Guicciardi, S. F. Bronk, R. Rydzewski, L. J. Burgart, and G. J. Gores. 2004.Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology. 40: 185-194.
-
(2004)
Hepatology
, vol.40
, pp. 185-194
-
-
Feldstein, A.E.1
Werneburg, N.W.2
Canbay, A.3
Guicciardi, M.E.4
Bronk, S.F.5
Rydzewski, R.6
Burgart, L.J.7
Gores, G.J.8
-
138
-
-
79954514102
-
Apoptosis in nonalcoholic fatty liver disease: Diagnostic and therapeutic implications
-
Alkhouri, N., C. Carter-Kent, and A. E. Feldstein. 2011. Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications. Expert Rev. Gastroenterol. Hepatol. 5: 201-212.
-
(2011)
Expert Rev. Gastroenterol. Hepatol.
, vol.5
, pp. 201-212
-
-
Alkhouri, N.1
Carter-Kent, C.2
Feldstein, A.E.3
-
139
-
-
0032533549
-
Iron in cytosolic ferritin can be recycled through lysosomal degradation in human fibroblasts
-
Radisky, D. C., and J. Kaplan. 1998. Iron in cytosolic ferritin can be recycled through lysosomal degradation in human fibroblasts. Biochem. J. 336: 201-205.
-
(1998)
Biochem J.
, vol.336
, pp. 201-205
-
-
Radisky, D.C.1
Kaplan, J.2
-
140
-
-
0025238656
-
Autophagic degradation of protein generates a pool of ferric iron required for the killing of cultured hepatocytes by an oxidative stress
-
Sakaida, I., M. E. Kyle, and J. L. Farber. 1990. Autophagic degradation of protein generates a pool of ferric iron required for the killing of cultured hepatocytes by an oxidative stress. Mol. Pharmacol. 37: 435-442.
-
(1990)
Mol. Pharmacol.
, vol.37
, pp. 435-442
-
-
Sakaida, I.1
Kyle, M.E.2
Farber, J.L.3
-
141
-
-
34249815482
-
Autophagy, ageing and apoptosis: The role of oxidative stress and lysosomal iron
-
Kurz, T., A. Terman, and U. T. Brunk. 2007. Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch. Biochem. Biophys. 462: 220-230.
-
(2007)
Arch. Biochem. Biophys.
, vol.462
, pp. 220-230
-
-
Kurz, T.1
Terman, A.2
Brunk, U.T.3
-
142
-
-
58849163098
-
Oxidative stress and autophagy in the regulation of lysosomedependent neuron death
-
Pivtoraiko, V. N., S. L. Stone, K. A. Roth, and J. J. Shacka. 2009.Oxidative stress and autophagy in the regulation of lysosomedependent neuron death. Antioxid. Redox Signal. 11: 481-496.
-
(2009)
Antioxid. Redox Signal
, vol.11
, pp. 481-496
-
-
Pivtoraiko, V.N.1
Stone, S.L.2
Roth, K.A.3
Shacka, J.J.4
-
143
-
-
65349126387
-
Electrophysiology of reactive oxygen production in signaling endosomes
-
Lamb, F. S., J. G. Moreland, and F. J. Miller, Jr. 2009. Electrophysiology of reactive oxygen production in signaling endosomes. Antioxid. Redox Signal. 11: 1335-1347.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 1335-1347
-
-
Lamb, F.S.1
Moreland, J.G.2
Miller, F.J.3
-
144
-
-
83455200244
-
Systemic upregulation of NADPH oxidase in diet-induced obesity in rats
-
Jiang, F., H. K. Lim, M. J. Morris, L. Prior, E. Velkoska, X. Wu, and G. J. Dusting. 2011. Systemic upregulation of NADPH oxidase in diet-induced obesity in rats. Redox Rep. 16: 223-229.
-
(2011)
Redox Rep.
, vol.16
, pp. 223-229
-
-
Jiang, F.1
Lim, H.K.2
Morris, M.J.3
Prior, L.4
Velkoska, E.5
Wu, X.6
Dusting, G.J.7
-
145
-
-
84888287660
-
Nox2-derived superoxide contributes to cerebral vascular dysfunction in diet-induced obesity
-
Lynch, C. M., D. A. Kinzenbaw, X. Chen, S. Zhan, E. Mezzetti, J. Filosa, A. Ergul, J. L. Faulkner, F. M. Faraci, and S. P. Didion.2013. Nox2-derived superoxide contributes to cerebral vascular dysfunction in diet-induced obesity. Stroke. 44: 3195-3201.
-
(2013)
Stroke
, vol.44
, pp. 3195-3201
-
-
Lynch, C.M.1
Kinzenbaw, D.A.2
Chen, X.3
Zhan, S.4
Mezzetti, E.5
Filosa, J.6
Ergul, A.7
Faulkner, J.L.8
Faraci, F.M.9
Didion, S.P.10
-
146
-
-
33644768153
-
Phagocytic NADPH oxidase overactivity underlies oxidative stress in metabolic syndrome
-
Fortuño, A., G. San José, M. U. Moreno, O. Beloqui, J. Díez, and G. Zalba. 2006. Phagocytic NADPH oxidase overactivity underlies oxidative stress in metabolic syndrome. Diabetes. 55: 209-215.
-
(2006)
Diabetes
, vol.55
, pp. 209-215
-
-
Fortuño, A.1
José, G.S.2
Moreno, M.U.3
Beloqui, O.4
Díez, J.5
Zalba, G.6
-
147
-
-
0028319319
-
Inhibition of vacuolar H(+)-ATPase by disulfide bond formation between cysteine 254 and cysteine532 in subunit A
-
Feng, Y., and M. Forgac. 1994. Inhibition of vacuolar H(+)-ATPase by disulfide bond formation between cysteine 254 and cysteine532 in subunit A. J. Biol. Chem. 269: 13224-13230.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 13224-13230
-
-
Feng, Y.1
Forgac, M.2
-
148
-
-
0036481562
-
The vacuolar (H+)-ATPases-nature's most versatile proton pumps
-
Nishi, T., and M. Forgac. 2002. The vacuolar (H+)-ATPases-nature's most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3: 94-103.
-
(2002)
Nat. Rev. Mol. Cell Biol.
, vol.3
, pp. 94-103
-
-
Nishi, T.1
Forgac, M.2
-
149
-
-
84904497027
-
Src-dependent impairment of autophagy by oxidative stress in a mouse model of Duchenne muscular dystrophy
-
Pal, R., M. Palmieri, J. A. Loehr, S. Li, R. Abo-Zahrah, T. O. Monroe, P. B. Thakur, M. Sardiello, and G. G. Rodney. 2014.Src-dependent impairment of autophagy by oxidative stress in a mouse model of Duchenne muscular dystrophy. Nat. Commun. 5: 4425.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4425
-
-
Pal, R.1
Palmieri, M.2
Loehr, J.A.3
Li, S.4
Abo-Zahrah, R.5
Monroe, T.O.6
Thakur, P.B.7
Sardiello, M.8
Rodney, G.G.9
-
150
-
-
45549102437
-
Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells
-
Coll, T., E. Eyre, R. Rodriguez-Calvo, X. Palomer, R. M. Sanchez, M. Merlos, J. C. Laguna, and M. Vazquez-Carrera. 2008. Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J. Biol. Chem. 283: 11107-11116.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 11107-11116
-
-
Coll, T.1
Eyre, E.2
Rodriguez-Calvo, R.3
Palomer, X.4
Sanchez, R.M.5
Merlos, M.6
Laguna, J.C.7
Vazquez-Carrera, M.8
-
151
-
-
0037453056
-
Triglyceride accumulation protects against fatty acid-induced lipotoxicity
-
Listenberger, L. L., X. Han, S. E. Lewis, S. Cases, R. V. Farese, Jr., D. S. Ory, and J. E. Schaffer. 2003. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA. 100: 3077-3082.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 3077-3082
-
-
Listenberger, L.L.1
Han, X.2
Lewis, S.E.3
Cases, S.4
Farese, R.V.5
Ory, D.S.6
Schaffer, J.E.7
-
152
-
-
33748374920
-
Lysosome membrane lipid microdomains: Novel regulators of chaperonemediated autophagy
-
Kaushik, S., A. C. Massey, and A. M. Cuervo. 2006. Lysosome membrane lipid microdomains: novel regulators of chaperonemediated autophagy. EMBO J. 25: 3921-3933.
-
(2006)
EMBO J
, vol.25
, pp. 3921-3933
-
-
Kaushik, S.1
Massey, A.C.2
Cuervo, A.M.3
-
153
-
-
84922794140
-
Lysosomal physiology
-
Xu, H., and D. Ren. 2015. Lysosomal physiology. Annu. Rev. Physiol. 77: 57-80.
-
(2015)
Annu. Rev. Physiol
, vol.77
, pp. 57-80
-
-
Xu, H.1
Ren, D.2
-
154
-
-
84899028213
-
Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes
-
Yasuda, M., Y. Tanaka, S. Kume, Y. Morita, M. Chin-Kanasaki, H. Araki, K. Isshiki, S. Araki, D. Koya, M. Haneda, et al. 2014. Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes. Biochim. Biophys. Acta. 1842: 1097-1108.
-
(2014)
Biochim. Biophys. Acta.
, vol.1842
, pp. 1097-1108
-
-
Yasuda, M.1
Tanaka, Y.2
Kume, S.3
Morita, Y.4
Chin-Kanasaki, M.5
Araki, H.6
Isshiki, K.7
Araki, S.8
Koya, D.9
Haneda, M.10
-
155
-
-
84876812269
-
Signals from the lysosome: A control centre for cellular clearance and energy metabolism
-
Settembre, C., A. Fraldi, D. L. Medina, and A. Ballabio. 2013.Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14: 283-296.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 283-296
-
-
Settembre, C.1
Fraldi, A.2
Medina, D.L.3
Ballabio, A.4
-
156
-
-
84997582052
-
Lipid-induced endoplasmic reticulum stress impairs selective autophagy at the step of autophagosome-lysosome fusion in hepatocytes
-
Miyagawa, K., S. Oe, Y. Honma, H. Izumi, R. Baba, and M. Harada.2016. Lipid-induced endoplasmic reticulum stress impairs selective autophagy at the step of autophagosome-lysosome fusion in hepatocytes. Am. J. Pathol. 186: 1861-1873.
-
(2016)
Am. J. Pathol.
, vol.186
, pp. 1861-1873
-
-
Miyagawa, K.1
Oe, S.2
Honma, Y.3
Izumi, H.4
Baba, R.5
Harada, M.6
|