-
1
-
-
4143151942
-
Pathogenesis of type 2 diabetes mellitus
-
ix
-
DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am. 2004;88:787-835, ix.
-
(2004)
Med Clin North Am
, vol.88
, pp. 787-835
-
-
Defronzo, R.A.1
-
2
-
-
0036092239
-
Banting lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes
-
McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002;51:7-18.
-
(2002)
Diabetes
, vol.51
, pp. 7-18
-
-
McGarry, J.D.1
-
3
-
-
0033007207
-
Measurement of intracellular triglyceride stores by H spectroscopy: Validation in vivo
-
Szczepaniak LS, Babcock EE, Schick F, et al. Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol. 1999;276:E977-E989.
-
(1999)
Am J Physiol
, vol.276
-
-
Szczepaniak, L.S.1
Babcock, E.E.2
Schick, F.3
-
5
-
-
38949161524
-
Determinants of intramyocellular triglyceride turnover: Implications for insulin sensitivity
-
Moro C, Bajpeyi S, Smith SR. Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity. Am J Physiol. 2008;294:E203-E213.
-
(2008)
Am J Physiol
, vol.294
-
-
Moro, C.1
Bajpeyi, S.2
Smith, S.R.3
-
6
-
-
34250303939
-
Key role for ceramides in mediating insulin resistance in human muscle cells
-
Pickersgill L, Litherland GJ, Greenberg AS, Walker M, Yeaman SJ. Key role for ceramides in mediating insulin resistance in human muscle cells. J Biol Chem. 2007;282:12583-12589.
-
(2007)
J Biol Chem
, vol.282
, pp. 12583-12589
-
-
Pickersgill, L.1
Litherland, G.J.2
Greenberg, A.S.3
Walker, M.4
Yeaman, S.J.5
-
7
-
-
79959387473
-
Altered skeletal muscle lipase expression and activity contribute to insulin resistance in humans
-
Badin PM, Louche K, Mairal A, et al. Altered skeletal muscle lipase expression and activity contribute to insulin resistance in humans. Diabetes. 2011;60:1734-1742.
-
(2011)
Diabetes
, vol.60
, pp. 1734-1742
-
-
Badin, P.M.1
Louche, K.2
Mairal, A.3
-
8
-
-
33847332202
-
Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesityinduced insulin resistance
-
Holland WL, Brozinick JT, Wang LP, et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesityinduced insulin resistance. Cell Metab. 2007;5:167-179.
-
(2007)
Cell Metab
, vol.5
, pp. 167-179
-
-
Holland, W.L.1
Brozinick, J.T.2
Wang, L.P.3
-
9
-
-
0036300538
-
Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α
-
Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes. 2002;51:2005-2011.
-
(2002)
Diabetes
, vol.51
, pp. 2005-2011
-
-
Itani, S.I.1
Ruderman, N.B.2
Schmieder, F.3
Boden, G.4
-
10
-
-
0032954778
-
Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity
-
Dresner A, Laurent D, Marcucci M, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999;103:253-259.
-
(1999)
J Clin Invest
, vol.103
, pp. 253-259
-
-
Dresner, A.1
Laurent, D.2
Marcucci, M.3
-
11
-
-
0346729968
-
Ceramide content is increased in skeletal muscle from obese insulin-resistant humans
-
Adams JM 2nd, Pratipanawatr T, Berria R, et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes. 2004;53:25-31.
-
(2004)
Diabetes
, vol.53
, pp. 25-31
-
-
Adams, I.I.J.M.1
Pratipanawatr, T.2
Berria, R.3
-
12
-
-
84858020291
-
FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling
-
Zechner R, Zimmermann R, Eichmann TO, et al. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15:279-291.
-
(2012)
Cell Metab
, vol.15
, pp. 279-291
-
-
Zechner, R.1
Zimmermann, R.2
Eichmann, T.O.3
-
13
-
-
0037085450
-
Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis
-
Haemmerle G, Zimmermann R, Hayn M, et al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem. 2002;277:4806-4815.
-
(2002)
J Biol Chem
, vol.277
, pp. 4806-4815
-
-
Haemmerle, G.1
Zimmermann, R.2
Hayn, M.3
-
14
-
-
33646462136
-
Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase
-
Haemmerle G, Lass A, Zimmermann R, et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science. 2006;312:734-737.
-
(2006)
Science
, vol.312
, pp. 734-737
-
-
Haemmerle, G.1
Lass, A.2
Zimmermann, R.3
-
15
-
-
33845590561
-
Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine
-
Prats C, Donsmark M, Qvortrup K, et al. Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine. J Lipid Res. 2006;47:2392-2399.
-
(2006)
J Lipid Res
, vol.47
, pp. 2392-2399
-
-
Prats, C.1
Donsmark, M.2
Qvortrup, K.3
-
16
-
-
33845517481
-
OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization
-
Wolins NE, Quaynor BK, Skinner JR, et al. OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes. 2006;55:3418-3428.
-
(2006)
Diabetes
, vol.55
, pp. 3418-3428
-
-
Wolins, N.E.1
Quaynor, B.K.2
Skinner, J.R.3
-
17
-
-
20944448234
-
A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice
-
Toye AA, Lippiat JD, Proks P, et al. A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia. 2005;48:675-686.
-
(2005)
Diabetologia
, vol.48
, pp. 675-686
-
-
Toye, A.A.1
Lippiat, J.D.2
Proks, P.3
-
18
-
-
77956534963
-
Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice
-
Ayala JE, Samuel VT, Morton GJ, et al. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech. 2010;3:525-534.
-
(2010)
Dis Model Mech
, vol.3
, pp. 525-534
-
-
Ayala, J.E.1
Samuel, V.T.2
Morton, G.J.3
-
19
-
-
0033661363
-
A model to explore the interaction between muscle insulin resistance and β-cell dysfunction in the development of type 2 diabetes
-
Mauvais-Jarvis F, Virkamaki A, Michael MD, et al. A model to explore the interaction between muscle insulin resistance and β-cell dysfunction in the development of type 2 diabetes. Diabetes. 2000; 49:2126-2134.
-
(2000)
Diabetes
, vol.49
, pp. 2126-2134
-
-
Mauvais-Jarvis, F.1
Virkamaki, A.2
Michael, M.D.3
-
20
-
-
0030611575
-
Incorporation of [3-3H]glucose and 2-[1-14C]deoxyglucose into glycogen in heart and skeletal muscle in vivo: Implications for the quantitation of tissue glucose uptake
-
Virkamaki A, Rissanen E, Hamalainen S, Utriainen T, Yki-Jarvinen H. Incorporation of [3-3H]glucose and 2-[1-14C]deoxyglucose into glycogen in heart and skeletal muscle in vivo: implications for the quantitation of tissue glucose uptake. Diabetes. 1997;46:1106-1110.
-
(1997)
Diabetes
, vol.46
, pp. 1106-1110
-
-
Virkamaki, A.1
Rissanen, E.2
Hamalainen, S.3
Utriainen, T.4
Yki-Jarvinen, H.5
-
21
-
-
0022036226
-
Dose-response curves for in vivo insulin sensitivity in individual tissues in rats
-
Kraegen EW, James DE, Jenkins AB, Chisholm DJ. Dose-response curves for in vivo insulin sensitivity in individual tissues in rats. Am J Physiol. 1985;248:E353-E362.
-
(1985)
Am J Physiol
, vol.248
-
-
Kraegen, E.W.1
James, D.E.2
Jenkins, A.B.3
Chisholm, D.J.4
-
22
-
-
36148945620
-
Rapid preparation of a plasma membrane fraction from adipocytes and muscle cells: Application to detection of translocated glucose transporter 4 on the plasma membrane
-
Nishiumi S, Ashida H. Rapid preparation of a plasma membrane fraction from adipocytes and muscle cells: application to detection of translocated glucose transporter 4 on the plasma membrane. Biosci Biotechnol Biochem. 2007;71:2343-2346.
-
(2007)
Biosci Biotechnol Biochem
, vol.71
, pp. 2343-2346
-
-
Nishiumi, S.1
Ashida, H.2
-
23
-
-
77955400118
-
TheSNAREprotein SNAP23 and the SNARE-interacting protein Munc18c in human skeletal muscle are implicated in insulin resistance/type 2 diabetes
-
Bostrom P, Andersson L, Vind B, et al. TheSNAREprotein SNAP23 and the SNARE-interacting protein Munc18c in human skeletal muscle are implicated in insulin resistance/type 2 diabetes. Diabetes. 2010;59:1870-1878.
-
(2010)
Diabetes
, vol.59
, pp. 1870-1878
-
-
Bostrom, P.1
Andersson, L.2
Vind, B.3
-
24
-
-
69949089944
-
Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals
-
Moro C, Galgani JE, Luu L, et al. Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals. J Clin Endocrinol Metab. 2009;94:3440-3447.
-
(2009)
J Clin Endocrinol Metab
, vol.94
, pp. 3440-3447
-
-
Moro, C.1
Galgani, J.E.2
Luu, L.3
-
25
-
-
33845261493
-
A rapid method of total lipid extraction and purification
-
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911-917.
-
(1959)
Can J Biochem Physiol
, vol.37
, pp. 911-917
-
-
Bligh, E.G.1
Dyer, W.J.2
-
26
-
-
0028310839
-
Hepatic lipase induces the formation of pre-β 1 high density lipoprotein (HDL) from triacylglycerol-rich HDL2. A study comparing liver perfusion to in vitro incubation with lipases
-
Barrans A, Collet X, Barbaras R, et al. Hepatic lipase induces the formation of pre-β 1 high density lipoprotein (HDL) from triacylglycerol-rich HDL2. A study comparing liver perfusion to in vitro incubation with lipases. J Biol Chem. 1994;269:11572-11577.
-
(1994)
J Biol Chem
, vol.269
, pp. 11572-11577
-
-
Barrans, A.1
Collet, X.2
Barbaras, R.3
-
27
-
-
77956846038
-
Metabolic switching of human myotubes is improved by n-3 fatty acids
-
Hessvik NP, Bakke SS, Fredriksson K, et al. Metabolic switching of human myotubes is improved by n-3 fatty acids. J Lipid Res. 2010; 51:2090-2104.
-
(2010)
J Lipid Res
, vol.51
, pp. 2090-2104
-
-
Hessvik, N.P.1
Bakke, S.S.2
Fredriksson, K.3
-
28
-
-
8544233570
-
Protein kinase Cθ inhibits insulin signaling by phosphorylating IRS1 at Ser(1101)
-
Li Y, Soos TJ, Li X, et al. Protein kinase Cθ inhibits insulin signaling by phosphorylating IRS1 at Ser(1101). J Biol Chem. 2004;279: 45304-45307.
-
(2004)
J Biol Chem
, vol.279
, pp. 45304-45307
-
-
Li, Y.1
Soos, T.J.2
Li, X.3
-
29
-
-
0037184925
-
Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-as-sociated phosphatidylinositol 3-kinase activity in muscle
-
Yu C, Chen Y, Cline GW, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-as-sociated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002;277:50230-50236.
-
(2002)
J Biol Chem
, vol.277
, pp. 50230-50236
-
-
Yu, C.1
Chen, Y.2
Cline, G.W.3
-
30
-
-
29144461947
-
A novel regulation of IRS1 (insulin receptor substrate-1) expression following short term insulin administration
-
Ruiz-Alcaraz AJ, Liu HK, Cuthbertson DJ, et al. A novel regulation of IRS1 (insulin receptor substrate-1) expression following short term insulin administration. Biochem J. 2005;392:345-352.
-
(2005)
Biochem J
, vol.392
, pp. 345-352
-
-
Ruiz-Alcaraz, A.J.1
Liu, H.K.2
Cuthbertson, D.J.3
-
32
-
-
75549085755
-
Skeletal muscle insulin resistance is the primary defect in type 2 diabetes
-
DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;2(suppl 32): S157-S163.
-
(2009)
Diabetes Care
, vol.2
, Issue.SUPPL. 32
-
-
Defronzo, R.A.1
Tripathy, D.2
-
33
-
-
84857861919
-
Mechanisms for insulin resistance: Common threads and missing links
-
Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148:852-871.
-
(2012)
Cell
, vol.148
, pp. 852-871
-
-
Samuel, V.T.1
Shulman, G.I.2
-
34
-
-
38849090672
-
Downregulation of diacylglycerol kinase δ contributes to hyperglycemia-induced insulin resistance
-
Chibalin AV, Leng Y, Vieira E, et al. Downregulation of diacylglycerol kinase δ contributes to hyperglycemia-induced insulin resistance. Cell. 2008;132:375-386.
-
(2008)
Cell
, vol.132
, pp. 375-386
-
-
Chibalin, A.V.1
Leng, Y.2
Vieira, E.3
-
35
-
-
77956022194
-
Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption
-
Ussher JR, Koves TR, Cadete VJ, et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes. 2010;59:2453-2464.
-
(2010)
Diabetes
, vol.59
, pp. 2453-2464
-
-
Ussher, J.R.1
Koves, T.R.2
Cadete, V.J.3
-
36
-
-
84856737149
-
Endoplasmic reticulum stress does not mediate palmitate-induced insulin resistance in mouse and human muscle cells
-
Hage Hassan R, Hainault I, Vilquin JT, et al. Endoplasmic reticulum stress does not mediate palmitate-induced insulin resistance in mouse and human muscle cells. Diabetologia. 2012;55:204-214.
-
(2012)
Diabetologia
, vol.55
, pp. 204-214
-
-
Hage Hassan, R.1
Hainault, I.2
Vilquin, J.T.3
-
37
-
-
84855791512
-
Reduction of endoplasmic reticulum stress using chemical chaperones or Grp78 overexpression does not protect muscle cells from palmitate-induced insulin resistance
-
Rieusset J, Chauvin MA, Durand A, et al. Reduction of endoplasmic reticulum stress using chemical chaperones or Grp78 overexpression does not protect muscle cells from palmitate-induced insulin resistance. Biochem Biophys Res Commun. 2012;417:439-445.
-
(2012)
Biochem Biophys Res Commun
, vol.417
, pp. 439-445
-
-
Rieusset, J.1
Chauvin, M.A.2
Durand, A.3
-
38
-
-
0033861608
-
Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity
-
Itani SI, Zhou Q, Pories WJ, MacDonald KG, Dohm GL. Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity. Diabetes. 2000;49:1353-1358.
-
(2000)
Diabetes
, vol.49
, pp. 1353-1358
-
-
Itani, S.I.1
Zhou, Q.2
Pories, W.J.3
MacDonald, K.G.4
Dohm, G.L.5
-
39
-
-
48249147071
-
Hormone-sensitive lipase serine phosphorylation and glycerol exchange across skeletal muscle in lean and obese subjects: Effect of β-adrenergic stimulation
-
Jocken JW, Roepstorff C, Goossens GH, et al. Hormone-sensitive lipase serine phosphorylation and glycerol exchange across skeletal muscle in lean and obese subjects: effect of β-adrenergic stimulation. Diabetes. 2008;57:1834-1841.
-
(2008)
Diabetes
, vol.57
, pp. 1834-1841
-
-
Jocken, J.W.1
Roepstorff, C.2
Goossens, G.H.3
-
40
-
-
0039967265
-
A comparative study of the activation of protein kinase Cα by different diacylglycerol isomers
-
Sanchez-Pinera P, Micol V, Corbalan-Garcia S, Gomez-Fernandez JC. A comparative study of the activation of protein kinase Cα by different diacylglycerol isomers. Biochem J. 1999;337(pt 3):387-395.
-
(1999)
Biochem J
, vol.337
, Issue.PART 3
, pp. 387-395
-
-
Sanchez-Pinera, P.1
Micol, V.2
Corbalan-Garcia, S.3
Gomez-Fernandez, J.C.4
-
41
-
-
8944256087
-
Acylglycerol recycling from triacylglycerol to phospholipid, not lipase activity, is defective in neutral lipid storage disease fibroblasts
-
Igal RA, Coleman RA. Acylglycerol recycling from triacylglycerol to phospholipid, not lipase activity, is defective in neutral lipid storage disease fibroblasts. J Biol Chem. 1996;271:16644-16651.
-
(1996)
J Biol Chem
, vol.271
, pp. 16644-16651
-
-
Igal, R.A.1
Coleman, R.A.2
-
42
-
-
84860290557
-
Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58
-
Badin PM, Loubiere C, Coonen M, et al. Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58. J Lipid Res. 2012;53:839-848.
-
(2012)
J Lipid Res
, vol.53
, pp. 839-848
-
-
Badin, P.M.1
Loubiere, C.2
Coonen, M.3
-
43
-
-
67650522935
-
Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes
-
Bezaire V, Mairal A, Ribet C, et al. Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes. J Biol Chem. 2009;284:18282-18291.
-
(2009)
J Biol Chem
, vol.284
, pp. 18282-18291
-
-
Bezaire, V.1
Mairal, A.2
Ribet, C.3
-
44
-
-
2642614548
-
Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro
-
Anthonsen MW, Ronnstrand L, Wernstedt C, Degerman E, Holm C. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem. 1998;273:215-221.
-
(1998)
J Biol Chem
, vol.273
, pp. 215-221
-
-
Anthonsen, M.W.1
Ronnstrand, L.2
Wernstedt, C.3
Degerman, E.4
Holm, C.5
-
45
-
-
77950192925
-
Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: Role of ATGL, HSL, andAMPK
-
Gaidhu MP, Anthony NM, Patel P, Hawke TJ, Ceddia RB. Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, andAMPK. Am J Physiol Cell Physiol. 2010;298:C961-C971.
-
(2010)
Am J Physiol Cell Physiol
, vol.298
-
-
Gaidhu, M.P.1
Anthony, N.M.2
Patel, P.3
Hawke, T.J.4
Ceddia, R.B.5
-
46
-
-
84861312625
-
Peroxisome proliferator-activated receptor γ-dependent regulation of lipolytic nodes and metabolic flexibility
-
Rodriguez-Cuenca S, Carobbio S, Velagapudi VR, et al. Peroxisome proliferator-activated receptor γ-dependent regulation of lipolytic nodes and metabolic flexibility. Mol Cell Biol. 2012;32:1555-1565.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 1555-1565
-
-
Rodriguez-Cuenca, S.1
Carobbio, S.2
Velagapudi, V.R.3
-
47
-
-
4544324948
-
Impaired β-adrenergically mediated lipolysis in skeletal muscle of obese subjects
-
Blaak EE, Schiffelers SL, Saris WH, Mensink M, Kooi ME. Impaired β-adrenergically mediated lipolysis in skeletal muscle of obese subjects. Diabetologia. 2004;47:1462-1468.
-
(2004)
Diabetologia
, vol.47
, pp. 1462-1468
-
-
Blaak, E.E.1
Schiffelers, S.L.2
Saris, W.H.3
Mensink, M.4
Kooi, M.E.5
-
48
-
-
0141480969
-
Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact
-
Mulder H, Sorhede-Winzell M, Contreras JA, et al. Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact. J Biol Chem. 2003;278:36380-36388.
-
(2003)
J Biol Chem
, vol.278
, pp. 36380-36388
-
-
Mulder, H.1
Sorhede-Winzell, M.2
Contreras, J.A.3
-
49
-
-
20544449419
-
Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart
-
Park SY, Kim HJ, Wang S, et al. Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart. Am J Physiol. 2005;289:E30-E39.
-
(2005)
Am J Physiol
, vol.289
-
-
Park, S.Y.1
Kim, H.J.2
Wang, S.3
-
50
-
-
0344896634
-
Resistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSLdeficient mice
-
Harada K, Shen WJ, Patel S, et al. Resistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSLdeficient mice. Am J Physiol. 2003;285:E1182-E1195.
-
(2003)
Am J Physiol
, vol.285
-
-
Harada, K.1
Shen, W.J.2
Patel, S.3
-
51
-
-
0034623950
-
PerilipinAincreases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis
-
Brasaemle DL, Rubin B, Harten IA, Gruia-Gray J, Kimmel AR, Londos C. PerilipinAincreases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem. 2000;275: 38486-38493.
-
(2000)
J Biol Chem
, vol.275
, pp. 38486-38493
-
-
Brasaemle, D.L.1
Rubin, B.2
Harten, I.A.3
Gruia-Gray, J.4
Kimmel, A.R.5
Londos, C.6
-
52
-
-
4744341229
-
PerilipinAmediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes
-
Subramanian V, Rothenberg A, Gomez C, et al. PerilipinAmediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes. J Biol Chem. 2004;279:42062-42071.
-
(2004)
J Biol Chem
, vol.279
, pp. 42062-42071
-
-
Subramanian, V.1
Rothenberg, A.2
Gomez, C.3
-
53
-
-
84857632171
-
The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria
-
Bosma M, Minnaard R, Sparks LM, et al. The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochem Cell Biol. 2012;137:205-216.
-
(2012)
Histochem Cell Biol
, vol.137
, pp. 205-216
-
-
Bosma, M.1
Minnaard, R.2
Sparks, L.M.3
-
54
-
-
79955549893
-
Unique regulation of adipose triglyceride lipase (ATGL) by perilipin 5, a lipid droplet-associated protein
-
Wang H, Bell M, Sreenevasan U, et al. Unique regulation of adipose triglyceride lipase (ATGL) by perilipin 5, a lipid droplet-associated protein. J Biol Chem. 2011;286:15707-15715.
-
(2011)
J Biol Chem
, vol.286
, pp. 15707-15715
-
-
Wang, H.1
Bell, M.2
Sreenevasan, U.3
-
55
-
-
80455135722
-
Perilipin 5, a lipid dropletassociated protein, provides physical and metabolic linkage to mitochondria
-
Wang H, Sreenevasan U, Hu H, et al. Perilipin 5, a lipid dropletassociated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res. 2011;52:2159-2168.
-
(2011)
J Lipid Res
, vol.52
, pp. 2159-2168
-
-
Wang, H.1
Sreenevasan, U.2
Hu, H.3
-
56
-
-
79953160438
-
Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase
-
Granneman JG, Moore HP, Mottillo EP, Zhu Z, Zhou L. Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. J Biol Chem. 2011;286:5126-5135.
-
(2011)
J Biol Chem
, vol.286
, pp. 5126-5135
-
-
Granneman, J.G.1
Moore, H.P.2
Mottillo, E.P.3
Zhu, Z.4
Zhou, L.5
-
57
-
-
0026785388
-
Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids
-
Schmidt A, Endo N, Rutledge SJ, Vogel R, Shinar D, Rodan GA. Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids. Mol Endocrinol. 1992;6:1634-1641.
-
(1992)
Mol Endocrinol
, vol.6
, pp. 1634-1641
-
-
Schmidt, A.1
Endo, N.2
Rutledge, S.J.3
Vogel, R.4
Shinar, D.5
Rodan, G.A.6
-
58
-
-
34547505089
-
Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle
-
Garcia-Roves P, Huss JM, Han DH, et al. Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proc Natl Acad Sci USA. 2007;104:10709-10713.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 10709-10713
-
-
Garcia-Roves, P.1
Huss, J.M.2
Han, D.H.3
-
59
-
-
33846820321
-
LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues
-
Dalen KT, Dahl T, Holter E, et al. LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues. Biochim Biophys Acta. 2007;1771:210-227.
-
(2007)
Biochim Biophys Acta
, vol.1771
, pp. 210-227
-
-
Dalen, K.T.1
Dahl, T.2
Holter, E.3
-
60
-
-
77956040410
-
Saturated-and n-6 polyunsaturated-fat diets each induce ceramide accumulation in mouse skeletal muscle: Reversal and improvement of glucose tolerance by lipid metabolism inhibitors
-
Frangioudakis G, Garrard J, Raddatz K, Nadler JL, Mitchell TW, Schmitz-Peiffer C. Saturated-and n-6 polyunsaturated-fat diets each induce ceramide accumulation in mouse skeletal muscle: reversal and improvement of glucose tolerance by lipid metabolism inhibitors. Endocrinology. 2010;151:4187-4196.
-
(2010)
Endocrinology
, vol.151
, pp. 4187-4196
-
-
Frangioudakis, G.1
Garrard, J.2
Raddatz, K.3
Nadler, J.L.4
Mitchell, T.W.5
Schmitz-Peiffer, C.6
-
61
-
-
34249894505
-
Upregulation of myocellularDGAT1augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance
-
Liu L, Zhang Y, Chen N, Shi X, Tsang B, Yu YH. Upregulation of myocellularDGAT1augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J Clin Invest. 2007;117:1679-1689.
-
(2007)
J Clin Invest
, vol.117
, pp. 1679-1689
-
-
Liu, L.1
Zhang, Y.2
Chen, N.3
Shi, X.4
Tsang, B.5
Yu, Y.H.6
|