-
1
-
-
77956172813
-
Physiological role of autophagy as an intracellular recycling system: With an emphasis on nutrient metabolism
-
Kuma A, Mizushima N (2010) Physiological role of autophagy as an intracellular recycling system: With an emphasis on nutrient metabolism. Semin Cell Dev Biol 21:683-690.
-
(2010)
Semin Cell Dev Biol
, vol.21
, pp. 683-690
-
-
Kuma, A.1
Mizushima, N.2
-
2
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344-1348.
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
3
-
-
36849089101
-
Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice
-
DOI 10.1016/j.cell.2007.10.035, PII S0092867407013542
-
Komatsu M, et al. (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149-1163. (Pubitemid 350235021)
-
(2007)
Cell
, vol.131
, Issue.6
, pp. 1149-1163
-
-
Komatsu, M.1
Waguri, S.2
Koike, M.3
Sou, Y.-s.4
Ueno, T.5
Hara, T.6
Mizushima, N.7
Iwata, J.-i.8
Ezaki, J.9
Murata, S.10
Hamazaki, J.11
Nishito, Y.12
Iemura, S.-i.13
Natsume, T.14
Yanagawa, T.15
Uwayama, J.16
Warabi, E.17
Yoshida, H.18
Ishii, T.19
Kobayashi, A.20
Yamamoto, M.21
Yue, Z.22
Uchiyama, Y.23
Kominami, E.24
Tanaka, K.25
more..
-
4
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara T, et al. (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885-889.
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
-
5
-
-
77449094358
-
Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration
-
Liang CC, Wang C, Peng X, Gan B, Guan JL (2010) Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J Biol Chem 285:3499-3509.
-
(2010)
J Biol Chem
, vol.285
, pp. 3499-3509
-
-
Liang, C.C.1
Wang, C.2
Peng, X.3
Gan, B.4
Guan, J.L.5
-
6
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
DOI 10.1038/nm1574, PII NM1574
-
Nakai A, et al. (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13:619-624. (Pubitemid 46828485)
-
(2007)
Nature Medicine
, vol.13
, Issue.5
, pp. 619-624
-
-
Nakai, A.1
Yamaguchi, O.2
Takeda, T.3
Higuchi, Y.4
Hikoso, S.5
Taniike, M.6
Omiya, S.7
Mizote, I.8
Matsumura, Y.9
Asahi, M.10
Nishida, K.11
Hori, M.12
Mizushima, N.13
Otsu, K.14
-
7
-
-
70449927247
-
Autophagy is required to maintain muscle mass
-
Masiero E, et al. (2009) Autophagy is required to maintain muscle mass. Cell Metab 10:507-515.
-
(2009)
Cell Metab
, vol.10
, pp. 507-515
-
-
Masiero, E.1
-
8
-
-
52749093177
-
Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
-
Ebato C, et al. (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8:325-332.
-
(2008)
Cell Metab
, vol.8
, pp. 325-332
-
-
Ebato, C.1
-
9
-
-
52749094770
-
Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia
-
Jung HS, et al. (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8:318-324.
-
(2008)
Cell Metab
, vol.8
, pp. 318-324
-
-
Jung, H.S.1
-
10
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu M, et al. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880-884.
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
-
11
-
-
33748413303
-
Intracellular quality control by autophagy: How does autophagy prevent neurodegeneration?
-
Mizushima N, Hara T (2006) Intracellular quality control by autophagy: How does autophagy prevent neurodegeneration? Autophagy 2:302-304. (Pubitemid 44342375)
-
(2006)
Autophagy
, vol.2
, Issue.4
, pp. 302-304
-
-
Mizushima, N.1
Hara, T.2
-
12
-
-
72549095406
-
Regulation mechanisms and signaling pathways of autophagy
-
He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67-93.
-
(2009)
Annu Rev Genet
, vol.43
, pp. 67-93
-
-
He, C.1
Klionsky, D.J.2
-
13
-
-
84863393597
-
Exercise-induced Bcl-2-regulated autophagy is required for muscle glucose homeostasis
-
10.1038/nature10758
-
He C, et al. (2012) Exercise-induced Bcl-2-regulated autophagy is required for muscle glucose homeostasis. Nature, 10.1038/nature10758.
-
(2012)
Nature
-
-
He, C.1
-
14
-
-
33745713171
-
Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
-
Degenhardt K, et al. (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51-64.
-
(2006)
Cancer Cell
, vol.10
, pp. 51-64
-
-
Degenhardt, K.1
-
15
-
-
66449099090
-
Autophagy suppresses tumorigenesis through elimination of p62
-
Mathew R, et al. (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137:1062-1075.
-
(2009)
Cell
, vol.137
, pp. 1062-1075
-
-
Mathew, R.1
-
16
-
-
57049094929
-
Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease
-
DOI 10.1093/hmg/ddn292
-
Raben N, et al. (2008) Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet 17:3897-3908. (Pubitemid 352762852)
-
(2008)
Human Molecular Genetics
, vol.17
, Issue.24
, pp. 3897-3908
-
-
Raben, N.1
Hill, V.2
Shea, L.3
Takikita, S.4
Baum, R.5
Mizushima, N.6
Ralston, E.7
Plotz, P.8
-
17
-
-
78149319082
-
Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration
-
Grumati P, et al. (2010) Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med 16:1313-1320.
-
(2010)
Nat Med
, vol.16
, pp. 1313-1320
-
-
Grumati, P.1
-
18
-
-
57749170458
-
The many roles of histone deacetylases in development and physiology: Implications for disease and therapy
-
Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat Rev Genet 10:32-42.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 32-42
-
-
Haberland, M.1
Montgomery, R.L.2
Olson, E.N.3
-
19
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
Choudhary C, et al. (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834-840.
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
-
20
-
-
34447511648
-
Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility
-
DOI 10.1101/gad.1563807
-
Montgomery RL, et al. (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21:1790-1802. (Pubitemid 47076478)
-
(2007)
Genes and Development
, vol.21
, Issue.14
, pp. 1790-1802
-
-
Montgomery, R.L.1
Davis, C.A.2
Potthoff, M.J.3
Haberland, M.4
Fielitz, J.5
Qi, X.6
Hill, J.A.7
Richardson, J.A.8
Olson, E.N.9
-
21
-
-
66049101024
-
Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development
-
Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN (2009) Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci USA 106:7876-7881.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 7876-7881
-
-
Montgomery, R.L.1
Hsieh, J.2
Barbosa, A.C.3
Richardson, J.A.4
Olson, E.N.5
-
22
-
-
77952002655
-
Redundant control of adipogenesis by histone deacetylases 1 and 2
-
Haberland M, Carrer M, Mokalled MH, Montgomery RL, Olson EN (2010) Redundant control of adipogenesis by histone deacetylases 1 and 2. J Biol Chem 285: 14663-14670.
-
(2010)
J Biol Chem
, vol.285
, pp. 14663-14670
-
-
Haberland, M.1
Carrer, M.2
Mokalled, M.H.3
Montgomery, R.L.4
Olson, E.N.5
-
23
-
-
12844273481
-
Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice
-
DOI 10.1073/pnas.0409103102
-
Li S, et al. (2005) Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc Natl Acad Sci USA 102:1082-1087. (Pubitemid 40170729)
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.4
, pp. 1082-1087
-
-
Li, S.1
Czubryt, M.P.2
McAnally, J.3
Bassel-Duby, R.4
Richardson, J.A.5
Wiebel, F.F.6
Nordheim, A.7
Olson, E.N.8
-
24
-
-
0027226234
-
Separable regulatory elements governing myogenin transcription in mouse embryogenesis
-
Cheng TC, Wallace MC, Merlie JP, Olson EN (1993) Separable regulatory elements governing myogenin transcription in mouse embryogenesis. Science 261:215-218. (Pubitemid 23265399)
-
(1993)
Science
, vol.261
, Issue.5118
, pp. 215-218
-
-
Cheng, T.-C.1
Wallace, M.C.2
Merlie, J.P.3
Olson, E.N.4
-
25
-
-
0035203948
-
The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development
-
Wang DZ, Valdez MR, McAnally J, Richardson J, Olson EN (2001) The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development 128:4623-4633. (Pubitemid 33130442)
-
(2001)
Development
, vol.128
, Issue.22
, pp. 4623-4633
-
-
Wang, D.-Z.1
Renee, V.M.2
McAnally, J.3
Richardson, J.4
Olson, E.N.5
-
26
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
DOI 10.1083/jcb.200412022
-
Komatsu M, et al. (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425-434. (Pubitemid 40686693)
-
(2005)
Journal of Cell Biology
, vol.169
, Issue.3
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
Tanida, I.6
Ezaki, J.7
Mizushima, N.8
Ohsumi, Y.9
Uchiyama, Y.10
Kominami, E.11
Tanaka, K.12
Chiba, T.13
-
27
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
DOI 10.1038/nature03029
-
Kuma A, et al. (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032-1036. (Pubitemid 40052234)
-
(2004)
Nature
, vol.432
, Issue.7020
, pp. 1032-1036
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
Yamamoto, A.4
Nakaya, H.5
Yoshimori, T.6
Ohsumi, Y.7
Tokuhisa, T.8
Mizushima, N.9
-
28
-
-
77956416339
-
Autophagy in mammalian development and differentiation
-
Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823-830.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 823-830
-
-
Mizushima, N.1
Levine, B.2
-
29
-
-
4344712684
-
Methods for monitoring autophagy
-
Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36:2491-2502.
-
(2004)
Int J Biochem Cell Biol
, vol.36
, pp. 2491-2502
-
-
Mizushima, N.1
-
30
-
-
38949108670
-
Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes
-
Klionsky DJ, et al. (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151-175.
-
(2008)
Autophagy
, vol.4
, Issue.2
, pp. 151-175
-
-
Klionsky, D.J.1
-
31
-
-
57249083972
-
Structural basis of target recognition by Atg8/LC3 during selective autophagy
-
Noda NN, et al. (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211-1218.
-
(2008)
Genes Cells
, vol.13
, pp. 1211-1218
-
-
Noda, N.N.1
-
32
-
-
34548259958
-
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy*[S]
-
DOI 10.1074/jbc.M702824200
-
Pankiv S, et al. (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131-24145. (Pubitemid 47328003)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.33
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.-A.5
Outzen, H.6
Overvatn, A.7
Bjorkoy, G.8
Johansen, T.9
-
33
-
-
53049103308
-
Structural basis for sorting mechanism of p62 in selective autophagy
-
Ichimura Y, et al. (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283:22847-22857.
-
(2008)
J Biol Chem
, vol.283
, pp. 22847-22857
-
-
Ichimura, Y.1
-
34
-
-
48249111779
-
The role of autophagy in neonatal tissues: Just a response to amino acid starvation?
-
Schiaffino S, Mammucari C, Sandri M (2008) The role of autophagy in neonatal tissues: Just a response to amino acid starvation? Autophagy 4:727-730.
-
(2008)
Autophagy
, vol.4
, pp. 727-730
-
-
Schiaffino, S.1
Mammucari, C.2
Sandri, M.3
-
35
-
-
0344081177
-
Minireview: The AMP-activated protein kinase cascade: The key sensor of cellular energy status
-
Hardie DG (2003) Minireview: the AMP-activated protein kinase cascade: The key sensor of cellular energy status. Endocrinology 144:5179-5183.
-
(2003)
Endocrinology
, vol.144
, pp. 5179-5183
-
-
Hardie, D.G.1
-
36
-
-
0347318052
-
The AMP-activated protein kinase cascade - A unifying system for energy control
-
Carling D (2004) The AMP-activated protein kinase cascade - a unifying system for energy control. Trends Biochem Sci 29:18-24.
-
(2004)
Trends Biochem Sci
, vol.29
, pp. 18-24
-
-
Carling, D.1
-
37
-
-
26444494585
-
Endoplasmic reticulum stress compromises the ubiquitin-proteasome system
-
DOI 10.1093/hmg/ddi312
-
Menéndez-Benito V, Verhoef LG, Masucci MG, Dantuma NP (2005) Endoplasmic reticulum stress compromises the ubiquitin-proteasome system. Hum Mol Genet 14:2787-2799. (Pubitemid 41418785)
-
(2005)
Human Molecular Genetics
, vol.14
, Issue.19
, pp. 2787-2799
-
-
Menendez-Benito, V.1
Verhoef, L.G.G.C.2
Masucci, M.G.3
Dantuma, N.P.4
-
38
-
-
36448940798
-
FoxO3 Controls Autophagy in Skeletal Muscle In Vivo
-
DOI 10.1016/j.cmet.2007.11.001, PII S1550413107003361
-
Mammucari C, et al. (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6:458-471. (Pubitemid 350163055)
-
(2007)
Cell Metabolism
, vol.6
, Issue.6
, pp. 458-471
-
-
Mammucari, C.1
Milan, G.2
Romanello, V.3
Masiero, E.4
Rudolf, R.5
Del, P.P.6
Burden, S.J.7
Di, L.R.8
Sandri, C.9
Zhao, J.10
Goldberg, A.L.11
Schiaffino, S.12
Sandri, M.13
-
39
-
-
0034329418
-
LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
-
Kabeya Y, et al. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720-5728.
-
(2000)
EMBO J
, vol.19
, pp. 5720-5728
-
-
Kabeya, Y.1
-
40
-
-
61449172037
-
Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
-
Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44-57.
-
(2009)
Nat Protoc
, vol.4
, pp. 44-57
-
-
Huang, W.1
Sherman, B.T.2
Lempicki, R.A.3
-
41
-
-
77249147818
-
Sex differences in high-fat diet-induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice
-
Hwang LL, et al. (2010) Sex differences in high-fat diet-induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice. Obesity (Silver Spring) 18:463-469.
-
(2010)
Obesity (Silver Spring)
, vol.18
, pp. 463-469
-
-
Hwang, L.L.1
-
42
-
-
34547588219
-
Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: Evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents
-
DOI 10.2337/db07-0093
-
Turner N, et al. (2007) Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56:2085-2092. (Pubitemid 47195821)
-
(2007)
Diabetes
, vol.56
, Issue.8
, pp. 2085-2092
-
-
Turner, N.1
Bruce, C.R.2
Beale, S.M.3
Hoehn, K.L.4
So, T.5
Rolph, M.S.6
Cooney, G.J.7
-
43
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
DOI 10.1016/j.cmet.2005.05.004, PII S1550413105001427
-
Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361-370. (Pubitemid 43960626)
-
(2005)
Cell Metabolism
, vol.1
, Issue.6
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
44
-
-
21344444333
-
A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle
-
DOI 10.2337/diabetes.54.7.1926
-
Sparks LM, et al. (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54: 1926-1933. (Pubitemid 40911253)
-
(2005)
Diabetes
, vol.54
, Issue.7
, pp. 1926-1933
-
-
Sparks, L.M.1
Xie, H.2
Koza, R.A.3
Mynatt, R.4
Hulver, M.W.5
Bray, G.A.6
Smith, S.R.7
-
45
-
-
0035432971
-
Defective Insulin-Induced GLUT4 Translocation in Skeletal Muscle of High Fat-Fed Rats Is Associated with Alterations in Both Akt/Protein Kinase B and Atypical Protein Kinase C (zeta/lambda) Activities
-
Tremblay F, Lavigne C, Jacques H, Marette A (2001) Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C (zeta/lambda) activities. Diabetes 50:1901-1910. (Pubitemid 33641612)
-
(2001)
Diabetes
, vol.50
, Issue.8
, pp. 1901-1910
-
-
Tremblay, F.1
Lavigne, C.2
Jacques, H.3
Marette, A.4
-
46
-
-
0030987889
-
High-fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect
-
Zierath JR, Houseknecht KL, Gnudi L, Kahn BB (1997) High-fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect. Diabetes 46: 215-223. (Pubitemid 27272254)
-
(1997)
Diabetes
, vol.46
, Issue.2
, pp. 215-223
-
-
Zierath, J.R.1
Houseknecht, K.L.2
Gnudi, L.3
Kahn, B.B.4
-
47
-
-
34250810709
-
Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (Vorinostat, SAHA) profoundly inhibits the growth of human pancreatic cancer cells
-
DOI 10.1002/ijc.22558
-
Kumagai T, et al. (2007) Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (Vorinostat, SAHA) profoundly inhibits the growth of human pancreatic cancer cells. Int J Cancer 121:656-665. (Pubitemid 46986501)
-
(2007)
International Journal of Cancer
, vol.121
, Issue.3
, pp. 656-665
-
-
Kumagai, T.1
Wakimoto, N.2
Yin, D.3
Gery, S.4
Kawamata, N.5
Takai, N.6
Komatsu, N.7
Chumakov, A.8
Imai, Y.9
Koeffler, H.P.10
-
48
-
-
11144221007
-
Apoptotic and autophagic cell death induced by histone deacetylase inhibitors
-
DOI 10.1073/pnas.0408345102
-
Shao Y, Gao Z, Marks PA, Jiang X (2004) Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 101:18030-18035. (Pubitemid 40054069)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.52
, pp. 18030-18035
-
-
Shao, Y.1
Gao, Z.2
Marks, P.A.3
Jiang, X.4
-
49
-
-
0035965343
-
Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen
-
Phiel CJ, et al. (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734-36741.
-
(2001)
J Biol Chem
, vol.276
, pp. 36734-36741
-
-
Phiel, C.J.1
-
50
-
-
77957244932
-
Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases
-
Moresi V, et al. (2010) Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143:35-45.
-
(2010)
Cell
, vol.143
, pp. 35-45
-
-
Moresi, V.1
-
51
-
-
49249107691
-
Tumor necrosis factor-alpha inhibition of skeletal muscle regeneration is mediated by a caspase-dependent stem cell response
-
Moresi V, et al. (2008) Tumor necrosis factor-alpha inhibition of skeletal muscle regeneration is mediated by a caspase-dependent stem cell response. Stem Cells 26: 997-1008.
-
(2008)
Stem Cells
, vol.26
, pp. 997-1008
-
-
Moresi, V.1
-
52
-
-
79960981578
-
Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy
-
Liu N, et al. (2011) Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy. J Clin Invest 121:3258-3268.
-
(2011)
J Clin Invest
, vol.121
, pp. 3258-3268
-
-
Liu, N.1
-
53
-
-
79960017815
-
Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6
-
Quiat D, et al. (2011) Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. Proc Natl Acad Sci USA 108:10196-10201.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 10196-10201
-
-
Quiat, D.1
-
54
-
-
34447133404
-
Cardiac autophagy is a maladaptive response to hemodynamic stress
-
DOI 10.1172/JCI27523
-
Zhu H, et al. (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 117:1782-1793. (Pubitemid 47036312)
-
(2007)
Journal of Clinical Investigation
, vol.117
, Issue.7
, pp. 1782-1793
-
-
Zhu, H.1
Tannous, P.2
Johnstone, J.L.3
Kong, Y.4
Shelton, J.M.5
Richardson, J.A.6
Le, V.7
Levine, B.8
Rothermel, B.A.9
Hill, J.A.10
|