-
1
-
-
64649090292
-
Targeting DNA topoisomerase II in cancer chemotherapy
-
1 Nitiss, J.L., Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9 (2009), 338–350.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 338-350
-
-
Nitiss, J.L.1
-
2
-
-
77953229115
-
The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
-
2 Lieber, M.R., The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79 (2010), 181–211.
-
(2010)
Annu. Rev. Biochem.
, vol.79
, pp. 181-211
-
-
Lieber, M.R.1
-
3
-
-
0035223878
-
Mechanism and control of meiotic recombination initiation
-
3 Keeney, S., Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52 (2001), 1–53.
-
(2001)
Curr. Top. Dev. Biol.
, vol.52
, pp. 1-53
-
-
Keeney, S.1
-
4
-
-
33750206776
-
The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks
-
4 Hanada, K., et al. The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J. 25 (2006), 4921–4932.
-
(2006)
EMBO J.
, vol.25
, pp. 4921-4932
-
-
Hanada, K.1
-
5
-
-
84918791689
-
Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability
-
5 Sollier, J., et al. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol. Cell 56 (2014), 777–785.
-
(2014)
Mol. Cell
, vol.56
, pp. 777-785
-
-
Sollier, J.1
-
6
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system
-
6 Ran, F.A., et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8 (2013), 2281–2308.
-
(2013)
Nat. Protoc.
, vol.8
, pp. 2281-2308
-
-
Ran, F.A.1
-
7
-
-
84894240042
-
The comet assay as a tool for human biomonitoring studies: the ComNet project
-
7 Collins, A., et al. The comet assay as a tool for human biomonitoring studies: the ComNet project. Mutat. Res. Rev. Mutat. Res. 759 (2014), 27–39.
-
(2014)
Mutat. Res. Rev. Mutat. Res.
, vol.759
, pp. 27-39
-
-
Collins, A.1
-
8
-
-
77956458848
-
DNA repair targeting and radiotherapy: a focus on the therapeutic ratio
-
8 Thoms, J., Bristow, R.G., DNA repair targeting and radiotherapy: a focus on the therapeutic ratio. Semin. Radiat. Oncol. 20 (2010), 217–222.
-
(2010)
Semin. Radiat. Oncol.
, vol.20
, pp. 217-222
-
-
Thoms, J.1
Bristow, R.G.2
-
9
-
-
0030000946
-
Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae
-
9 Ivanov, E.L., et al. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142 (1996), 693–704.
-
(1996)
Genetics
, vol.142
, pp. 693-704
-
-
Ivanov, E.L.1
-
10
-
-
84896994662
-
Double-strand break repair assays determine pathway choice and structure of gene conversion events in Drosophila melanogaster
-
10 Do, A.T., et al. Double-strand break repair assays determine pathway choice and structure of gene conversion events in Drosophila melanogaster. G3 (Bethesda) 4 (2014), 425–432.
-
(2014)
G3 (Bethesda)
, vol.4
, pp. 425-432
-
-
Do, A.T.1
-
11
-
-
0141681133
-
Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome
-
11 Orel, N., et al. Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J. 35 (2003), 604–612.
-
(2003)
Plant J.
, vol.35
, pp. 604-612
-
-
Orel, N.1
-
12
-
-
68849100385
-
A robust network of double-strand break repair pathways governs genome integrity during C. elegans development
-
12 Pontier, D.B., Tijsterman, M., A robust network of double-strand break repair pathways governs genome integrity during C. elegans development. Curr. Biol. 19 (2009), 1384–1388.
-
(2009)
Curr. Biol.
, vol.19
, pp. 1384-1388
-
-
Pontier, D.B.1
Tijsterman, M.2
-
13
-
-
0021123453
-
Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process
-
13 Lin, F.L., et al. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol. Cell Biol. 4 (1984), 1020–1034.
-
(1984)
Mol. Cell Biol.
, vol.4
, pp. 1020-1034
-
-
Lin, F.L.1
-
14
-
-
84869996067
-
RING finger nuclear factor RNF168 is important for defects in homologous recombination caused by loss of the breast cancer susceptibility factor BRCA1
-
14 Munoz, M.C., et al. RING finger nuclear factor RNF168 is important for defects in homologous recombination caused by loss of the breast cancer susceptibility factor BRCA1. J. Biol. Chem. 287 (2012), 40618–40628.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 40618-40628
-
-
Munoz, M.C.1
-
15
-
-
46249131123
-
Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair
-
15 Bennardo, N., et al. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet., 4, 2008, e1000110.
-
(2008)
PLoS Genet.
, vol.4
, pp. e1000110
-
-
Bennardo, N.1
-
16
-
-
36549060102
-
Human CtIP promotes DNA end resection
-
16 Sartori, A.A., et al. Human CtIP promotes DNA end resection. Nature 450 (2007), 509–514.
-
(2007)
Nature
, vol.450
, pp. 509-514
-
-
Sartori, A.A.1
-
17
-
-
43149118369
-
Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair
-
17 Chen, L., et al. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J. Biol. Chem. 283 (2008), 7713–7720.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 7713-7720
-
-
Chen, L.1
-
18
-
-
84896703742
-
Quantitation of DNA double-strand break resection intermediates in human cells
-
18 Zhou, Y., et al. Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Res., 42, 2014, e19.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. e19
-
-
Zhou, Y.1
-
19
-
-
10944219768
-
Control of sister chromatid recombination by histone H2AX
-
19 Xie, A., et al. Control of sister chromatid recombination by histone H2AX. Mol. Cell 16 (2004), 1017–1025.
-
(2004)
Mol. Cell
, vol.16
, pp. 1017-1025
-
-
Xie, A.1
-
20
-
-
84876877091
-
A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice
-
20 Escribano-Diaz, C., et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol. Cell 49 (2013), 872–883.
-
(2013)
Mol. Cell
, vol.49
, pp. 872-883
-
-
Escribano-Diaz, C.1
-
21
-
-
84859474968
-
DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes
-
21 Hakim, O., et al. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature 484 (2012), 69–74.
-
(2012)
Nature
, vol.484
, pp. 69-74
-
-
Hakim, O.1
-
22
-
-
84907584670
-
DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells
-
22 Sturzenegger, A., et al. DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells. J. Biol. Chem. 289 (2014), 27314–27326.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 27314-27326
-
-
Sturzenegger, A.1
-
23
-
-
33751583362
-
Conditional deletion of Nbs1 in murine cells reveals its role in branching repair pathways of DNA double-strand breaks
-
23 Yang, Y.-G., et al. Conditional deletion of Nbs1 in murine cells reveals its role in branching repair pathways of DNA double-strand breaks. EMBO J. 25 (2006), 5527–5538.
-
(2006)
EMBO J.
, vol.25
, pp. 5527-5538
-
-
Yang, Y.-G.1
-
24
-
-
82755183606
-
Correct end use during end joining of multiple chromosomal double strand breaks is influenced by repair protein RAD50
-
24 Gunn, A., et al. Correct end use during end joining of multiple chromosomal double strand breaks is influenced by repair protein RAD50. DNA-dependent protein kinase DNA-PKcs, and transcription context. J. Biol. Chem. 286 (2011), 42470–42482.
-
(2011)
DNA-dependent protein kinase DNA-PKcs, and transcription context. J. Biol. Chem.
, vol.286
, pp. 42470-42482
-
-
Gunn, A.1
-
25
-
-
73349098442
-
Limiting the persistence of a chromosome break diminishes its mutagenic potential
-
25 Bennardo, N., et al. Limiting the persistence of a chromosome break diminishes its mutagenic potential. PLoS Genet., 5, 2009, e1000683.
-
(2009)
PLoS Genet.
, vol.5
, pp. e1000683
-
-
Bennardo, N.1
-
26
-
-
84924352840
-
DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining
-
26 Howard, S.M., et al. DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. PLoS Genet., 11, 2015, e1004943.
-
(2015)
PLoS Genet.
, vol.11
, pp. e1004943
-
-
Howard, S.M.1
-
27
-
-
84869485349
-
DNA2 and EXO1 in replication-coupled, homology-directed repair and in the interplay between HDR and the FA/BRCA network
-
27 Karanja, K.K., et al. DNA2 and EXO1 in replication-coupled, homology-directed repair and in the interplay between HDR and the FA/BRCA network. Cell Cycle 11 (2012), 3983–3996.
-
(2012)
Cell Cycle
, vol.11
, pp. 3983-3996
-
-
Karanja, K.K.1
-
28
-
-
84866898711
-
The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection
-
28 Costelloe, T., et al. The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 489 (2012), 581–584.
-
(2012)
Nature
, vol.489
, pp. 581-584
-
-
Costelloe, T.1
-
29
-
-
84866954195
-
The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends
-
29 Chen, X., et al. The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends. Nature 489 (2012), 576–580.
-
(2012)
Nature
, vol.489
, pp. 576-580
-
-
Chen, X.1
-
30
-
-
84979073973
-
Tetratricopeptide repeat factor XAB2 mediates the end resection step of homologous recombination
-
30 Onyango, D.O., et al. Tetratricopeptide repeat factor XAB2 mediates the end resection step of homologous recombination. Nucleic Acids Res. 44 (2016), 5702–5716.
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. 5702-5716
-
-
Onyango, D.O.1
-
31
-
-
85018228755
-
ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors
-
31 Shen, J., et al. ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov. 5 (2015), 752–767.
-
(2015)
Cancer Discov.
, vol.5
, pp. 752-767
-
-
Shen, J.1
-
32
-
-
6344234817
-
Genetic steps of mammalian homologous repair with distinct mutagenic consequences
-
32 Stark, J.M., et al. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol. Cell Biol. 24 (2004), 9305–9316.
-
(2004)
Mol. Cell Biol.
, vol.24
, pp. 9305-9316
-
-
Stark, J.M.1
-
33
-
-
0031472370
-
Association of BRCA1 with Rad51 in mitotic and meiotic cells
-
33 Scully, R., et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88 (1997), 265–275.
-
(1997)
Cell
, vol.88
, pp. 265-275
-
-
Scully, R.1
-
34
-
-
33744947315
-
BRCA1 promotes induction of ssDNA by ionizing radiation
-
34 Schlegel, B.P., et al. BRCA1 promotes induction of ssDNA by ionizing radiation. Cancer Res. 66 (2006), 5181–5189.
-
(2006)
Cancer Res.
, vol.66
, pp. 5181-5189
-
-
Schlegel, B.P.1
-
35
-
-
84919839708
-
BRCA1 accelerates CtIP-mediated DNA-end resection
-
35 Cruz-Garcia, A., et al. BRCA1 accelerates CtIP-mediated DNA-end resection. Cell Rep. 9 (2014), 451–459.
-
(2014)
Cell Rep.
, vol.9
, pp. 451-459
-
-
Cruz-Garcia, A.1
-
36
-
-
84957436995
-
HELB Is a feedback inhibitor of DNA end resection
-
36 Tkac, J., et al. HELB Is a feedback inhibitor of DNA end resection. Mol. Cell 61 (2016), 405–418.
-
(2016)
Mol. Cell
, vol.61
, pp. 405-418
-
-
Tkac, J.1
-
37
-
-
79953869356
-
The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection
-
37 Coleman, K.A., Greenberg, R.A., The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection. J. Biol. Chem. 286 (2011), 13669–13680.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 13669-13680
-
-
Coleman, K.A.1
Greenberg, R.A.2
-
38
-
-
51549095956
-
Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
-
38 Zhu, Z., et al. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134 (2008), 981–994.
-
(2008)
Cell
, vol.134
, pp. 981-994
-
-
Zhu, Z.1
-
39
-
-
53649104599
-
Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
-
39 Mimitou, E.P., Symington, L.S., Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455 (2008), 770–774.
-
(2008)
Nature
, vol.455
, pp. 770-774
-
-
Mimitou, E.P.1
Symington, L.S.2
-
40
-
-
44349180168
-
Histone methyltransferase Dot1, Rad9 inhibit single-stranded DNA accumulation at DSBs, uncapped telomeres
-
40 Lazzaro, F., et al. Histone methyltransferase Dot1, Rad9 inhibit single-stranded DNA accumulation at DSBs, uncapped telomeres. EMBO.J. 27 (2008), 1502–1512.
-
(2008)
EMBO.J.
, vol.27
, pp. 1502-1512
-
-
Lazzaro, F.1
-
41
-
-
84924352710
-
Functional interplay between the 53BP1-ortholog Rad9 and the Mre11 complex regulates resection, end-tethering and repair of a double-strand break
-
41 Ferrari, M., et al. Functional interplay between the 53BP1-ortholog Rad9 and the Mre11 complex regulates resection, end-tethering and repair of a double-strand break. PLoS Genet., 11, 2015, e1004928.
-
(2015)
PLoS Genet.
, vol.11
, pp. e1004928
-
-
Ferrari, M.1
-
42
-
-
33745855438
-
Bortezomib: efficacy comparisons in solid tumors and hematologic malignancies
-
42 Caravita, T., et al. Bortezomib: efficacy comparisons in solid tumors and hematologic malignancies. Nat. Clin. Pract. Oncol. 3 (2006), 374–387.
-
(2006)
Nat. Clin. Pract. Oncol.
, vol.3
, pp. 374-387
-
-
Caravita, T.1
-
44
-
-
0036900120
-
Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair
-
44 Symington, L.S., Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66 (2002), 630–670.
-
(2002)
Microbiol. Mol. Biol. Rev.
, vol.66
, pp. 630-670
-
-
Symington, L.S.1
-
45
-
-
58149503701
-
Human Rad52-mediated homology search and annealing occurs by continuous interactions between overlapping nucleoprotein complexes
-
45 Rothenberg, E., et al. Human Rad52-mediated homology search and annealing occurs by continuous interactions between overlapping nucleoprotein complexes. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 20274–20279.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 20274-20279
-
-
Rothenberg, E.1
-
46
-
-
1842690842
-
Physical and functional interaction between the XPF/ERCC1 endonuclease and hRad52
-
46 Motycka, T.A., et al. Physical and functional interaction between the XPF/ERCC1 endonuclease and hRad52. J. Biol. Chem. 279 (2004), 13634–13639.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 13634-13639
-
-
Motycka, T.A.1
-
47
-
-
84926196440
-
The contribution of Alu elements to mutagenic DNA double-strand break repair
-
47 Morales, M.E., et al. The contribution of Alu elements to mutagenic DNA double-strand break repair. PLoS Genet., 11, 2015, e1005016.
-
(2015)
PLoS Genet.
, vol.11
, pp. e1005016
-
-
Morales, M.E.1
-
48
-
-
0030834260
-
Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination
-
48 Sugawara, N., et al. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc. Natl. Acad. Sci. U.S.A. 94 (1997), 9214–9219.
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 9214-9219
-
-
Sugawara, N.1
-
49
-
-
2942525595
-
Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells
-
49 Guirouilh-Barbat, J., et al. Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol. Cell 14 (2004), 611–623.
-
(2004)
Mol. Cell
, vol.14
, pp. 611-623
-
-
Guirouilh-Barbat, J.1
-
51
-
-
0037188898
-
Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations
-
51 Zhu, C., et al. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109 (2002), 811–821.
-
(2002)
Cell
, vol.109
, pp. 811-821
-
-
Zhu, C.1
-
52
-
-
33845657443
-
PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways
-
52 Wang, M., et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 34 (2006), 6170–6182.
-
(2006)
Nucleic Acids Res.
, vol.34
, pp. 6170-6182
-
-
Wang, M.1
-
53
-
-
11244280890
-
Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining
-
53 Audebert, M., et al. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J. Biol. Chem. 279 (2004), 55117–55126.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 55117-55126
-
-
Audebert, M.1
-
54
-
-
77950462986
-
Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation
-
54 Simsek, D., Jasin, M., Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat. Struct. Mol. Biol. 17 (2010), 410–416.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 410-416
-
-
Simsek, D.1
Jasin, M.2
-
55
-
-
34547132093
-
Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination
-
55 Decottignies, A., Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination. Genetics 176 (2007), 1403–1415.
-
(2007)
Genetics
, vol.176
, pp. 1403-1415
-
-
Decottignies, A.1
-
56
-
-
54849404458
-
MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings
-
56 McVey, M., Lee, S.E., MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. 24 (2008), 529–538.
-
(2008)
Trends Genet.
, vol.24
, pp. 529-538
-
-
McVey, M.1
Lee, S.E.2
-
57
-
-
79961083729
-
Interhomolog recombination and loss of heterozygosity in wild-type and Bloom syndrome helicase (BLM)-deficient mammalian cells
-
57 LaRocque, J.R., et al. Interhomolog recombination and loss of heterozygosity in wild-type and Bloom syndrome helicase (BLM)-deficient mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 11971–11976.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 11971-11976
-
-
LaRocque, J.R.1
-
58
-
-
0345447604
-
Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast
-
58 Ira, G., et al. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115 (2003), 401–411.
-
(2003)
Cell
, vol.115
, pp. 401-411
-
-
Ira, G.1
-
59
-
-
0028072098
-
Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA
-
59 Benson, F.E., et al. Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA. EMBO J. 13 (1994), 5764–5771.
-
(1994)
EMBO J.
, vol.13
, pp. 5764-5771
-
-
Benson, F.E.1
-
60
-
-
0027978039
-
Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein
-
60 Sung, P., Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265 (1994), 1241–1243.
-
(1994)
Science
, vol.265
, pp. 1241-1243
-
-
Sung, P.1
-
61
-
-
0027167689
-
Similarity of the yeast RAD51 filament to the bacterial RecA filament
-
61 Ogawa, T., et al. Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259 (1993), 1896–1899.
-
(1993)
Science
, vol.259
, pp. 1896-1899
-
-
Ogawa, T.1
-
62
-
-
0034660620
-
Characterization of mammalian RAD51 double strand break repair using non-lethal dominant-negative forms
-
62 Lambert, S., Lopez, B.S., Characterization of mammalian RAD51 double strand break repair using non-lethal dominant-negative forms. EMBO J. 19 (2000), 3090–3099.
-
(2000)
EMBO J.
, vol.19
, pp. 3090-3099
-
-
Lambert, S.1
Lopez, B.S.2
-
63
-
-
0033119506
-
BRCA1, BRCA2, and Rad51 operate in a common DNA damage response pathway
-
63 Chen, J.J., et al. BRCA1, BRCA2, and Rad51 operate in a common DNA damage response pathway. Cancer Res. 59 (1999), 1752s–1756s.
-
(1999)
Cancer Res.
, vol.59
, pp. 1752s-1756s
-
-
Chen, J.J.1
-
64
-
-
0037036354
-
ATP hydrolysis by mammalian RAD51 has a key role during homology-directed DNA repair
-
64 Stark, J.M., et al. ATP hydrolysis by mammalian RAD51 has a key role during homology-directed DNA repair. J. Biol. Chem. 277 (2002), 20185–20194.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 20185-20194
-
-
Stark, J.M.1
-
65
-
-
0035801472
-
Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences
-
65 Tutt, A., et al. Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J. 20 (2001), 4704–4716.
-
(2001)
EMBO J.
, vol.20
, pp. 4704-4716
-
-
Tutt, A.1
-
66
-
-
0033996037
-
Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange
-
66 Dronkert, M.L., et al. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol. Cell Biol. 20 (2000), 3147–3156.
-
(2000)
Mol. Cell Biol.
, vol.20
, pp. 3147-3156
-
-
Dronkert, M.L.1
-
67
-
-
84896717088
-
Is non-homologous end-joining really an inherently error-prone process?
-
67 Betermier, M., et al. Is non-homologous end-joining really an inherently error-prone process?. PLoS Genet., 10, 2014, e1004086.
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004086
-
-
Betermier, M.1
-
68
-
-
0032493889
-
Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage
-
68 Lee, S.E., et al. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94 (1998), 399–409.
-
(1998)
Cell
, vol.94
, pp. 399-409
-
-
Lee, S.E.1
-
69
-
-
0242468933
-
Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences
-
69 Ma, J.L., et al. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol. Cell Biol. 23 (2003), 8820–8828.
-
(2003)
Mol. Cell Biol.
, vol.23
, pp. 8820-8828
-
-
Ma, J.L.1
-
70
-
-
0035893363
-
Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells
-
70 Pierce, A.J., et al. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15 (2001), 3237–3242.
-
(2001)
Genes Dev.
, vol.15
, pp. 3237-3242
-
-
Pierce, A.J.1
-
71
-
-
24944497114
-
The Fanconi anemia group A protein modulates homologous repair of DNA double-strand breaks in mammalian cells
-
71 Yang, Y.G., et al. The Fanconi anemia group A protein modulates homologous repair of DNA double-strand breaks in mammalian cells. Carcinogenesis 26 (2005), 1731–1740.
-
(2005)
Carcinogenesis
, vol.26
, pp. 1731-1740
-
-
Yang, Y.G.1
-
72
-
-
77953879925
-
Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway
-
72 Pace, P., et al. Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 329 (2010), 219–223.
-
(2010)
Science
, vol.329
, pp. 219-223
-
-
Pace, P.1
-
73
-
-
77954310242
-
Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia
-
73 Adamo, A., et al. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol. Cell 39 (2010), 25–35.
-
(2010)
Mol. Cell
, vol.39
, pp. 25-35
-
-
Adamo, A.1
-
74
-
-
84901281433
-
FANCD2 and CtIP cooperate to repair DNA interstrand crosslinks
-
74 Murina, O., et al. FANCD2 and CtIP cooperate to repair DNA interstrand crosslinks. Cell Rep. 7 (2014), 1030–1038.
-
(2014)
Cell Rep.
, vol.7
, pp. 1030-1038
-
-
Murina, O.1
-
75
-
-
0037356461
-
Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae
-
75 Yu, X., Gabriel, A., Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae. Genetics 163 (2003), 843–856.
-
(2003)
Genetics
, vol.163
, pp. 843-856
-
-
Yu, X.1
Gabriel, A.2
-
76
-
-
84888130820
-
The absence of Ku but not defects in classical non-homologous end-joining is required to trigger PARP1-dependent end-joining
-
76 Mansour, W.Y., et al. The absence of Ku but not defects in classical non-homologous end-joining is required to trigger PARP1-dependent end-joining. DNA Repair 12 (2013), 1134–1142.
-
(2013)
DNA Repair
, vol.12
, pp. 1134-1142
-
-
Mansour, W.Y.1
-
77
-
-
84923090502
-
Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination
-
77 Mateos-Gomez, P.A., et al. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518 (2015), 254–257.
-
(2015)
Nature
, vol.518
, pp. 254-257
-
-
Mateos-Gomez, P.A.1
-
78
-
-
84923082911
-
Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair
-
78 Ceccaldi, R., et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518 (2015), 258–262.
-
(2015)
Nature
, vol.518
, pp. 258-262
-
-
Ceccaldi, R.1
-
79
-
-
84924232532
-
Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ
-
79 Kent, T., et al. Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ. Nat. Struct. Mol. Biol. 22 (2015), 230–237.
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 230-237
-
-
Kent, T.1
-
80
-
-
84926330291
-
Human DNA polymerase θ grasps the primer terminus to mediate DNA repair
-
80 Zahn, K.E., et al. Human DNA polymerase θ grasps the primer terminus to mediate DNA repair. Nat. Struct. Mol. Biol. 22 (2015), 304–311.
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 304-311
-
-
Zahn, K.E.1
-
81
-
-
84908326310
-
Mechanism of suppression of chromosomal instability by DNA polymerase POLQ
-
81 Yousefzadeh, M.J., et al. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet., 10, 2014, e1004654.
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004654
-
-
Yousefzadeh, M.J.1
-
82
-
-
77957235402
-
Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions
-
82 Yu, A.M., McVey, M., Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res. 38 (2010), 5706–5717.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 5706-5717
-
-
Yu, A.M.1
McVey, M.2
-
83
-
-
49449084673
-
ERCC1-XPF endonuclease facilitates DNA double-strand break repair
-
83 Ahmad, A., et al. ERCC1-XPF endonuclease facilitates DNA double-strand break repair. Mol. Cell Biol. 28 (2008), 5082–5092.
-
(2008)
Mol. Cell Biol.
, vol.28
, pp. 5082-5092
-
-
Ahmad, A.1
-
84
-
-
34548401682
-
Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining
-
84 Lee, K., Lee, S.E., Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics 176 (2007), 2003–2014.
-
(2007)
Genetics
, vol.176
, pp. 2003-2014
-
-
Lee, K.1
Lee, S.E.2
-
85
-
-
3042546122
-
Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1
-
85 Sugawara, N., et al. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc. Natl. Acad. Sci. U.S.A. 101 (2004), 9315–9320.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 9315-9320
-
-
Sugawara, N.1
-
86
-
-
84860203870
-
Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA
-
86 George, C.M., Alani, E., Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA. Crit. Rev. Biochem. Mol. Biol. 47 (2012), 297–313.
-
(2012)
Crit. Rev. Biochem. Mol. Biol.
, vol.47
, pp. 297-313
-
-
George, C.M.1
Alani, E.2
-
87
-
-
84979950694
-
A delicate balance between repair and replication factors regulates recombination between divergent DNA sequences in Saccharomyces cerevisiae
-
87 Chakraborty, U., et al. A delicate balance between repair and replication factors regulates recombination between divergent DNA sequences in Saccharomyces cerevisiae. Genetics 202 (2016), 525–540.
-
(2016)
Genetics
, vol.202
, pp. 525-540
-
-
Chakraborty, U.1
-
88
-
-
66149114020
-
Human CtIP mediates cell cycle control of DNA end resection and double strand break repair
-
88 Huertas, P., Jackson, S.P., Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 284 (2009), 9558–9565.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 9558-9565
-
-
Huertas, P.1
Jackson, S.P.2
-
89
-
-
84893827413
-
Phosphorylation-regulated transitions in an oligomeric state control the activity of the Sae2 DNA repair enzyme
-
89 Fu, Q., et al. Phosphorylation-regulated transitions in an oligomeric state control the activity of the Sae2 DNA repair enzyme. Mol. Cell Biol. 34 (2014), 778–793.
-
(2014)
Mol. Cell Biol.
, vol.34
, pp. 778-793
-
-
Fu, Q.1
-
90
-
-
0034600975
-
Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells
-
90 Johnson, R.D., Jasin, M., Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19 (2000), 3398–3407.
-
(2000)
EMBO J.
, vol.19
, pp. 3398-3407
-
-
Johnson, R.D.1
Jasin, M.2
-
91
-
-
0036671706
-
Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase
-
91 Vaze, M.B., et al. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell 10 (2002), 373–385.
-
(2002)
Mol. Cell
, vol.10
, pp. 373-385
-
-
Vaze, M.B.1
-
92
-
-
84897990643
-
Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks
-
92 Aymard, F., et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 21 (2014), 366–374.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 366-374
-
-
Aymard, F.1
-
93
-
-
84946485144
-
Heterochromatic breaks move to the nuclear periphery to continue recombinational repair
-
93 Ryu, T., et al. Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat. Cell Biol. 17 (2015), 1401–1411.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1401-1411
-
-
Ryu, T.1
-
94
-
-
77956865601
-
All y'all need to know ‘bout retroelements in cancer
-
94 Belancio, V.P., et al. All y'all need to know ‘bout retroelements in cancer. Semin. Cancer Biol. 20 (2010), 200–210.
-
(2010)
Semin. Cancer Biol.
, vol.20
, pp. 200-210
-
-
Belancio, V.P.1
-
95
-
-
79953108463
-
Alu distribution and mutation types of cancer genes
-
95 Zhang, W., et al. Alu distribution and mutation types of cancer genes. BMC Genomics, 12, 2011, 157.
-
(2011)
BMC Genomics
, vol.12
, pp. 157
-
-
Zhang, W.1
-
96
-
-
9544220659
-
Evolution of the tumor suppressor BRCA1 locus in primates: implications for cancer predisposition
-
96 Pavlicek, A., et al. Evolution of the tumor suppressor BRCA1 locus in primates: implications for cancer predisposition. Hum. Mol. Genet. 13 (2004), 2737–2751.
-
(2004)
Hum. Mol. Genet.
, vol.13
, pp. 2737-2751
-
-
Pavlicek, A.1
-
97
-
-
0032478140
-
The partial tandem duplication of ALL1 (MLL) is consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia
-
97 Strout, M.P., et al. The partial tandem duplication of ALL1 (MLL) is consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia. Proc. Natl. Acad. Sci. U.S.A. 95 (1998), 2390–2395.
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 2390-2395
-
-
Strout, M.P.1
-
98
-
-
15244361942
-
Chromosomal translocation mechanisms at intronic Alu elements in mammalian cells
-
98 Elliott, B., et al. Chromosomal translocation mechanisms at intronic Alu elements in mammalian cells. Mol. Cell 17 (2005), 885–894.
-
(2005)
Mol. Cell
, vol.17
, pp. 885-894
-
-
Elliott, B.1
-
99
-
-
77955616567
-
Rad51 inhibits translocation formation by non-conservative homologous recombination in Saccharomyces cerevisiae
-
99 Manthey, G.M., Bailis, A.M., Rad51 inhibits translocation formation by non-conservative homologous recombination in Saccharomyces cerevisiae. PLoS ONE, 5, 2010, e11889.
-
(2010)
PLoS ONE
, vol.5
, pp. e11889
-
-
Manthey, G.M.1
Bailis, A.M.2
-
100
-
-
50149084043
-
Double-strand breaks associated with repetitive DNA can reshape the genome
-
100 Argueso, J.L., et al. Double-strand breaks associated with repetitive DNA can reshape the genome. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 11845–11850.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 11845-11850
-
-
Argueso, J.L.1
-
101
-
-
84943453909
-
Human structural variation: mechanisms of chromosome rearrangements
-
101 Weckselblatt, B., Rudd, M.K., Human structural variation: mechanisms of chromosome rearrangements. Trends Genet. 31 (2015), 587–599.
-
(2015)
Trends Genet.
, vol.31
, pp. 587-599
-
-
Weckselblatt, B.1
Rudd, M.K.2
-
102
-
-
84941127294
-
Genome-wide analyses of LINE-LINE-mediated nonallelic homologous recombination
-
102 Startek, M., et al. Genome-wide analyses of LINE-LINE-mediated nonallelic homologous recombination. Nucleic Acids Res. 43 (2015), 2188–2198.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 2188-2198
-
-
Startek, M.1
-
103
-
-
0028061666
-
Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease
-
103 Rouet, P., et al. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol. 14 (1994), 8096–8106.
-
(1994)
Mol. Cell Biol.
, vol.14
, pp. 8096-8106
-
-
Rouet, P.1
-
104
-
-
84896267457
-
Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair
-
104 Davis, L., Maizels, N., Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), E924–E932.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. E924-E932
-
-
Davis, L.1
Maizels, N.2
-
105
-
-
84961334208
-
RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency
-
105 Song, J., et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun., 7, 2016, 10548.
-
(2016)
Nat. Commun.
, vol.7
, pp. 10548
-
-
Song, J.1
-
106
-
-
33749590905
-
Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing
-
106 Storici, F., et al. Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing. Mol. Cell Biol. 26 (2006), 7645–7657.
-
(2006)
Mol. Cell Biol.
, vol.26
, pp. 7645-7657
-
-
Storici, F.1
-
107
-
-
84979851758
-
MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems
-
107 Sakuma, T., et al. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat. Protoc. 11 (2016), 118–133.
-
(2016)
Nat. Protoc.
, vol.11
, pp. 118-133
-
-
Sakuma, T.1
-
108
-
-
84947941101
-
Small-molecule disruption of RAD52 rings as a mechanism for precision medicine in BRCA-deficient cancers
-
108 Chandramouly, G., et al. Small-molecule disruption of RAD52 rings as a mechanism for precision medicine in BRCA-deficient cancers. Chem. Biol. 22 (2015), 1491–1504.
-
(2015)
Chem. Biol.
, vol.22
, pp. 1491-1504
-
-
Chandramouly, G.1
-
109
-
-
84970039361
-
Targeting BRCA1- and BRCA2-deficient cells with RAD52 small molecule inhibitors
-
109 Huang, F., et al. Targeting BRCA1- and BRCA2-deficient cells with RAD52 small molecule inhibitors. Nucleic Acids Res. 44 (2016), 4189–4199.
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. 4189-4199
-
-
Huang, F.1
-
110
-
-
84976330858
-
53BP1 fosters fidelity of homology-directed DNA repair
-
Published online June 27, 2016
-
110 Ochs, F., et al. 53BP1 fosters fidelity of homology-directed DNA repair. Nat. Struct. Mol. Biol., 2016, 10.1038/nsmb.3251 Published online June 27, 2016.
-
(2016)
Nat. Struct. Mol. Biol.
-
-
Ochs, F.1
|