-
1
-
-
33751329250
-
Global variation in copy number in the human genome
-
Redon R., et al. Global variation in copy number in the human genome. Nature 2006, 444:444-454.
-
(2006)
Nature
, vol.444
, pp. 444-454
-
-
Redon, R.1
-
2
-
-
77951700086
-
Mutation spectrum revealed by breakpoint sequencing of human germline CNVs
-
Conrad D.F., et al. Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nat. Genet. 2010, 42:385-391.
-
(2010)
Nat. Genet.
, vol.42
, pp. 385-391
-
-
Conrad, D.F.1
-
3
-
-
79251493015
-
A human genome structural variation sequencing resource reveals insights into mutational mechanisms
-
Kidd J.M., et al. A human genome structural variation sequencing resource reveals insights into mutational mechanisms. Cell 2010, 143:837-847.
-
(2010)
Cell
, vol.143
, pp. 837-847
-
-
Kidd, J.M.1
-
4
-
-
84975804424
-
Mapping copy number variation by population-scale genome sequencing
-
Mills R.E., et al. Mapping copy number variation by population-scale genome sequencing. Nature 2011, 470:59-65.
-
(2011)
Nature
, vol.470
, pp. 59-65
-
-
Mills, R.E.1
-
5
-
-
77949831756
-
Structural variation in the human genome and its role in disease
-
Stankiewicz P., Lupski J.R. Structural variation in the human genome and its role in disease. Annu. Rev. Med. 2010, 61:437-455.
-
(2010)
Annu. Rev. Med.
, vol.61
, pp. 437-455
-
-
Stankiewicz, P.1
Lupski, J.R.2
-
6
-
-
80052260252
-
A copy number variation morbidity map of developmental delay
-
Cooper G.M., et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 2011, 43:838-846.
-
(2011)
Nat. Genet.
, vol.43
, pp. 838-846
-
-
Cooper, G.M.1
-
7
-
-
84922012902
-
Refining analyses of copy number variation identifies specific genes associated with developmental delay
-
Coe B.P., et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 2014, 46:1063-1071.
-
(2014)
Nat. Genet.
, vol.46
, pp. 1063-1071
-
-
Coe, B.P.1
-
8
-
-
80052588672
-
An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities
-
Kaminsky E.B., et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet. Med. 2011, 13:777-784.
-
(2011)
Genet. Med.
, vol.13
, pp. 777-784
-
-
Kaminsky, E.B.1
-
9
-
-
77952032690
-
Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies
-
Miller D.T., et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 2010, 86:749-764.
-
(2010)
Am. J. Hum. Genet.
, vol.86
, pp. 749-764
-
-
Miller, D.T.1
-
10
-
-
84918771753
-
Molecular findings among patients referred for clinical whole-exome sequencing
-
Yang Y., et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 2014, 312:1870-1879.
-
(2014)
JAMA
, vol.312
, pp. 1870-1879
-
-
Yang, Y.1
-
11
-
-
84918840439
-
Clinical exome sequencing for genetic identification of rare Mendelian disorders
-
Lee H., et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 2014, 312:1880-1887.
-
(2014)
JAMA
, vol.312
, pp. 1880-1887
-
-
Lee, H.1
-
12
-
-
0031731487
-
Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits
-
Lupski J.R. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 1998, 14:417-422.
-
(1998)
Trends Genet.
, vol.14
, pp. 417-422
-
-
Lupski, J.R.1
-
13
-
-
77953229115
-
The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
-
Lieber M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010, 79:181-211.
-
(2010)
Annu. Rev. Biochem.
, vol.79
, pp. 181-211
-
-
Lieber, M.R.1
-
14
-
-
67651098662
-
Mechanisms of change in gene copy number
-
Hastings P.J., et al. Mechanisms of change in gene copy number. Nat. Rev. Genet. 2009, 10:551-564.
-
(2009)
Nat. Rev. Genet.
, vol.10
, pp. 551-564
-
-
Hastings, P.J.1
-
15
-
-
67649878596
-
The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans
-
Zhang F., et al. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat. Genet. 2009, 41:849-853.
-
(2009)
Nat. Genet.
, vol.41
, pp. 849-853
-
-
Zhang, F.1
-
16
-
-
79951970227
-
CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing
-
Abyzov A., et al. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011, 21:974-984.
-
(2011)
Genome Res.
, vol.21
, pp. 974-984
-
-
Abyzov, A.1
-
17
-
-
58149218240
-
High-resolution mapping of copy-number alterations with massively parallel sequencing
-
Chiang D.Y., et al. High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods 2009, 6:99-103.
-
(2009)
Nat. Methods
, vol.6
, pp. 99-103
-
-
Chiang, D.Y.1
-
18
-
-
82355181986
-
Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms
-
Haraksingh R.R., et al. Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms. PLoS ONE 2011, 6:e27859.
-
(2011)
PLoS ONE
, vol.6
, pp. e27859
-
-
Haraksingh, R.R.1
-
19
-
-
43049143055
-
Mapping and sequencing of structural variation from eight human genomes
-
Kidd J.M., et al. Mapping and sequencing of structural variation from eight human genomes. Nature 2008, 453:56-64.
-
(2008)
Nature
, vol.453
, pp. 56-64
-
-
Kidd, J.M.1
-
20
-
-
84943448965
-
Discovery of large genomic inversions using pooled clone sequencing
-
Published online February 11, 2015
-
Rasekh M.E., et al. Discovery of large genomic inversions using pooled clone sequencing. bioRxiv 2015, Published online February 11, 2015. 10.1101/015156.
-
(2015)
bioRxiv
-
-
Rasekh, M.E.1
-
21
-
-
84868313082
-
Paired-end sequencing of fosmid libraries by Illumina
-
Williams L.J., et al. Paired-end sequencing of fosmid libraries by Illumina. Genome Res. 2012, 22:2241-2249.
-
(2012)
Genome Res.
, vol.22
, pp. 2241-2249
-
-
Williams, L.J.1
-
22
-
-
22844451617
-
Fine-scale structural variation of the human genome
-
Tuzun E., et al. Fine-scale structural variation of the human genome. Nat. Genet. 2005, 37:727-732.
-
(2005)
Nat. Genet.
, vol.37
, pp. 727-732
-
-
Tuzun, E.1
-
23
-
-
84906891111
-
The genetics of microdeletion and microduplication syndromes: an update
-
Watson C.T., et al. The genetics of microdeletion and microduplication syndromes: an update. Annu. Rev. Genomics Hum. Genet. 2014, 15:215-244.
-
(2014)
Annu. Rev. Genomics Hum. Genet.
, vol.15
, pp. 215-244
-
-
Watson, C.T.1
-
24
-
-
0035071955
-
Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements
-
Giglio S., et al. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am. J. Hum. Genet. 2001, 68:874-883.
-
(2001)
Am. J. Hum. Genet.
, vol.68
, pp. 874-883
-
-
Giglio, S.1
-
25
-
-
77956645877
-
A large and complex structural polymorphism at 16p12.1 underlies microdeletion disease risk
-
Antonacci F., et al. A large and complex structural polymorphism at 16p12.1 underlies microdeletion disease risk. Nat. Genet. 2010, 42:745-750.
-
(2010)
Nat. Genet.
, vol.42
, pp. 745-750
-
-
Antonacci, F.1
-
26
-
-
67649834757
-
Characterization of six human disease-associated inversion polymorphisms
-
Antonacci F., et al. Characterization of six human disease-associated inversion polymorphisms. Hum. Mol. Genet. 2009, 18:2555-2566.
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. 2555-2566
-
-
Antonacci, F.1
-
27
-
-
80052760948
-
Diverse mutational mechanisms cause pathogenic subtelomeric rearrangements
-
Luo Y., et al. Diverse mutational mechanisms cause pathogenic subtelomeric rearrangements. Hum. Mol. Genet. 2011, 20:3769-3778.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 3769-3778
-
-
Luo, Y.1
-
28
-
-
0033055570
-
Natural history of Wolf-Hirschhorn syndrome: experience with 15 cases
-
Battaglia A., et al. Natural history of Wolf-Hirschhorn syndrome: experience with 15 cases. Pediatrics 1999, 103:830-836.
-
(1999)
Pediatrics
, vol.103
, pp. 830-836
-
-
Battaglia, A.1
-
29
-
-
19944430269
-
High-resolution mapping of genotype-phenotype relationships in cri du chat syndrome using array comparative genomic hybridization
-
Zhang X., et al. High-resolution mapping of genotype-phenotype relationships in cri du chat syndrome using array comparative genomic hybridization. Am. J. Hum. Genet. 2005, 76:312-326.
-
(2005)
Am. J. Hum. Genet.
, vol.76
, pp. 312-326
-
-
Zhang, X.1
-
30
-
-
69749123793
-
Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype
-
Kleefstra T., et al. Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J. Med. Genet. 2009, 46:598-606.
-
(2009)
J. Med. Genet.
, vol.46
, pp. 598-606
-
-
Kleefstra, T.1
-
31
-
-
3342974500
-
The 11q terminal deletion disorder: a prospective study of 110 cases
-
Grossfeld P.D., et al. The 11q terminal deletion disorder: a prospective study of 110 cases. Am. J. Med. Genet. A 2004, 129A:51-61.
-
(2004)
Am. J. Med. Genet. A
, vol.129A
, pp. 51-61
-
-
Grossfeld, P.D.1
-
32
-
-
33845889998
-
Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders
-
Durand C.M., et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet. 2007, 39:25-27.
-
(2007)
Nat. Genet.
, vol.39
, pp. 25-27
-
-
Durand, C.M.1
-
33
-
-
84903650357
-
Tandem repeats and G-rich sequences are enriched at human CNV breakpoints
-
Bose P., et al. Tandem repeats and G-rich sequences are enriched at human CNV breakpoints. PLoS ONE 2014, 9:e101607.
-
(2014)
PLoS ONE
, vol.9
, pp. e101607
-
-
Bose, P.1
-
34
-
-
84925096537
-
Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints
-
Newman S., et al. Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints. Am. J. Hum. Genet. 2015, 96:208-220.
-
(2015)
Am. J. Hum. Genet.
, vol.96
, pp. 208-220
-
-
Newman, S.1
-
35
-
-
84875980851
-
Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain
-
Verdin H., et al. Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain. PLoS Genet. 2013, 9:e1003358.
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003358
-
-
Verdin, H.1
-
36
-
-
70350776635
-
Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture
-
Vissers L.E., et al. Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture. Hum. Mol. Genet. 2009, 18:3579-3593.
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. 3579-3593
-
-
Vissers, L.E.1
-
37
-
-
84859510490
-
Resolving the breakpoints of the 17q21.31 microdeletion syndrome with next-generation sequencing
-
Itsara A., et al. Resolving the breakpoints of the 17q21.31 microdeletion syndrome with next-generation sequencing. Am. J. Hum. Genet. 2012, 90:599-613.
-
(2012)
Am. J. Hum. Genet.
, vol.90
, pp. 599-613
-
-
Itsara, A.1
-
38
-
-
33748333194
-
Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome
-
Sharp A.J., et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat. Genet. 2006, 38:1038-1042.
-
(2006)
Nat. Genet.
, vol.38
, pp. 1038-1042
-
-
Sharp, A.J.1
-
39
-
-
84862491113
-
Mechanisms for recurrent and complex human genomic rearrangements
-
Liu P., et al. Mechanisms for recurrent and complex human genomic rearrangements. Curr. Opin. Genet. Dev. 2012, 22:211-220.
-
(2012)
Curr. Opin. Genet. Dev.
, vol.22
, pp. 211-220
-
-
Liu, P.1
-
40
-
-
84883679009
-
NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits
-
Dittwald P., et al. NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits. Genome Res. 2013, 23:1395-1409.
-
(2013)
Genome Res.
, vol.23
, pp. 1395-1409
-
-
Dittwald, P.1
-
41
-
-
80053908833
-
Frequency of nonallelic homologous recombination is correlated with length of homology: evidence that ectopic synapsis precedes ectopic crossing-over
-
Liu P., et al. Frequency of nonallelic homologous recombination is correlated with length of homology: evidence that ectopic synapsis precedes ectopic crossing-over. Am. J. Hum. Genet. 2011, 89:580-588.
-
(2011)
Am. J. Hum. Genet.
, vol.89
, pp. 580-588
-
-
Liu, P.1
-
42
-
-
84941127294
-
Genome-wide analyses of LINE-LINE-mediated nonallelic homologous recombination
-
Startek M., et al. Genome-wide analyses of LINE-LINE-mediated nonallelic homologous recombination. Nucleic Acids Res. 2015, 43:2188-2198.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 2188-2198
-
-
Startek, M.1
-
43
-
-
84907954219
-
Human endogenous retroviral elements promote genome instability via non-allelic homologous recombination
-
Campbell I.M., et al. Human endogenous retroviral elements promote genome instability via non-allelic homologous recombination. BMC Biol. 2014, 12:74.
-
(2014)
BMC Biol.
, vol.12
, pp. 74
-
-
Campbell, I.M.1
-
44
-
-
84855869669
-
A recurrent translocation is mediated by homologous recombination between HERV-H elements
-
Hermetz K.E., et al. A recurrent translocation is mediated by homologous recombination between HERV-H elements. Mol. Cytogenet. 2012, 5:6.
-
(2012)
Mol. Cytogenet.
, vol.5
, pp. 6
-
-
Hermetz, K.E.1
-
45
-
-
84874608346
-
Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations
-
Robberecht C., et al. Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations. Genome Res. 2013, 23:411-418.
-
(2013)
Genome Res.
, vol.23
, pp. 411-418
-
-
Robberecht, C.1
-
46
-
-
84937040216
-
Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis
-
Weckselblatt B., et al. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res. 2015, 25:937-947.
-
(2015)
Genome Res.
, vol.25
, pp. 937-947
-
-
Weckselblatt, B.1
-
47
-
-
84905900217
-
The Alu-rich genomic architecture of SPAST predisposes to diverse and functionally distinct disease-associated cnv alleles
-
Boone P.M., et al. The Alu-rich genomic architecture of SPAST predisposes to diverse and functionally distinct disease-associated cnv alleles. Am. J. Hum. Genet. 2014, 95:143-161.
-
(2014)
Am. J. Hum. Genet.
, vol.95
, pp. 143-161
-
-
Boone, P.M.1
-
48
-
-
84922325674
-
Dosage changes of a segment at 17p13.1 lead to intellectual disability and microcephaly as a result of complex genetic interaction of multiple genes
-
Carvalho C.M., et al. Dosage changes of a segment at 17p13.1 lead to intellectual disability and microcephaly as a result of complex genetic interaction of multiple genes. Am. J. Hum. Genet. 2014, 95:565-578.
-
(2014)
Am. J. Hum. Genet.
, vol.95
, pp. 565-578
-
-
Carvalho, C.M.1
-
49
-
-
78249286208
-
A common molecular mechanism underlies two phenotypically distinct 17p13.1 microdeletion syndromes
-
Shlien A., et al. A common molecular mechanism underlies two phenotypically distinct 17p13.1 microdeletion syndromes. Am. J. Hum. Genet. 2010, 87:631-642.
-
(2010)
Am. J. Hum. Genet.
, vol.87
, pp. 631-642
-
-
Shlien, A.1
-
50
-
-
19544391485
-
Homeologous recombination between AluSx-sequences as a cause of hemophilia
-
Rossetti L.C., et al. Homeologous recombination between AluSx-sequences as a cause of hemophilia. Hum. Mutat. 2004, 24:440.
-
(2004)
Hum. Mutat.
, vol.24
, pp. 440
-
-
Rossetti, L.C.1
-
51
-
-
46449095106
-
Mapping translocation breakpoints by next-generation sequencing
-
Chen W., et al. Mapping translocation breakpoints by next-generation sequencing. Genome Res. 2008, 18:1143-1149.
-
(2008)
Genome Res.
, vol.18
, pp. 1143-1149
-
-
Chen, W.1
-
52
-
-
84862777955
-
Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration
-
S391
-
Chiang C., et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat. Genet. 2012, 44:390-397. S391.
-
(2012)
Nat. Genet.
, vol.44
, pp. 390-397
-
-
Chiang, C.1
-
53
-
-
41149106868
-
Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project
-
Higgins A.W., et al. Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project. Am. J. Hum. Genet. 2008, 82:712-722.
-
(2008)
Am. J. Hum. Genet.
, vol.82
, pp. 712-722
-
-
Higgins, A.W.1
-
54
-
-
0023646823
-
A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination
-
Rouyer F., et al. A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination. Cell 1987, 51:417-425.
-
(1987)
Cell
, vol.51
, pp. 417-425
-
-
Rouyer, F.1
-
55
-
-
84884593850
-
Disruption of EXOC6B in a patient with developmental delay, epilepsy, and a de novo balanced t(2;8) translocation
-
Fruhmesser A., et al. Disruption of EXOC6B in a patient with developmental delay, epilepsy, and a de novo balanced t(2;8) translocation. Eur. J. Hum. Genet. 2013, 21:1177-1180.
-
(2013)
Eur. J. Hum. Genet.
, vol.21
, pp. 1177-1180
-
-
Fruhmesser, A.1
-
56
-
-
0036071427
-
Heterozygous submicroscopic inversions involving olfactory receptor-gene clusters mediate the recurrent t(4;8)(p16;p23) translocation
-
Giglio S., et al. Heterozygous submicroscopic inversions involving olfactory receptor-gene clusters mediate the recurrent t(4;8)(p16;p23) translocation. Am. J. Hum. Genet. 2002, 71:276-285.
-
(2002)
Am. J. Hum. Genet.
, vol.71
, pp. 276-285
-
-
Giglio, S.1
-
57
-
-
84883780405
-
Mouse model implicates GNB3 duplication in a childhood obesity syndrome
-
Goldlust I.S., et al. Mouse model implicates GNB3 duplication in a childhood obesity syndrome. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:14990-14994.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 14990-14994
-
-
Goldlust, I.S.1
-
58
-
-
78651478345
-
Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes
-
Ou Z., et al. Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes. Genome Res. 2011, 21:33-46.
-
(2011)
Genome Res.
, vol.21
, pp. 33-46
-
-
Ou, Z.1
-
59
-
-
84862504386
-
Chromosomal translocations and palindromic AT-rich repeats
-
Kato T., et al. Chromosomal translocations and palindromic AT-rich repeats. Curr. Opin. Genet. Dev. 2012, 22:221-228.
-
(2012)
Curr. Opin. Genet. Dev.
, vol.22
, pp. 221-228
-
-
Kato, T.1
-
60
-
-
84655163917
-
Characterizing complex structural variation in germline and somatic genomes
-
Quinlan A.R., Hall I.M. Characterizing complex structural variation in germline and somatic genomes. Trends Genet. 2012, 28:43-53.
-
(2012)
Trends Genet.
, vol.28
, pp. 43-53
-
-
Quinlan, A.R.1
Hall, I.M.2
-
61
-
-
67650001851
-
Complex human chromosomal and genomic rearrangements
-
Zhang F., et al. Complex human chromosomal and genomic rearrangements. Trends Genet. 2009, 25:298-307.
-
(2009)
Trends Genet.
, vol.25
, pp. 298-307
-
-
Zhang, F.1
-
62
-
-
33947257997
-
Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplification in human cancer
-
Tanaka H., et al. Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplification in human cancer. Mol. Cell. Biol. 2007, 27:1993-2002.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 1993-2002
-
-
Tanaka, H.1
-
63
-
-
84896698672
-
Large inverted duplications in the human genome form via a fold-back mechanism
-
Hermetz K.E., et al. Large inverted duplications in the human genome form via a fold-back mechanism. PLoS Genet. 2014, 10:e1004139.
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004139
-
-
Hermetz, K.E.1
-
64
-
-
66149168915
-
Inverted duplications on acentric markers: mechanism of formation
-
Murmann A.E., et al. Inverted duplications on acentric markers: mechanism of formation. Hum. Mol. Genet. 2009, 18:2241-2256.
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. 2241-2256
-
-
Murmann, A.E.1
-
65
-
-
84911061592
-
Inverted duplication with deletion: first interstitial case suggesting a novel undescribed mechanism of formation
-
Milosevic J., et al. Inverted duplication with deletion: first interstitial case suggesting a novel undescribed mechanism of formation. Am. J. Med. Genet. A 2014, 164A:3180-3186.
-
(2014)
Am. J. Med. Genet. A
, vol.164A
, pp. 3180-3186
-
-
Milosevic, J.1
-
66
-
-
84921718161
-
Cryptic and complex chromosomal aberrations in early-onset neuropsychiatric disorders
-
Brand H., et al. Cryptic and complex chromosomal aberrations in early-onset neuropsychiatric disorders. Am. J. Hum. Genet. 2014, 95:454-461.
-
(2014)
Am. J. Hum. Genet.
, vol.95
, pp. 454-461
-
-
Brand, H.1
-
67
-
-
85027936863
-
Replicative mechanisms for CNV formation are error prone
-
Carvalho C.M., et al. Replicative mechanisms for CNV formation are error prone. Nat. Genet. 2013, 45:1319-1326.
-
(2013)
Nat. Genet.
, vol.45
, pp. 1319-1326
-
-
Carvalho, C.M.1
-
68
-
-
80052916562
-
Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements
-
Liu P., et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 2011, 146:889-903.
-
(2011)
Cell
, vol.146
, pp. 889-903
-
-
Liu, P.1
-
69
-
-
84926140134
-
Complex genomic rearrangements at the PLP1 locus include triplication and quadruplication
-
Beck C.R., et al. Complex genomic rearrangements at the PLP1 locus include triplication and quadruplication. PLoS Genet. 2015, 3:e1005050.
-
(2015)
PLoS Genet.
, vol.3
, pp. e1005050
-
-
Beck, C.R.1
-
70
-
-
84926246952
-
Absence of heterozygosity due to template switching during replicative rearrangements
-
Carvalho C.M., et al. Absence of heterozygosity due to template switching during replicative rearrangements. Am. J. Hum. Genet. 2015, 96:555-564.
-
(2015)
Am. J. Hum. Genet.
, vol.96
, pp. 555-564
-
-
Carvalho, C.M.1
-
71
-
-
80055003130
-
Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome
-
Carvalho C.M., et al. Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat. Genet. 2011, 43:1074-1081.
-
(2011)
Nat. Genet.
, vol.43
, pp. 1074-1081
-
-
Carvalho, C.M.1
-
72
-
-
84880510719
-
Dissecting the structure and mechanism of a complex duplication-triplication rearrangement in the DMD gene
-
Ishmukhametova A., et al. Dissecting the structure and mechanism of a complex duplication-triplication rearrangement in the DMD gene. Hum. Mutat. 2013, 34:1080-1084.
-
(2013)
Hum. Mutat.
, vol.34
, pp. 1080-1084
-
-
Ishmukhametova, A.1
-
73
-
-
84862227825
-
Pelizaeus-Merzbacher disease caused by a duplication-inverted triplication-duplication in chromosomal segments including the PLP1 region
-
Shimojima K., et al. Pelizaeus-Merzbacher disease caused by a duplication-inverted triplication-duplication in chromosomal segments including the PLP1 region. Eur. J. Med. Genet. 2012, 55:400-403.
-
(2012)
Eur. J. Med. Genet.
, vol.55
, pp. 400-403
-
-
Shimojima, K.1
-
74
-
-
79952222136
-
Recurrence, submicroscopic complexity, and potential clinical relevance of copy gains detected by array CGH that are shown to be unbalanced insertions by FISH
-
Neill N.J., et al. Recurrence, submicroscopic complexity, and potential clinical relevance of copy gains detected by array CGH that are shown to be unbalanced insertions by FISH. Genome Res. 2011, 21:535-544.
-
(2011)
Genome Res.
, vol.21
, pp. 535-544
-
-
Neill, N.J.1
-
75
-
-
77951731249
-
Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results
-
Kang S.H., et al. Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results. Am. J. Med. Genet. A 2010, 152A:1111-1126.
-
(2010)
Am. J. Med. Genet. A
, vol.152A
, pp. 1111-1126
-
-
Kang, S.H.1
-
76
-
-
84855774388
-
Parental insertional balanced translocations are an important cause of apparently de novo CNVs in patients with developmental anomalies
-
Nowakowska B.A., et al. Parental insertional balanced translocations are an important cause of apparently de novo CNVs in patients with developmental anomalies. Eur. J. Hum. Genet. 2012, 20:166-170.
-
(2012)
Eur. J. Hum. Genet.
, vol.20
, pp. 166-170
-
-
Nowakowska, B.A.1
-
77
-
-
84869173265
-
Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements
-
Holland A.J., Cleveland D.W. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat. Med. 2012, 18:1630-1638.
-
(2012)
Nat. Med.
, vol.18
, pp. 1630-1638
-
-
Holland, A.J.1
Cleveland, D.W.2
-
78
-
-
78650959663
-
Massive genomic rearrangement acquired in a single catastrophic event during cancer development
-
Stephens P.J., et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011, 144:27-40.
-
(2011)
Cell
, vol.144
, pp. 27-40
-
-
Stephens, P.J.1
-
79
-
-
84873391241
-
Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes
-
Kim T.M., et al. Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes. Genome Res. 2013, 23:217-227.
-
(2013)
Genome Res.
, vol.23
, pp. 217-227
-
-
Kim, T.M.1
-
80
-
-
84880888748
-
Pure 16q21q22.1 deletion in a complex rearrangement possibly caused by a chromothripsis event
-
Genesio R., et al. Pure 16q21q22.1 deletion in a complex rearrangement possibly caused by a chromothripsis event. Mol. Cytogenet. 2013, 6:29.
-
(2013)
Mol. Cytogenet.
, vol.6
, pp. 29
-
-
Genesio, R.1
-
81
-
-
84863105790
-
Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms
-
Kloosterman W.P., et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep. 2012, 1:648-655.
-
(2012)
Cell Rep.
, vol.1
, pp. 648-655
-
-
Kloosterman, W.P.1
-
82
-
-
84924240766
-
Prenatal diagnosis of chromothripsis, with nine breaks characterized by karyotyping, FISH, microarray and whole-genome sequencing
-
Macera M.J., et al. Prenatal diagnosis of chromothripsis, with nine breaks characterized by karyotyping, FISH, microarray and whole-genome sequencing. Prenat. Diagn. 2014, 35:299-301.
-
(2014)
Prenat. Diagn.
, vol.35
, pp. 299-301
-
-
Macera, M.J.1
-
83
-
-
84894305155
-
The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2
-
Nazaryan L., et al. The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2. Eur. J. Hum. Genet. 2014, 22:338-343.
-
(2014)
Eur. J. Hum. Genet.
, vol.22
, pp. 338-343
-
-
Nazaryan, L.1
-
84
-
-
84919839764
-
Genomic and functional overlap between somatic and germline chromosomal rearrangements
-
van Heesch S., et al. Genomic and functional overlap between somatic and germline chromosomal rearrangements. Cell Rep. 2014, 9:2001-2010.
-
(2014)
Cell Rep.
, vol.9
, pp. 2001-2010
-
-
van Heesch, S.1
-
85
-
-
79955416773
-
Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline
-
Kloosterman W.P., et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 2011, 20:1916-1924.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1916-1924
-
-
Kloosterman, W.P.1
-
86
-
-
84879243533
-
Chromothripsis in congenital disorders and cancer: similarities and differences
-
Kloosterman W.P., Cuppen E. Chromothripsis in congenital disorders and cancer: similarities and differences. Curr. Opin. Cell Biol. 2013, 25:341-348.
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 341-348
-
-
Kloosterman, W.P.1
Cuppen, E.2
-
87
-
-
66749169417
-
Chromosome instability is common in human cleavage-stage embryos
-
Vanneste E., et al. Chromosome instability is common in human cleavage-stage embryos. Nat. Med. 2009, 15:577-583.
-
(2009)
Nat. Med.
, vol.15
, pp. 577-583
-
-
Vanneste, E.1
-
88
-
-
84856424908
-
DNA breaks and chromosome pulverization from errors in mitosis
-
Crasta K., et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 2012, 482:53-58.
-
(2012)
Nature
, vol.482
, pp. 53-58
-
-
Crasta, K.1
-
89
-
-
84926249075
-
Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring
-
de Pagter M.S., et al. Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am. J. Hum. Genet. 2015, 96:651-656.
-
(2015)
Am. J. Hum. Genet.
, vol.96
, pp. 651-656
-
-
de Pagter, M.S.1
-
90
-
-
84922758305
-
Chromothriptic cure of WHIM syndrome
-
McDermott D.H., et al. Chromothriptic cure of WHIM syndrome. Cell 2015, 160:686-699.
-
(2015)
Cell
, vol.160
, pp. 686-699
-
-
McDermott, D.H.1
-
91
-
-
84919723909
-
Complex structural rearrangement features suggesting chromoanagenesis mechanism in a case of 1p36 deletion syndrome
-
Zanardo E.A., et al. Complex structural rearrangement features suggesting chromoanagenesis mechanism in a case of 1p36 deletion syndrome. Mol. Genet. Genomics 2014, 289:1037-1043.
-
(2014)
Mol. Genet. Genomics
, vol.289
, pp. 1037-1043
-
-
Zanardo, E.A.1
-
92
-
-
84908211410
-
Constitutional chromoanasynthesis: description of a rare chromosomal event in a patient
-
Plaisancie J., et al. Constitutional chromoanasynthesis: description of a rare chromosomal event in a patient. Eur. J. Med. Genet. 2014, 57:567-570.
-
(2014)
Eur. J. Med. Genet.
, vol.57
, pp. 567-570
-
-
Plaisancie, J.1
-
93
-
-
33750431676
-
Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome
-
Bonaglia M.C., et al. Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome. J. Med. Genet. 2006, 43:822-828.
-
(2006)
J. Med. Genet.
, vol.43
, pp. 822-828
-
-
Bonaglia, M.C.1
-
94
-
-
84859216598
-
Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes
-
Molenaar J.J., et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 2012, 483:589-593.
-
(2012)
Nature
, vol.483
, pp. 589-593
-
-
Molenaar, J.J.1
-
95
-
-
84883065379
-
Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis
-
Boeva V., et al. Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis. PLoS ONE 2013, 8:e72182.
-
(2013)
PLoS ONE
, vol.8
, pp. e72182
-
-
Boeva, V.1
-
96
-
-
84885203098
-
Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia
-
Rippey C., et al. Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia. Am. J. Hum. Genet. 2013, 93:697-710.
-
(2013)
Am. J. Hum. Genet.
, vol.93
, pp. 697-710
-
-
Rippey, C.1
-
97
-
-
78651098091
-
A balanced translocation t(6;14)(q25.3;q13.2) leading to reciprocal fusion transcripts in a patient with intellectual disability and agenesis of corpus callosum
-
Backx L., et al. A balanced translocation t(6;14)(q25.3;q13.2) leading to reciprocal fusion transcripts in a patient with intellectual disability and agenesis of corpus callosum. Cytogenet. Genome Res. 2011, 132:135-143.
-
(2011)
Cytogenet. Genome Res.
, vol.132
, pp. 135-143
-
-
Backx, L.1
-
98
-
-
84897143694
-
Detection of chromosomal breakpoints in patients with developmental delay and speech disorders
-
Utami K.H., et al. Detection of chromosomal breakpoints in patients with developmental delay and speech disorders. PLoS ONE 2014, 9:e90852.
-
(2014)
PLoS ONE
, vol.9
, pp. e90852
-
-
Utami, K.H.1
-
99
-
-
84936767018
-
Characterization of 26 deletion CNVs reveals the frequent occurrence of micro-mutations within the breakpoint-flanking regions and frequent repair of double-strand breaks by templated insertions derived from remote genomic regions
-
Wang Y., et al. Characterization of 26 deletion CNVs reveals the frequent occurrence of micro-mutations within the breakpoint-flanking regions and frequent repair of double-strand breaks by templated insertions derived from remote genomic regions. Hum. Genet. 2015, 134:589-603.
-
(2015)
Hum. Genet.
, vol.134
, pp. 589-603
-
-
Wang, Y.1
-
100
-
-
84883432724
-
An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers
-
Roberts S.A., et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 2013, 45:970-976.
-
(2013)
Nat. Genet.
, vol.45
, pp. 970-976
-
-
Roberts, S.A.1
-
101
-
-
22544447060
-
Deletions involving long-range conserved nongenic sequences upstream and downstream of FOXL2 as a novel disease-causing mechanism in blepharophimosis syndrome
-
Beysen D., et al. Deletions involving long-range conserved nongenic sequences upstream and downstream of FOXL2 as a novel disease-causing mechanism in blepharophimosis syndrome. Am. J. Hum. Genet. 2005, 77:205-218.
-
(2005)
Am. J. Hum. Genet.
, vol.77
, pp. 205-218
-
-
Beysen, D.1
-
102
-
-
0028907724
-
Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype
-
Fantes J., et al. Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype. Hum. Mol. Genet. 1995, 4:415-422.
-
(1995)
Hum. Mol. Genet.
, vol.4
, pp. 415-422
-
-
Fantes, J.1
-
103
-
-
84890314164
-
Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia
-
Bhatia S., et al. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am. J. Hum. Genet. 2013, 93:1126-1134.
-
(2013)
Am. J. Hum. Genet.
, vol.93
, pp. 1126-1134
-
-
Bhatia, S.1
-
104
-
-
32044441668
-
Spastic paraplegia type 2 associated with axonal neuropathy and apparent PLP1 position effect
-
Lee J.A., et al. Spastic paraplegia type 2 associated with axonal neuropathy and apparent PLP1 position effect. Ann. Neurol. 2006, 59:398-403.
-
(2006)
Ann. Neurol.
, vol.59
, pp. 398-403
-
-
Lee, J.A.1
-
105
-
-
29244486467
-
Transactivation function of an approximately 800-bp evolutionarily conserved sequence at the SHOX 3' region: implication for the downstream enhancer
-
Fukami M., et al. Transactivation function of an approximately 800-bp evolutionarily conserved sequence at the SHOX 3' region: implication for the downstream enhancer. Am. J. Hum. Genet. 2006, 78:167-170.
-
(2006)
Am. J. Hum. Genet.
, vol.78
, pp. 167-170
-
-
Fukami, M.1
-
106
-
-
15944402131
-
Position effects due to chromosome breakpoints that map approximately 900Kb upstream and approximately 1.3Mb downstream of SOX9 in two patients with campomelic dysplasia
-
Velagaleti G.V., et al. Position effects due to chromosome breakpoints that map approximately 900Kb upstream and approximately 1.3Mb downstream of SOX9 in two patients with campomelic dysplasia. Am. J. Hum. Genet. 2005, 76:652-662.
-
(2005)
Am. J. Hum. Genet.
, vol.76
, pp. 652-662
-
-
Velagaleti, G.V.1
-
107
-
-
15944392851
-
Fine mapping of chromosome 17 translocation breakpoints ≥900Kb upstream of SOX9 in acampomelic campomelic dysplasia and a mild, familial skeletal dysplasia
-
Hill-Harfe K.L., et al. Fine mapping of chromosome 17 translocation breakpoints ≥900Kb upstream of SOX9 in acampomelic campomelic dysplasia and a mild, familial skeletal dysplasia. Am. J. Hum. Genet. 2005, 76:663-671.
-
(2005)
Am. J. Hum. Genet.
, vol.76
, pp. 663-671
-
-
Hill-Harfe, K.L.1
-
108
-
-
77951860836
-
The effect of translocation-induced nuclear reorganization on gene expression
-
Harewood L., et al. The effect of translocation-induced nuclear reorganization on gene expression. Genome Res. 2010, 20:554-564.
-
(2010)
Genome Res.
, vol.20
, pp. 554-564
-
-
Harewood, L.1
-
109
-
-
84904465224
-
Genome sequencing identifies major causes of severe intellectual disability
-
Gilissen C., et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014, 511:344-347.
-
(2014)
Nature
, vol.511
, pp. 344-347
-
-
Gilissen, C.1
-
110
-
-
84905686674
-
Design of large-insert jumping libraries for structural variant detection using illumina sequencing
-
22 21-29
-
Hanscom C., Talkowski M. Design of large-insert jumping libraries for structural variant detection using illumina sequencing. Curr. Protoc. Hum. Genet. 2014, 80:7. 22 21-29.
-
(2014)
Curr. Protoc. Hum. Genet.
, vol.80
, pp. 7
-
-
Hanscom, C.1
Talkowski, M.2
-
111
-
-
35348988679
-
Paired-end mapping reveals extensive structural variation in the human genome
-
Korbel J.O., et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 2007, 318:420-426.
-
(2007)
Science
, vol.318
, pp. 420-426
-
-
Korbel, J.O.1
-
112
-
-
84925497196
-
Resolving the complexity of the human genome using single-molecule sequencing
-
Chaisson M.J., et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 2015, 517:608-611.
-
(2015)
Nature
, vol.517
, pp. 608-611
-
-
Chaisson, M.J.1
-
113
-
-
62549131646
-
PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data
-
Korbel J.O., et al. PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol. 2009, 10:R23.
-
(2009)
Genome Biol.
, vol.10
, pp. R23
-
-
Korbel, J.O.1
|