메뉴 건너뛰기




Volumn 31, Issue 10, 2015, Pages 587-599

Human Structural Variation: Mechanisms of Chromosome Rearrangements

Author keywords

Chromothripsis; Copy number variation; Inverted duplication; Structural variation; Translocation; Triplication

Indexed keywords

CHROMOSOME BREAKAGE; CHROMOSOME DUPLICATION; CHROMOSOME REARRANGEMENT; DNA SEQUENCE; ENDOGENOUS RETROVIRUS; GENE DELETION; GENE DISRUPTION; GENE DUPLICATION; GENE MUTATION; GENE TRANSLOCATION; HOMOLOGOUS RECOMBINATION; HUMAN; HUMAN GENOME; INSERTIONAL CHROMOSOME TRANSLOCATION; LONG INTERSPERSED REPEAT; NEXT GENERATION SEQUENCING; PRIORITY JOURNAL; REVIEW; RISK FACTOR; STRUCTURAL CHROMOSOME ABERRATION; CHROMOSOME; COPY NUMBER VARIATION; GENETICS; HIGH THROUGHPUT SEQUENCING; MUTATION;

EID: 84943453909     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2015.05.010     Document Type: Review
Times cited : (190)

References (113)
  • 1
    • 33751329250 scopus 로고    scopus 로고
    • Global variation in copy number in the human genome
    • Redon R., et al. Global variation in copy number in the human genome. Nature 2006, 444:444-454.
    • (2006) Nature , vol.444 , pp. 444-454
    • Redon, R.1
  • 2
    • 77951700086 scopus 로고    scopus 로고
    • Mutation spectrum revealed by breakpoint sequencing of human germline CNVs
    • Conrad D.F., et al. Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nat. Genet. 2010, 42:385-391.
    • (2010) Nat. Genet. , vol.42 , pp. 385-391
    • Conrad, D.F.1
  • 3
    • 79251493015 scopus 로고    scopus 로고
    • A human genome structural variation sequencing resource reveals insights into mutational mechanisms
    • Kidd J.M., et al. A human genome structural variation sequencing resource reveals insights into mutational mechanisms. Cell 2010, 143:837-847.
    • (2010) Cell , vol.143 , pp. 837-847
    • Kidd, J.M.1
  • 4
    • 84975804424 scopus 로고    scopus 로고
    • Mapping copy number variation by population-scale genome sequencing
    • Mills R.E., et al. Mapping copy number variation by population-scale genome sequencing. Nature 2011, 470:59-65.
    • (2011) Nature , vol.470 , pp. 59-65
    • Mills, R.E.1
  • 5
    • 77949831756 scopus 로고    scopus 로고
    • Structural variation in the human genome and its role in disease
    • Stankiewicz P., Lupski J.R. Structural variation in the human genome and its role in disease. Annu. Rev. Med. 2010, 61:437-455.
    • (2010) Annu. Rev. Med. , vol.61 , pp. 437-455
    • Stankiewicz, P.1    Lupski, J.R.2
  • 6
    • 80052260252 scopus 로고    scopus 로고
    • A copy number variation morbidity map of developmental delay
    • Cooper G.M., et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 2011, 43:838-846.
    • (2011) Nat. Genet. , vol.43 , pp. 838-846
    • Cooper, G.M.1
  • 7
    • 84922012902 scopus 로고    scopus 로고
    • Refining analyses of copy number variation identifies specific genes associated with developmental delay
    • Coe B.P., et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 2014, 46:1063-1071.
    • (2014) Nat. Genet. , vol.46 , pp. 1063-1071
    • Coe, B.P.1
  • 8
    • 80052588672 scopus 로고    scopus 로고
    • An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities
    • Kaminsky E.B., et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet. Med. 2011, 13:777-784.
    • (2011) Genet. Med. , vol.13 , pp. 777-784
    • Kaminsky, E.B.1
  • 9
    • 77952032690 scopus 로고    scopus 로고
    • Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies
    • Miller D.T., et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 2010, 86:749-764.
    • (2010) Am. J. Hum. Genet. , vol.86 , pp. 749-764
    • Miller, D.T.1
  • 10
    • 84918771753 scopus 로고    scopus 로고
    • Molecular findings among patients referred for clinical whole-exome sequencing
    • Yang Y., et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 2014, 312:1870-1879.
    • (2014) JAMA , vol.312 , pp. 1870-1879
    • Yang, Y.1
  • 11
    • 84918840439 scopus 로고    scopus 로고
    • Clinical exome sequencing for genetic identification of rare Mendelian disorders
    • Lee H., et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 2014, 312:1880-1887.
    • (2014) JAMA , vol.312 , pp. 1880-1887
    • Lee, H.1
  • 12
    • 0031731487 scopus 로고    scopus 로고
    • Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits
    • Lupski J.R. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 1998, 14:417-422.
    • (1998) Trends Genet. , vol.14 , pp. 417-422
    • Lupski, J.R.1
  • 13
    • 77953229115 scopus 로고    scopus 로고
    • The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
    • Lieber M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010, 79:181-211.
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 181-211
    • Lieber, M.R.1
  • 14
    • 67651098662 scopus 로고    scopus 로고
    • Mechanisms of change in gene copy number
    • Hastings P.J., et al. Mechanisms of change in gene copy number. Nat. Rev. Genet. 2009, 10:551-564.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 551-564
    • Hastings, P.J.1
  • 15
    • 67649878596 scopus 로고    scopus 로고
    • The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans
    • Zhang F., et al. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat. Genet. 2009, 41:849-853.
    • (2009) Nat. Genet. , vol.41 , pp. 849-853
    • Zhang, F.1
  • 16
    • 79951970227 scopus 로고    scopus 로고
    • CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing
    • Abyzov A., et al. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011, 21:974-984.
    • (2011) Genome Res. , vol.21 , pp. 974-984
    • Abyzov, A.1
  • 17
    • 58149218240 scopus 로고    scopus 로고
    • High-resolution mapping of copy-number alterations with massively parallel sequencing
    • Chiang D.Y., et al. High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods 2009, 6:99-103.
    • (2009) Nat. Methods , vol.6 , pp. 99-103
    • Chiang, D.Y.1
  • 18
    • 82355181986 scopus 로고    scopus 로고
    • Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms
    • Haraksingh R.R., et al. Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms. PLoS ONE 2011, 6:e27859.
    • (2011) PLoS ONE , vol.6 , pp. e27859
    • Haraksingh, R.R.1
  • 19
    • 43049143055 scopus 로고    scopus 로고
    • Mapping and sequencing of structural variation from eight human genomes
    • Kidd J.M., et al. Mapping and sequencing of structural variation from eight human genomes. Nature 2008, 453:56-64.
    • (2008) Nature , vol.453 , pp. 56-64
    • Kidd, J.M.1
  • 20
    • 84943448965 scopus 로고    scopus 로고
    • Discovery of large genomic inversions using pooled clone sequencing
    • Published online February 11, 2015
    • Rasekh M.E., et al. Discovery of large genomic inversions using pooled clone sequencing. bioRxiv 2015, Published online February 11, 2015. 10.1101/015156.
    • (2015) bioRxiv
    • Rasekh, M.E.1
  • 21
    • 84868313082 scopus 로고    scopus 로고
    • Paired-end sequencing of fosmid libraries by Illumina
    • Williams L.J., et al. Paired-end sequencing of fosmid libraries by Illumina. Genome Res. 2012, 22:2241-2249.
    • (2012) Genome Res. , vol.22 , pp. 2241-2249
    • Williams, L.J.1
  • 22
    • 22844451617 scopus 로고    scopus 로고
    • Fine-scale structural variation of the human genome
    • Tuzun E., et al. Fine-scale structural variation of the human genome. Nat. Genet. 2005, 37:727-732.
    • (2005) Nat. Genet. , vol.37 , pp. 727-732
    • Tuzun, E.1
  • 23
    • 84906891111 scopus 로고    scopus 로고
    • The genetics of microdeletion and microduplication syndromes: an update
    • Watson C.T., et al. The genetics of microdeletion and microduplication syndromes: an update. Annu. Rev. Genomics Hum. Genet. 2014, 15:215-244.
    • (2014) Annu. Rev. Genomics Hum. Genet. , vol.15 , pp. 215-244
    • Watson, C.T.1
  • 24
    • 0035071955 scopus 로고    scopus 로고
    • Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements
    • Giglio S., et al. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am. J. Hum. Genet. 2001, 68:874-883.
    • (2001) Am. J. Hum. Genet. , vol.68 , pp. 874-883
    • Giglio, S.1
  • 25
    • 77956645877 scopus 로고    scopus 로고
    • A large and complex structural polymorphism at 16p12.1 underlies microdeletion disease risk
    • Antonacci F., et al. A large and complex structural polymorphism at 16p12.1 underlies microdeletion disease risk. Nat. Genet. 2010, 42:745-750.
    • (2010) Nat. Genet. , vol.42 , pp. 745-750
    • Antonacci, F.1
  • 26
    • 67649834757 scopus 로고    scopus 로고
    • Characterization of six human disease-associated inversion polymorphisms
    • Antonacci F., et al. Characterization of six human disease-associated inversion polymorphisms. Hum. Mol. Genet. 2009, 18:2555-2566.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 2555-2566
    • Antonacci, F.1
  • 27
    • 80052760948 scopus 로고    scopus 로고
    • Diverse mutational mechanisms cause pathogenic subtelomeric rearrangements
    • Luo Y., et al. Diverse mutational mechanisms cause pathogenic subtelomeric rearrangements. Hum. Mol. Genet. 2011, 20:3769-3778.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 3769-3778
    • Luo, Y.1
  • 28
    • 0033055570 scopus 로고    scopus 로고
    • Natural history of Wolf-Hirschhorn syndrome: experience with 15 cases
    • Battaglia A., et al. Natural history of Wolf-Hirschhorn syndrome: experience with 15 cases. Pediatrics 1999, 103:830-836.
    • (1999) Pediatrics , vol.103 , pp. 830-836
    • Battaglia, A.1
  • 29
    • 19944430269 scopus 로고    scopus 로고
    • High-resolution mapping of genotype-phenotype relationships in cri du chat syndrome using array comparative genomic hybridization
    • Zhang X., et al. High-resolution mapping of genotype-phenotype relationships in cri du chat syndrome using array comparative genomic hybridization. Am. J. Hum. Genet. 2005, 76:312-326.
    • (2005) Am. J. Hum. Genet. , vol.76 , pp. 312-326
    • Zhang, X.1
  • 30
    • 69749123793 scopus 로고    scopus 로고
    • Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype
    • Kleefstra T., et al. Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J. Med. Genet. 2009, 46:598-606.
    • (2009) J. Med. Genet. , vol.46 , pp. 598-606
    • Kleefstra, T.1
  • 31
    • 3342974500 scopus 로고    scopus 로고
    • The 11q terminal deletion disorder: a prospective study of 110 cases
    • Grossfeld P.D., et al. The 11q terminal deletion disorder: a prospective study of 110 cases. Am. J. Med. Genet. A 2004, 129A:51-61.
    • (2004) Am. J. Med. Genet. A , vol.129A , pp. 51-61
    • Grossfeld, P.D.1
  • 32
    • 33845889998 scopus 로고    scopus 로고
    • Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders
    • Durand C.M., et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet. 2007, 39:25-27.
    • (2007) Nat. Genet. , vol.39 , pp. 25-27
    • Durand, C.M.1
  • 33
    • 84903650357 scopus 로고    scopus 로고
    • Tandem repeats and G-rich sequences are enriched at human CNV breakpoints
    • Bose P., et al. Tandem repeats and G-rich sequences are enriched at human CNV breakpoints. PLoS ONE 2014, 9:e101607.
    • (2014) PLoS ONE , vol.9 , pp. e101607
    • Bose, P.1
  • 34
    • 84925096537 scopus 로고    scopus 로고
    • Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints
    • Newman S., et al. Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints. Am. J. Hum. Genet. 2015, 96:208-220.
    • (2015) Am. J. Hum. Genet. , vol.96 , pp. 208-220
    • Newman, S.1
  • 35
    • 84875980851 scopus 로고    scopus 로고
    • Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain
    • Verdin H., et al. Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain. PLoS Genet. 2013, 9:e1003358.
    • (2013) PLoS Genet. , vol.9 , pp. e1003358
    • Verdin, H.1
  • 36
    • 70350776635 scopus 로고    scopus 로고
    • Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture
    • Vissers L.E., et al. Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture. Hum. Mol. Genet. 2009, 18:3579-3593.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 3579-3593
    • Vissers, L.E.1
  • 37
    • 84859510490 scopus 로고    scopus 로고
    • Resolving the breakpoints of the 17q21.31 microdeletion syndrome with next-generation sequencing
    • Itsara A., et al. Resolving the breakpoints of the 17q21.31 microdeletion syndrome with next-generation sequencing. Am. J. Hum. Genet. 2012, 90:599-613.
    • (2012) Am. J. Hum. Genet. , vol.90 , pp. 599-613
    • Itsara, A.1
  • 38
    • 33748333194 scopus 로고    scopus 로고
    • Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome
    • Sharp A.J., et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat. Genet. 2006, 38:1038-1042.
    • (2006) Nat. Genet. , vol.38 , pp. 1038-1042
    • Sharp, A.J.1
  • 39
    • 84862491113 scopus 로고    scopus 로고
    • Mechanisms for recurrent and complex human genomic rearrangements
    • Liu P., et al. Mechanisms for recurrent and complex human genomic rearrangements. Curr. Opin. Genet. Dev. 2012, 22:211-220.
    • (2012) Curr. Opin. Genet. Dev. , vol.22 , pp. 211-220
    • Liu, P.1
  • 40
    • 84883679009 scopus 로고    scopus 로고
    • NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits
    • Dittwald P., et al. NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits. Genome Res. 2013, 23:1395-1409.
    • (2013) Genome Res. , vol.23 , pp. 1395-1409
    • Dittwald, P.1
  • 41
    • 80053908833 scopus 로고    scopus 로고
    • Frequency of nonallelic homologous recombination is correlated with length of homology: evidence that ectopic synapsis precedes ectopic crossing-over
    • Liu P., et al. Frequency of nonallelic homologous recombination is correlated with length of homology: evidence that ectopic synapsis precedes ectopic crossing-over. Am. J. Hum. Genet. 2011, 89:580-588.
    • (2011) Am. J. Hum. Genet. , vol.89 , pp. 580-588
    • Liu, P.1
  • 42
    • 84941127294 scopus 로고    scopus 로고
    • Genome-wide analyses of LINE-LINE-mediated nonallelic homologous recombination
    • Startek M., et al. Genome-wide analyses of LINE-LINE-mediated nonallelic homologous recombination. Nucleic Acids Res. 2015, 43:2188-2198.
    • (2015) Nucleic Acids Res. , vol.43 , pp. 2188-2198
    • Startek, M.1
  • 43
    • 84907954219 scopus 로고    scopus 로고
    • Human endogenous retroviral elements promote genome instability via non-allelic homologous recombination
    • Campbell I.M., et al. Human endogenous retroviral elements promote genome instability via non-allelic homologous recombination. BMC Biol. 2014, 12:74.
    • (2014) BMC Biol. , vol.12 , pp. 74
    • Campbell, I.M.1
  • 44
    • 84855869669 scopus 로고    scopus 로고
    • A recurrent translocation is mediated by homologous recombination between HERV-H elements
    • Hermetz K.E., et al. A recurrent translocation is mediated by homologous recombination between HERV-H elements. Mol. Cytogenet. 2012, 5:6.
    • (2012) Mol. Cytogenet. , vol.5 , pp. 6
    • Hermetz, K.E.1
  • 45
    • 84874608346 scopus 로고    scopus 로고
    • Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations
    • Robberecht C., et al. Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations. Genome Res. 2013, 23:411-418.
    • (2013) Genome Res. , vol.23 , pp. 411-418
    • Robberecht, C.1
  • 46
    • 84937040216 scopus 로고    scopus 로고
    • Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis
    • Weckselblatt B., et al. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res. 2015, 25:937-947.
    • (2015) Genome Res. , vol.25 , pp. 937-947
    • Weckselblatt, B.1
  • 47
    • 84905900217 scopus 로고    scopus 로고
    • The Alu-rich genomic architecture of SPAST predisposes to diverse and functionally distinct disease-associated cnv alleles
    • Boone P.M., et al. The Alu-rich genomic architecture of SPAST predisposes to diverse and functionally distinct disease-associated cnv alleles. Am. J. Hum. Genet. 2014, 95:143-161.
    • (2014) Am. J. Hum. Genet. , vol.95 , pp. 143-161
    • Boone, P.M.1
  • 48
    • 84922325674 scopus 로고    scopus 로고
    • Dosage changes of a segment at 17p13.1 lead to intellectual disability and microcephaly as a result of complex genetic interaction of multiple genes
    • Carvalho C.M., et al. Dosage changes of a segment at 17p13.1 lead to intellectual disability and microcephaly as a result of complex genetic interaction of multiple genes. Am. J. Hum. Genet. 2014, 95:565-578.
    • (2014) Am. J. Hum. Genet. , vol.95 , pp. 565-578
    • Carvalho, C.M.1
  • 49
    • 78249286208 scopus 로고    scopus 로고
    • A common molecular mechanism underlies two phenotypically distinct 17p13.1 microdeletion syndromes
    • Shlien A., et al. A common molecular mechanism underlies two phenotypically distinct 17p13.1 microdeletion syndromes. Am. J. Hum. Genet. 2010, 87:631-642.
    • (2010) Am. J. Hum. Genet. , vol.87 , pp. 631-642
    • Shlien, A.1
  • 50
    • 19544391485 scopus 로고    scopus 로고
    • Homeologous recombination between AluSx-sequences as a cause of hemophilia
    • Rossetti L.C., et al. Homeologous recombination between AluSx-sequences as a cause of hemophilia. Hum. Mutat. 2004, 24:440.
    • (2004) Hum. Mutat. , vol.24 , pp. 440
    • Rossetti, L.C.1
  • 51
    • 46449095106 scopus 로고    scopus 로고
    • Mapping translocation breakpoints by next-generation sequencing
    • Chen W., et al. Mapping translocation breakpoints by next-generation sequencing. Genome Res. 2008, 18:1143-1149.
    • (2008) Genome Res. , vol.18 , pp. 1143-1149
    • Chen, W.1
  • 52
    • 84862777955 scopus 로고    scopus 로고
    • Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration
    • S391
    • Chiang C., et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat. Genet. 2012, 44:390-397. S391.
    • (2012) Nat. Genet. , vol.44 , pp. 390-397
    • Chiang, C.1
  • 53
    • 41149106868 scopus 로고    scopus 로고
    • Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project
    • Higgins A.W., et al. Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project. Am. J. Hum. Genet. 2008, 82:712-722.
    • (2008) Am. J. Hum. Genet. , vol.82 , pp. 712-722
    • Higgins, A.W.1
  • 54
    • 0023646823 scopus 로고
    • A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination
    • Rouyer F., et al. A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination. Cell 1987, 51:417-425.
    • (1987) Cell , vol.51 , pp. 417-425
    • Rouyer, F.1
  • 55
    • 84884593850 scopus 로고    scopus 로고
    • Disruption of EXOC6B in a patient with developmental delay, epilepsy, and a de novo balanced t(2;8) translocation
    • Fruhmesser A., et al. Disruption of EXOC6B in a patient with developmental delay, epilepsy, and a de novo balanced t(2;8) translocation. Eur. J. Hum. Genet. 2013, 21:1177-1180.
    • (2013) Eur. J. Hum. Genet. , vol.21 , pp. 1177-1180
    • Fruhmesser, A.1
  • 56
    • 0036071427 scopus 로고    scopus 로고
    • Heterozygous submicroscopic inversions involving olfactory receptor-gene clusters mediate the recurrent t(4;8)(p16;p23) translocation
    • Giglio S., et al. Heterozygous submicroscopic inversions involving olfactory receptor-gene clusters mediate the recurrent t(4;8)(p16;p23) translocation. Am. J. Hum. Genet. 2002, 71:276-285.
    • (2002) Am. J. Hum. Genet. , vol.71 , pp. 276-285
    • Giglio, S.1
  • 57
    • 84883780405 scopus 로고    scopus 로고
    • Mouse model implicates GNB3 duplication in a childhood obesity syndrome
    • Goldlust I.S., et al. Mouse model implicates GNB3 duplication in a childhood obesity syndrome. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:14990-14994.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 14990-14994
    • Goldlust, I.S.1
  • 58
    • 78651478345 scopus 로고    scopus 로고
    • Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes
    • Ou Z., et al. Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes. Genome Res. 2011, 21:33-46.
    • (2011) Genome Res. , vol.21 , pp. 33-46
    • Ou, Z.1
  • 59
    • 84862504386 scopus 로고    scopus 로고
    • Chromosomal translocations and palindromic AT-rich repeats
    • Kato T., et al. Chromosomal translocations and palindromic AT-rich repeats. Curr. Opin. Genet. Dev. 2012, 22:221-228.
    • (2012) Curr. Opin. Genet. Dev. , vol.22 , pp. 221-228
    • Kato, T.1
  • 60
    • 84655163917 scopus 로고    scopus 로고
    • Characterizing complex structural variation in germline and somatic genomes
    • Quinlan A.R., Hall I.M. Characterizing complex structural variation in germline and somatic genomes. Trends Genet. 2012, 28:43-53.
    • (2012) Trends Genet. , vol.28 , pp. 43-53
    • Quinlan, A.R.1    Hall, I.M.2
  • 61
    • 67650001851 scopus 로고    scopus 로고
    • Complex human chromosomal and genomic rearrangements
    • Zhang F., et al. Complex human chromosomal and genomic rearrangements. Trends Genet. 2009, 25:298-307.
    • (2009) Trends Genet. , vol.25 , pp. 298-307
    • Zhang, F.1
  • 62
    • 33947257997 scopus 로고    scopus 로고
    • Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplification in human cancer
    • Tanaka H., et al. Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplification in human cancer. Mol. Cell. Biol. 2007, 27:1993-2002.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 1993-2002
    • Tanaka, H.1
  • 63
    • 84896698672 scopus 로고    scopus 로고
    • Large inverted duplications in the human genome form via a fold-back mechanism
    • Hermetz K.E., et al. Large inverted duplications in the human genome form via a fold-back mechanism. PLoS Genet. 2014, 10:e1004139.
    • (2014) PLoS Genet. , vol.10 , pp. e1004139
    • Hermetz, K.E.1
  • 64
    • 66149168915 scopus 로고    scopus 로고
    • Inverted duplications on acentric markers: mechanism of formation
    • Murmann A.E., et al. Inverted duplications on acentric markers: mechanism of formation. Hum. Mol. Genet. 2009, 18:2241-2256.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 2241-2256
    • Murmann, A.E.1
  • 65
    • 84911061592 scopus 로고    scopus 로고
    • Inverted duplication with deletion: first interstitial case suggesting a novel undescribed mechanism of formation
    • Milosevic J., et al. Inverted duplication with deletion: first interstitial case suggesting a novel undescribed mechanism of formation. Am. J. Med. Genet. A 2014, 164A:3180-3186.
    • (2014) Am. J. Med. Genet. A , vol.164A , pp. 3180-3186
    • Milosevic, J.1
  • 66
    • 84921718161 scopus 로고    scopus 로고
    • Cryptic and complex chromosomal aberrations in early-onset neuropsychiatric disorders
    • Brand H., et al. Cryptic and complex chromosomal aberrations in early-onset neuropsychiatric disorders. Am. J. Hum. Genet. 2014, 95:454-461.
    • (2014) Am. J. Hum. Genet. , vol.95 , pp. 454-461
    • Brand, H.1
  • 67
    • 85027936863 scopus 로고    scopus 로고
    • Replicative mechanisms for CNV formation are error prone
    • Carvalho C.M., et al. Replicative mechanisms for CNV formation are error prone. Nat. Genet. 2013, 45:1319-1326.
    • (2013) Nat. Genet. , vol.45 , pp. 1319-1326
    • Carvalho, C.M.1
  • 68
    • 80052916562 scopus 로고    scopus 로고
    • Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements
    • Liu P., et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 2011, 146:889-903.
    • (2011) Cell , vol.146 , pp. 889-903
    • Liu, P.1
  • 69
    • 84926140134 scopus 로고    scopus 로고
    • Complex genomic rearrangements at the PLP1 locus include triplication and quadruplication
    • Beck C.R., et al. Complex genomic rearrangements at the PLP1 locus include triplication and quadruplication. PLoS Genet. 2015, 3:e1005050.
    • (2015) PLoS Genet. , vol.3 , pp. e1005050
    • Beck, C.R.1
  • 70
    • 84926246952 scopus 로고    scopus 로고
    • Absence of heterozygosity due to template switching during replicative rearrangements
    • Carvalho C.M., et al. Absence of heterozygosity due to template switching during replicative rearrangements. Am. J. Hum. Genet. 2015, 96:555-564.
    • (2015) Am. J. Hum. Genet. , vol.96 , pp. 555-564
    • Carvalho, C.M.1
  • 71
    • 80055003130 scopus 로고    scopus 로고
    • Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome
    • Carvalho C.M., et al. Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat. Genet. 2011, 43:1074-1081.
    • (2011) Nat. Genet. , vol.43 , pp. 1074-1081
    • Carvalho, C.M.1
  • 72
    • 84880510719 scopus 로고    scopus 로고
    • Dissecting the structure and mechanism of a complex duplication-triplication rearrangement in the DMD gene
    • Ishmukhametova A., et al. Dissecting the structure and mechanism of a complex duplication-triplication rearrangement in the DMD gene. Hum. Mutat. 2013, 34:1080-1084.
    • (2013) Hum. Mutat. , vol.34 , pp. 1080-1084
    • Ishmukhametova, A.1
  • 73
    • 84862227825 scopus 로고    scopus 로고
    • Pelizaeus-Merzbacher disease caused by a duplication-inverted triplication-duplication in chromosomal segments including the PLP1 region
    • Shimojima K., et al. Pelizaeus-Merzbacher disease caused by a duplication-inverted triplication-duplication in chromosomal segments including the PLP1 region. Eur. J. Med. Genet. 2012, 55:400-403.
    • (2012) Eur. J. Med. Genet. , vol.55 , pp. 400-403
    • Shimojima, K.1
  • 74
    • 79952222136 scopus 로고    scopus 로고
    • Recurrence, submicroscopic complexity, and potential clinical relevance of copy gains detected by array CGH that are shown to be unbalanced insertions by FISH
    • Neill N.J., et al. Recurrence, submicroscopic complexity, and potential clinical relevance of copy gains detected by array CGH that are shown to be unbalanced insertions by FISH. Genome Res. 2011, 21:535-544.
    • (2011) Genome Res. , vol.21 , pp. 535-544
    • Neill, N.J.1
  • 75
    • 77951731249 scopus 로고    scopus 로고
    • Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results
    • Kang S.H., et al. Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results. Am. J. Med. Genet. A 2010, 152A:1111-1126.
    • (2010) Am. J. Med. Genet. A , vol.152A , pp. 1111-1126
    • Kang, S.H.1
  • 76
    • 84855774388 scopus 로고    scopus 로고
    • Parental insertional balanced translocations are an important cause of apparently de novo CNVs in patients with developmental anomalies
    • Nowakowska B.A., et al. Parental insertional balanced translocations are an important cause of apparently de novo CNVs in patients with developmental anomalies. Eur. J. Hum. Genet. 2012, 20:166-170.
    • (2012) Eur. J. Hum. Genet. , vol.20 , pp. 166-170
    • Nowakowska, B.A.1
  • 77
    • 84869173265 scopus 로고    scopus 로고
    • Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements
    • Holland A.J., Cleveland D.W. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat. Med. 2012, 18:1630-1638.
    • (2012) Nat. Med. , vol.18 , pp. 1630-1638
    • Holland, A.J.1    Cleveland, D.W.2
  • 78
    • 78650959663 scopus 로고    scopus 로고
    • Massive genomic rearrangement acquired in a single catastrophic event during cancer development
    • Stephens P.J., et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011, 144:27-40.
    • (2011) Cell , vol.144 , pp. 27-40
    • Stephens, P.J.1
  • 79
    • 84873391241 scopus 로고    scopus 로고
    • Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes
    • Kim T.M., et al. Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes. Genome Res. 2013, 23:217-227.
    • (2013) Genome Res. , vol.23 , pp. 217-227
    • Kim, T.M.1
  • 80
    • 84880888748 scopus 로고    scopus 로고
    • Pure 16q21q22.1 deletion in a complex rearrangement possibly caused by a chromothripsis event
    • Genesio R., et al. Pure 16q21q22.1 deletion in a complex rearrangement possibly caused by a chromothripsis event. Mol. Cytogenet. 2013, 6:29.
    • (2013) Mol. Cytogenet. , vol.6 , pp. 29
    • Genesio, R.1
  • 81
    • 84863105790 scopus 로고    scopus 로고
    • Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms
    • Kloosterman W.P., et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep. 2012, 1:648-655.
    • (2012) Cell Rep. , vol.1 , pp. 648-655
    • Kloosterman, W.P.1
  • 82
    • 84924240766 scopus 로고    scopus 로고
    • Prenatal diagnosis of chromothripsis, with nine breaks characterized by karyotyping, FISH, microarray and whole-genome sequencing
    • Macera M.J., et al. Prenatal diagnosis of chromothripsis, with nine breaks characterized by karyotyping, FISH, microarray and whole-genome sequencing. Prenat. Diagn. 2014, 35:299-301.
    • (2014) Prenat. Diagn. , vol.35 , pp. 299-301
    • Macera, M.J.1
  • 83
    • 84894305155 scopus 로고    scopus 로고
    • The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2
    • Nazaryan L., et al. The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2. Eur. J. Hum. Genet. 2014, 22:338-343.
    • (2014) Eur. J. Hum. Genet. , vol.22 , pp. 338-343
    • Nazaryan, L.1
  • 84
    • 84919839764 scopus 로고    scopus 로고
    • Genomic and functional overlap between somatic and germline chromosomal rearrangements
    • van Heesch S., et al. Genomic and functional overlap between somatic and germline chromosomal rearrangements. Cell Rep. 2014, 9:2001-2010.
    • (2014) Cell Rep. , vol.9 , pp. 2001-2010
    • van Heesch, S.1
  • 85
    • 79955416773 scopus 로고    scopus 로고
    • Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline
    • Kloosterman W.P., et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 2011, 20:1916-1924.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 1916-1924
    • Kloosterman, W.P.1
  • 86
    • 84879243533 scopus 로고    scopus 로고
    • Chromothripsis in congenital disorders and cancer: similarities and differences
    • Kloosterman W.P., Cuppen E. Chromothripsis in congenital disorders and cancer: similarities and differences. Curr. Opin. Cell Biol. 2013, 25:341-348.
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 341-348
    • Kloosterman, W.P.1    Cuppen, E.2
  • 87
    • 66749169417 scopus 로고    scopus 로고
    • Chromosome instability is common in human cleavage-stage embryos
    • Vanneste E., et al. Chromosome instability is common in human cleavage-stage embryos. Nat. Med. 2009, 15:577-583.
    • (2009) Nat. Med. , vol.15 , pp. 577-583
    • Vanneste, E.1
  • 88
    • 84856424908 scopus 로고    scopus 로고
    • DNA breaks and chromosome pulverization from errors in mitosis
    • Crasta K., et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 2012, 482:53-58.
    • (2012) Nature , vol.482 , pp. 53-58
    • Crasta, K.1
  • 89
    • 84926249075 scopus 로고    scopus 로고
    • Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring
    • de Pagter M.S., et al. Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am. J. Hum. Genet. 2015, 96:651-656.
    • (2015) Am. J. Hum. Genet. , vol.96 , pp. 651-656
    • de Pagter, M.S.1
  • 90
    • 84922758305 scopus 로고    scopus 로고
    • Chromothriptic cure of WHIM syndrome
    • McDermott D.H., et al. Chromothriptic cure of WHIM syndrome. Cell 2015, 160:686-699.
    • (2015) Cell , vol.160 , pp. 686-699
    • McDermott, D.H.1
  • 91
    • 84919723909 scopus 로고    scopus 로고
    • Complex structural rearrangement features suggesting chromoanagenesis mechanism in a case of 1p36 deletion syndrome
    • Zanardo E.A., et al. Complex structural rearrangement features suggesting chromoanagenesis mechanism in a case of 1p36 deletion syndrome. Mol. Genet. Genomics 2014, 289:1037-1043.
    • (2014) Mol. Genet. Genomics , vol.289 , pp. 1037-1043
    • Zanardo, E.A.1
  • 92
    • 84908211410 scopus 로고    scopus 로고
    • Constitutional chromoanasynthesis: description of a rare chromosomal event in a patient
    • Plaisancie J., et al. Constitutional chromoanasynthesis: description of a rare chromosomal event in a patient. Eur. J. Med. Genet. 2014, 57:567-570.
    • (2014) Eur. J. Med. Genet. , vol.57 , pp. 567-570
    • Plaisancie, J.1
  • 93
    • 33750431676 scopus 로고    scopus 로고
    • Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome
    • Bonaglia M.C., et al. Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome. J. Med. Genet. 2006, 43:822-828.
    • (2006) J. Med. Genet. , vol.43 , pp. 822-828
    • Bonaglia, M.C.1
  • 94
    • 84859216598 scopus 로고    scopus 로고
    • Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes
    • Molenaar J.J., et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 2012, 483:589-593.
    • (2012) Nature , vol.483 , pp. 589-593
    • Molenaar, J.J.1
  • 95
    • 84883065379 scopus 로고    scopus 로고
    • Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis
    • Boeva V., et al. Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis. PLoS ONE 2013, 8:e72182.
    • (2013) PLoS ONE , vol.8 , pp. e72182
    • Boeva, V.1
  • 96
    • 84885203098 scopus 로고    scopus 로고
    • Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia
    • Rippey C., et al. Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia. Am. J. Hum. Genet. 2013, 93:697-710.
    • (2013) Am. J. Hum. Genet. , vol.93 , pp. 697-710
    • Rippey, C.1
  • 97
    • 78651098091 scopus 로고    scopus 로고
    • A balanced translocation t(6;14)(q25.3;q13.2) leading to reciprocal fusion transcripts in a patient with intellectual disability and agenesis of corpus callosum
    • Backx L., et al. A balanced translocation t(6;14)(q25.3;q13.2) leading to reciprocal fusion transcripts in a patient with intellectual disability and agenesis of corpus callosum. Cytogenet. Genome Res. 2011, 132:135-143.
    • (2011) Cytogenet. Genome Res. , vol.132 , pp. 135-143
    • Backx, L.1
  • 98
    • 84897143694 scopus 로고    scopus 로고
    • Detection of chromosomal breakpoints in patients with developmental delay and speech disorders
    • Utami K.H., et al. Detection of chromosomal breakpoints in patients with developmental delay and speech disorders. PLoS ONE 2014, 9:e90852.
    • (2014) PLoS ONE , vol.9 , pp. e90852
    • Utami, K.H.1
  • 99
    • 84936767018 scopus 로고    scopus 로고
    • Characterization of 26 deletion CNVs reveals the frequent occurrence of micro-mutations within the breakpoint-flanking regions and frequent repair of double-strand breaks by templated insertions derived from remote genomic regions
    • Wang Y., et al. Characterization of 26 deletion CNVs reveals the frequent occurrence of micro-mutations within the breakpoint-flanking regions and frequent repair of double-strand breaks by templated insertions derived from remote genomic regions. Hum. Genet. 2015, 134:589-603.
    • (2015) Hum. Genet. , vol.134 , pp. 589-603
    • Wang, Y.1
  • 100
    • 84883432724 scopus 로고    scopus 로고
    • An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers
    • Roberts S.A., et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 2013, 45:970-976.
    • (2013) Nat. Genet. , vol.45 , pp. 970-976
    • Roberts, S.A.1
  • 101
    • 22544447060 scopus 로고    scopus 로고
    • Deletions involving long-range conserved nongenic sequences upstream and downstream of FOXL2 as a novel disease-causing mechanism in blepharophimosis syndrome
    • Beysen D., et al. Deletions involving long-range conserved nongenic sequences upstream and downstream of FOXL2 as a novel disease-causing mechanism in blepharophimosis syndrome. Am. J. Hum. Genet. 2005, 77:205-218.
    • (2005) Am. J. Hum. Genet. , vol.77 , pp. 205-218
    • Beysen, D.1
  • 102
    • 0028907724 scopus 로고
    • Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype
    • Fantes J., et al. Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype. Hum. Mol. Genet. 1995, 4:415-422.
    • (1995) Hum. Mol. Genet. , vol.4 , pp. 415-422
    • Fantes, J.1
  • 103
    • 84890314164 scopus 로고    scopus 로고
    • Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia
    • Bhatia S., et al. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am. J. Hum. Genet. 2013, 93:1126-1134.
    • (2013) Am. J. Hum. Genet. , vol.93 , pp. 1126-1134
    • Bhatia, S.1
  • 104
    • 32044441668 scopus 로고    scopus 로고
    • Spastic paraplegia type 2 associated with axonal neuropathy and apparent PLP1 position effect
    • Lee J.A., et al. Spastic paraplegia type 2 associated with axonal neuropathy and apparent PLP1 position effect. Ann. Neurol. 2006, 59:398-403.
    • (2006) Ann. Neurol. , vol.59 , pp. 398-403
    • Lee, J.A.1
  • 105
    • 29244486467 scopus 로고    scopus 로고
    • Transactivation function of an approximately 800-bp evolutionarily conserved sequence at the SHOX 3' region: implication for the downstream enhancer
    • Fukami M., et al. Transactivation function of an approximately 800-bp evolutionarily conserved sequence at the SHOX 3' region: implication for the downstream enhancer. Am. J. Hum. Genet. 2006, 78:167-170.
    • (2006) Am. J. Hum. Genet. , vol.78 , pp. 167-170
    • Fukami, M.1
  • 106
    • 15944402131 scopus 로고    scopus 로고
    • Position effects due to chromosome breakpoints that map approximately 900Kb upstream and approximately 1.3Mb downstream of SOX9 in two patients with campomelic dysplasia
    • Velagaleti G.V., et al. Position effects due to chromosome breakpoints that map approximately 900Kb upstream and approximately 1.3Mb downstream of SOX9 in two patients with campomelic dysplasia. Am. J. Hum. Genet. 2005, 76:652-662.
    • (2005) Am. J. Hum. Genet. , vol.76 , pp. 652-662
    • Velagaleti, G.V.1
  • 107
    • 15944392851 scopus 로고    scopus 로고
    • Fine mapping of chromosome 17 translocation breakpoints ≥900Kb upstream of SOX9 in acampomelic campomelic dysplasia and a mild, familial skeletal dysplasia
    • Hill-Harfe K.L., et al. Fine mapping of chromosome 17 translocation breakpoints ≥900Kb upstream of SOX9 in acampomelic campomelic dysplasia and a mild, familial skeletal dysplasia. Am. J. Hum. Genet. 2005, 76:663-671.
    • (2005) Am. J. Hum. Genet. , vol.76 , pp. 663-671
    • Hill-Harfe, K.L.1
  • 108
    • 77951860836 scopus 로고    scopus 로고
    • The effect of translocation-induced nuclear reorganization on gene expression
    • Harewood L., et al. The effect of translocation-induced nuclear reorganization on gene expression. Genome Res. 2010, 20:554-564.
    • (2010) Genome Res. , vol.20 , pp. 554-564
    • Harewood, L.1
  • 109
    • 84904465224 scopus 로고    scopus 로고
    • Genome sequencing identifies major causes of severe intellectual disability
    • Gilissen C., et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014, 511:344-347.
    • (2014) Nature , vol.511 , pp. 344-347
    • Gilissen, C.1
  • 110
    • 84905686674 scopus 로고    scopus 로고
    • Design of large-insert jumping libraries for structural variant detection using illumina sequencing
    • 22 21-29
    • Hanscom C., Talkowski M. Design of large-insert jumping libraries for structural variant detection using illumina sequencing. Curr. Protoc. Hum. Genet. 2014, 80:7. 22 21-29.
    • (2014) Curr. Protoc. Hum. Genet. , vol.80 , pp. 7
    • Hanscom, C.1    Talkowski, M.2
  • 111
    • 35348988679 scopus 로고    scopus 로고
    • Paired-end mapping reveals extensive structural variation in the human genome
    • Korbel J.O., et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 2007, 318:420-426.
    • (2007) Science , vol.318 , pp. 420-426
    • Korbel, J.O.1
  • 112
    • 84925497196 scopus 로고    scopus 로고
    • Resolving the complexity of the human genome using single-molecule sequencing
    • Chaisson M.J., et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 2015, 517:608-611.
    • (2015) Nature , vol.517 , pp. 608-611
    • Chaisson, M.J.1
  • 113
    • 62549131646 scopus 로고    scopus 로고
    • PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data
    • Korbel J.O., et al. PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol. 2009, 10:R23.
    • (2009) Genome Biol. , vol.10 , pp. R23
    • Korbel, J.O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.