-
1
-
-
80755187806
-
Double-strand break end resection and repair pathway choice
-
Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45:247-271. http://dx.doi.org/10.1146/annurev-genet-110410-132435.
-
(2011)
Annu. Rev. Genet.
, vol.45
, pp. 247-271
-
-
Symington, L.S.1
Gautier, J.2
-
2
-
-
68249127288
-
Behind the wheel and under the hood: functions of cyclin-dependent kinases in response to DNA damage
-
Wohlbold L, Fisher RP. 2009. Behind the wheel and under the hood: functions of cyclin-dependent kinases in response to DNA damage. DNA Repair 8:1018-1024. http://dx.doi.org/10.1016/j.dnarep.2009.04.009.
-
(2009)
DNA Repair
, vol.8
, pp. 1018-1024
-
-
Wohlbold, L.1
Fisher, R.P.2
-
3
-
-
11244269445
-
The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle
-
Aylon Y, Liefshitz B, Kupiec M. 2004. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23:4868-4875. http://dx.doi.org/10.1038/sj.emboj.7600469.
-
(2004)
EMBO J.
, vol.23
, pp. 4868-4875
-
-
Aylon, Y.1
Liefshitz, B.2
Kupiec, M.3
-
4
-
-
7244220162
-
DNAend resection, homologous recombination andDNAdamage checkpoint activation require CDK1
-
Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, Carotenuto W, Liberi G, Bressan D, Wan L, Hollingsworth NM, Haber JE, Foiani M. 2004. DNAend resection, homologous recombination andDNAdamage checkpoint activation require CDK1. Nature 431:1011-1017. http://dx.doi.org/10.1038/nature02964.
-
(2004)
Nature
, vol.431
, pp. 1011-1017
-
-
Ira, G.1
Pellicioli, A.2
Balijja, A.3
Wang, X.4
Fiorani, S.5
Carotenuto, W.6
Liberi, G.7
Bressan, D.8
Wan, L.9
Hollingsworth, N.M.10
Haber, J.E.11
Foiani, M.12
-
5
-
-
53349162987
-
CDK targets Sae2 to control DNA-end resection and homologous recombination
-
Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A, Jackson SP. 2008. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455:689-692. http://dx.doi.org/10.1038/nature07215.
-
(2008)
Nature
, vol.455
, pp. 689-692
-
-
Huertas, P.1
Cortes-Ledesma, F.2
Sartori, A.A.3
Aguilera, A.4
Jackson, S.P.5
-
6
-
-
80052492286
-
Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation
-
Chen X, Niu H, Chung WH, Zhu Z, Papusha A, Shim EY, Lee SE, Sung P, Ira G. 2011. Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat. Struct. Mol. Biol. 18:1015-1019. http://dx.doi.org/10.1038/nsmb.2105.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1015-1019
-
-
Chen, X.1
Niu, H.2
Chung, W.H.3
Zhu, Z.4
Papusha, A.5
Shim, E.Y.6
Lee, S.E.7
Sung, P.8
Ira, G.9
-
7
-
-
84861481360
-
Cyclin-dependent kinase-dependent phosphorylation of Lif1 and Sae2 controls imprecise nonhomologous end joining accompanied by doublestrand break resection
-
Matsuzaki K, Terasawa M, Iwasaki D, Higashide M, Shinohara M. 2012. Cyclin-dependent kinase-dependent phosphorylation of Lif1 and Sae2 controls imprecise nonhomologous end joining accompanied by doublestrand break resection. Genes Cells 17:473-493. http://dx.doi.org/10.1111/j.1365-2443.2012.01602.x.
-
(2012)
Genes Cells
, vol.17
, pp. 473-493
-
-
Matsuzaki, K.1
Terasawa, M.2
Iwasaki, D.3
Higashide, M.4
Shinohara, M.5
-
8
-
-
0029976325
-
Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
-
Moore JK, Haber JE. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2164-2173.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 2164-2173
-
-
Moore, J.K.1
Haber, J.E.2
-
9
-
-
39549114009
-
Differential regulation of the cellular response to DNA double-strand breaks in G1
-
Barlow JH, Lisby M, Rothstein R. 2008. Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol. Cell 30:73-85. http://dx.doi.org/10.1016/j.molcel.2008.01.016.
-
(2008)
Mol. Cell
, vol.30
, pp. 73-85
-
-
Barlow, J.H.1
Lisby, M.2
Rothstein, R.3
-
10
-
-
10344263324
-
Recombination proteins in yeast
-
Krogh BO, Symington LS. 2004. Recombination proteins in yeast. Annu. Rev. Genet. 38:233-271. http://dx.doi.org/10.1146/annurev.genet.38.072902.091500.
-
(2004)
Annu. Rev. Genet.
, vol.38
, pp. 233-271
-
-
Krogh, B.O.1
Symington, L.S.2
-
11
-
-
51549095956
-
Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
-
Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134: 981-994. http://dx.doi.org/10.1016/j.cell.2008.08.037.
-
(2008)
Cell
, vol.134
, pp. 981-994
-
-
Zhu, Z.1
Chung, W.H.2
Shim, E.Y.3
Lee, S.E.4
Ira, G.5
-
12
-
-
78649451417
-
Making the best of the loose ends: Mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection
-
Paull TT. 2010. Making the best of the loose ends: Mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection. DNA Repair 9:1283-1291. http://dx.doi.org/10.1016/j.dnarep.2010.09.015.
-
(2010)
DNA Repair
, vol.9
, pp. 1283-1291
-
-
Paull, T.T.1
-
13
-
-
68249116573
-
DNA end resection: many nucleases make light work
-
Mimitou EP, Symington LS. 2009. DNA end resection: many nucleases make light work. DNA Repair 8:983-995. http://dx.doi.org/10.1016/j.dnarep.2009.04.017.
-
(2009)
DNA Repair
, vol.8
, pp. 983-995
-
-
Mimitou, E.P.1
Symington, L.S.2
-
14
-
-
2942594756
-
The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation
-
Baroni E, Viscardi V, Cartagena-Lirola H, Lucchini G, Longhese MP. 2004. The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Mol. Cell. Biol. 24: 4151-4165. http://dx.doi.org/10.1128/MCB.24.10.4151-4165.2004.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 4151-4165
-
-
Baroni, E.1
Viscardi, V.2
Cartagena-Lirola, H.3
Lucchini, G.4
Longhese, M.P.5
-
15
-
-
36248942617
-
Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex
-
Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT. 2007. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol. Cell 28:638-651. http://dx.doi.org/10.1016/j.molcel.2007.11.001.
-
(2007)
Mol. Cell
, vol.28
, pp. 638-651
-
-
Lengsfeld, B.M.1
Rattray, A.J.2
Bhaskara, V.3
Ghirlando, R.4
Paull, T.T.5
-
16
-
-
0035022013
-
Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/ COM1
-
Rattray AJ, McGill CB, Shafer BK, Strathern JN. 2001. Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/ COM1. Genetics 158:109-122.
-
(2001)
Genetics
, vol.158
, pp. 109-122
-
-
Rattray, A.J.1
McGill, C.B.2
Shafer, B.K.3
Strathern, J.N.4
-
17
-
-
22344455087
-
A mechanism of palindromic gene amplification in Saccharomyces cerevisiae
-
Rattray AJ, Shafer BK, Neelam B, Strathern JN. 2005. A mechanism of palindromic gene amplification in Saccharomyces cerevisiae. Genes Dev. 19:1390-1399. http://dx.doi.org/10.1101/gad.1315805.
-
(2005)
Genes Dev.
, vol.19
, pp. 1390-1399
-
-
Rattray, A.J.1
Shafer, B.K.2
Neelam, B.3
Strathern, J.N.4
-
18
-
-
0037169325
-
The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements
-
Lobachev KS, Gordenin DA, Resnick MA. 2002. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108:183-193. http://dx.doi.org/10.1016/S0092-8674(02)00614-1.
-
(2002)
Cell
, vol.108
, pp. 183-193
-
-
Lobachev, K.S.1
Gordenin, D.A.2
Resnick, M.A.3
-
19
-
-
0030759699
-
A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2
-
McKee AH, Kleckner N. 1997. A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146:797- 816.
-
(1997)
Genetics
, vol.146
-
-
McKee, A.H.1
Kleckner, N.2
-
20
-
-
0030811331
-
Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae
-
Prinz S, Amon A, Klein F. 1997. Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146:781-795.
-
(1997)
Genetics
, vol.146
, pp. 781-795
-
-
Prinz, S.1
Amon, A.2
Klein, F.3
-
21
-
-
23944459784
-
Endonucleolytic processing of covalent protein-linked DNA double-strand breaks
-
Neale MJ, Pan J, Keeney S. 2005. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:1053-1057. http://dx.doi.org/10.1038/nature03872.
-
(2005)
Nature
, vol.436
, pp. 1053-1057
-
-
Neale, M.J.1
Pan, J.2
Keeney, S.3
-
22
-
-
78649805560
-
Mre11-Rad50-Xrs2 and Sae2 promote 5= strand resection ofDNAdoublestrand breaks
-
Nicolette ML, Lee K, Guo Z, Rani M, Chow JM, Lee SE, Paull TT. 2010. Mre11-Rad50-Xrs2 and Sae2 promote 5= strand resection ofDNAdoublestrand breaks. Nat. Struct. Mol. Biol. 17:1478-1485. http://dx.doi.org/10.1038/nsmb.1957.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1478-1485
-
-
Nicolette, M.L.1
Lee, K.2
Guo, Z.3
Rani, M.4
Chow, J.M.5
Lee, S.E.6
Paull, T.T.7
-
23
-
-
0842282836
-
Preparation and analysis of the INO80 complex
-
Shen X. 2004. Preparation and analysis of the INO80 complex. Methods Enzymol. 377:401-412. http://dx.doi.org/10.1016/S0076-6879(03)77026 -8.
-
(2004)
Methods Enzymol.
, vol.377
, pp. 401-412
-
-
Shen, X.1
-
24
-
-
53549093050
-
The P. furiosus. Mre11/Rad50 complex promotes 5= strand resection at a DNA double-strand break
-
Hopkins B, Paull TT. 2008. The P. furiosus Mre11/Rad50 complex promotes 5= strand resection at a DNA double-strand break. Cell 135:250- 260. http://dx.doi.org/10.1016/j.cell.2008.09.054.
-
(2008)
Cell
, vol.135
, pp. 250-260
-
-
Hopkins, B.1
Paull, T.T.2
-
25
-
-
0037173615
-
Functional profiling of the Saccharomyces cerevisiae genome
-
Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, et al. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387-391. http://dx.doi.org/10.1038/nature00935.
-
(2002)
Nature
, vol.418
, pp. 387-391
-
-
Giaever, G.1
Chu, A.M.2
Ni, L.3
Connelly, C.4
Riles, L.5
Veronneau, S.6
Dow, S.7
Lucau-Danila, A.8
Anderson, K.9
Andre, B.10
Arkin, A.P.11
Astromoff, A.12
El-Bakkoury, M.13
Bangham, R.14
Benito, R.15
Brachat, S.16
Campanaro, S.17
Curtiss, M.18
Davis, K.19
Deutschbauer, A.20
Entian, K.D.21
Flaherty, P.22
Foury, F.23
Garfinkel, D.J.24
Gerstein, M.25
Gotte, D.26
Guldener, U.27
Hegemann, J.H.28
Hempel, S.29
Herman, Z.30
Jaramillo, D.F.31
Kelly, D.E.32
Kelly, S.L.33
Kotter, P.34
LaBonte, D.35
Lamb, D.C.36
Lan, N.37
Liang, H.38
Liao, H.39
Liu, L.40
Luo, C.41
Lussier, M.42
Mao, R.43
Menard, P.44
Ooi, S.L.45
Revuelta, J.L.46
Roberts, C.J.47
Rose, M.48
Ross-Macdonald, P.49
Scherens, B.50
more..
-
26
-
-
0024669291
-
A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
-
Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.
-
(1989)
Genetics
, vol.122
, pp. 19-27
-
-
Sikorski, R.S.1
Hieter, P.2
-
27
-
-
0026512939
-
Multifunctional yeast high-copy-number shuttle vectors
-
Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119-122. http://dx.doi.org/10.1016/0378-1119(92)90454-W.
-
(1992)
Gene
, vol.110
, pp. 119-122
-
-
Christianson, T.W.1
Sikorski, R.S.2
Dante, M.3
Shero, J.H.4
Hieter, P.5
-
28
-
-
4544281398
-
Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins
-
Lisby M, Barlow JH, Burgess RC, Rothstein R. 2004. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699-713. http://dx.doi.org/10.1016/j.cell.2004.08.015.
-
(2004)
Cell
, vol.118
, pp. 699-713
-
-
Lisby, M.1
Barlow, J.H.2
Burgess, R.C.3
Rothstein, R.4
-
29
-
-
0036270546
-
Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR
-
Reid RJ, Lisby M, Rothstein R. 2002. Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR. Methods Enzymol. 350:258-277.
-
(2002)
Methods Enzymol.
, vol.350
, pp. 258-277
-
-
Reid, R.J.1
Lisby, M.2
Rothstein, R.3
-
30
-
-
40849094757
-
Functional interactions between Sae2 and the Mre11 complex
-
Kim HS, Vijayakumar S, Reger M, Harrison JC, Haber JE, Weil C, Petrini JH. 2008. Functional interactions between Sae2 and the Mre11 complex. Genetics 178:711-723. http://dx.doi.org/10.1534/genetics.107.081331.
-
(2008)
Genetics
, vol.178
, pp. 711-723
-
-
Kim, H.S.1
Vijayakumar, S.2
Reger, M.3
Harrison, J.C.4
Haber, J.E.5
Weil, C.6
Petrini, J.H.7
-
31
-
-
0028032104
-
The B subunit of the DNA polymerase alpha-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replication
-
Foiani M, Marini F, Gamba D, Lucchini G, Plevani P. 1994. The B subunit of the DNA polymerase alpha-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replication. Mol. Cell. Biol. 14:923-933.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 923-933
-
-
Foiani, M.1
Marini, F.2
Gamba, D.3
Lucchini, G.4
Plevani, P.5
-
32
-
-
17644409069
-
ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex
-
Lee JH, Paull TT. 2005. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308:551-554. http://dx.doi.org/10.1126/science.1108297.
-
(2005)
Science
, vol.308
, pp. 551-554
-
-
Lee, J.H.1
Paull, T.T.2
-
33
-
-
49749115736
-
Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE
-
Kinoshita E, Kinoshita-Kikuta E, Matsubara M, Yamada S, Nakamura H, Shiro Y, Aoki Y, Okita K, Koike T. 2008. Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE. Proteomics 8:2994-3003. http://dx.doi.org/10.1002/pmic.200800243.
-
(2008)
Proteomics
, vol.8
, pp. 2994-3003
-
-
Kinoshita, E.1
Kinoshita-Kikuta, E.2
Matsubara, M.3
Yamada, S.4
Nakamura, H.5
Shiro, Y.6
Aoki, Y.7
Okita, K.8
Koike, T.9
-
34
-
-
34848886914
-
Autophagosome formation: core machinery and adaptations
-
Xie Z, Klionsky DJ. 2007. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9:1102-1109. http://dx.doi.org/10.1038/ncb1007-1102.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 1102-1109
-
-
Xie, Z.1
Klionsky, D.J.2
-
35
-
-
79952270884
-
HDACs link the DNA damage response, processing of double-strand breaks and autophagy
-
Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R, Botrugno OA, Parazzoli D, Oldani A, Minucci S, Foiani M. 2011. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471:74-79. http://dx.doi.org/10.1038/nature09803.
-
(2011)
Nature
, vol.471
, pp. 74-79
-
-
Robert, T.1
Vanoli, F.2
Chiolo, I.3
Shubassi, G.4
Bernstein, K.A.5
Rothstein, R.6
Botrugno, O.A.7
Parazzoli, D.8
Oldani, A.9
Minucci, S.10
Foiani, M.11
-
36
-
-
0142215475
-
Global analysis of protein expression in yeast
-
Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS. 2003. Global analysis of protein expression in yeast. Nature 425:737-741. http://dx.doi.org/10.1038/nature02046.
-
(2003)
Nature
, vol.425
, pp. 737-741
-
-
Ghaemmaghami, S.1
Huh, W.K.2
Bower, K.3
Howson, R.W.4
Belle, A.5
Dephoure, N.6
O'Shea, E.K.7
Weissman, J.S.8
-
37
-
-
0034881760
-
Budding yeast Rad9 is an ATP-dependent Rad53 activating machine
-
Gilbert CS, Green CM, Lowndes NF. 2001. Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol. Cell 8:129-136. http://dx.doi.org/10.1016/S1097-2765(01)00267-2.
-
(2001)
Mol. Cell
, vol.8
, pp. 129-136
-
-
Gilbert, C.S.1
Green, C.M.2
Lowndes, N.F.3
-
38
-
-
34247882072
-
Life on the edge: a link between gene expression levels and aggregation rates of human proteins
-
Tartaglia GG, Pechmann S, Dobson CM, Vendruscolo M. 2007. Life on the edge: a link between gene expression levels and aggregation rates of human proteins. Trends Biochem. Sci. 32:204-206. http://dx.doi.org/10.1016/j.tibs.2007.03.005.
-
(2007)
Trends Biochem. Sci.
, vol.32
, pp. 204-206
-
-
Tartaglia, G.G.1
Pechmann, S.2
Dobson, C.M.3
Vendruscolo, M.4
-
39
-
-
33746377894
-
Protein misfolding, functional amyloid, and human disease
-
Chiti F, Dobson CM. 2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75:333-366. http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901.
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 333-366
-
-
Chiti, F.1
Dobson, C.M.2
-
40
-
-
84863479475
-
Protein aggregation: mechanisms and functional consequences
-
Invernizzi G, Papaleo E, Sabate R, Ventura S. 2012. Protein aggregation: mechanisms and functional consequences. Int. J. Biochem. Cell Biol. 44: 1541-1554. http://dx.doi.org/10.1016/j.biocel.2012.05.023.
-
(2012)
Int. J. Biochem. Cell Biol.
, vol.44
, pp. 1541-1554
-
-
Invernizzi, G.1
Papaleo, E.2
Sabate, R.3
Ventura, S.4
-
41
-
-
84876076016
-
Aging and the aggregating proteome
-
David DC. 2012. Aging and the aggregating proteome. Front. Genet. 3:247. http://dx.doi.org/10.3389/fgene.2012.00247.
-
(2012)
Front. Genet.
, vol.3
, pp. 247
-
-
David, D.C.1
-
42
-
-
84866692230
-
Evolutionary selection for protein aggregation
-
Sanchez de Groot N, Torrent M, Villar-Pique A, Lang B, Ventura S, Gsponer J, BabuMM.2012. Evolutionary selection for protein aggregation. Biochem. Soc. Trans. 40:1032-1037. http://dx.doi.org/10.1042/BST20120160.
-
(2012)
Biochem. Soc. Trans.
, vol.40
, pp. 1032-1037
-
-
Sanchez de Groot, N.1
Torrent, M.2
Villar-Pique, A.3
Lang, B.4
Ventura, S.5
Gsponer, J.6
Babu, M.M.7
-
43
-
-
79956188298
-
Caught in self-interaction: evolutionary and functional mechanisms of protein homooligomerization
-
Hashimoto K, Nishi H, Bryant S, Panchenko AR. 2011. Caught in self-interaction: evolutionary and functional mechanisms of protein homooligomerization. Phys. Biol. 8:035007. http://dx.doi.org/10.1088/1478-3975/8/3/035007.
-
(2011)
Phys. Biol.
, vol.8
, pp. 035007
-
-
Hashimoto, K.1
Nishi, H.2
Bryant, S.3
Panchenko, A.R.4
-
44
-
-
77954313601
-
DNA damage and decisions: CtIP coordinates DNArepair and cell cycle checkpoints
-
You Z, Bailis JM. 2010. DNA damage and decisions: CtIP coordinates DNArepair and cell cycle checkpoints. Trends Cell Biol. 20:402-409. http://dx.doi.org/10.1016/j.tcb.2010.04.002.
-
(2010)
Trends Cell Biol.
, vol.20
, pp. 402-409
-
-
You, Z.1
Bailis, J.M.2
-
45
-
-
84883599853
-
Prolyl isomerase PIN1 regulates DNA doublestrand break repair by counteracting DNA end resection
-
Steger M, Murina O, Huhn D, Ferretti LP, Walser R, Hanggi K, Lafranchi L, Neugebauer C, Paliwal S, Janscak P, Gerrits B, Del Sal G, Zerbe O, Sartori AA. 2013. Prolyl isomerase PIN1 regulates DNA doublestrand break repair by counteracting DNA end resection. Mol. Cell 50: 333-343. http://dx.doi.org/10.1016/j.molcel.2013.03.023.
-
(2013)
Mol. Cell
, vol.50
, pp. 333-343
-
-
Steger, M.1
Murina, O.2
Huhn, D.3
Ferretti, L.P.4
Walser, R.5
Hanggi, K.6
Lafranchi, L.7
Neugebauer, C.8
Paliwal, S.9
Janscak, P.10
Gerrits, B.11
Del Sal, G.12
Zerbe, O.13
Sartori, A.A.14
|