메뉴 건너뛰기




Volumn 34, Issue 5, 2014, Pages 778-793

Phosphorylation-regulated transitions in an oligomeric state control the activity of the sae2 DNA repair enzyme

Author keywords

[No Author keywords available]

Indexed keywords

AUTOPHAGY; CELL CYCLE; DNA BREAKS, DOUBLE-STRANDED; DNA REPAIR; ENDONUCLEASES; INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS; MUTATION; PHOSPHORYLATION; PROTEASOME ENDOPEPTIDASE COMPLEX; PROTEIN-SERINE-THREONINE KINASES; PROTEOLYSIS; SACCHAROMYCES CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEINS;

EID: 84893827413     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00963-13     Document Type: Article
Times cited : (36)

References (46)
  • 1
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45:247-271. http://dx.doi.org/10.1146/annurev-genet-110410-132435.
    • (2011) Annu. Rev. Genet. , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 2
    • 68249127288 scopus 로고    scopus 로고
    • Behind the wheel and under the hood: functions of cyclin-dependent kinases in response to DNA damage
    • Wohlbold L, Fisher RP. 2009. Behind the wheel and under the hood: functions of cyclin-dependent kinases in response to DNA damage. DNA Repair 8:1018-1024. http://dx.doi.org/10.1016/j.dnarep.2009.04.009.
    • (2009) DNA Repair , vol.8 , pp. 1018-1024
    • Wohlbold, L.1    Fisher, R.P.2
  • 3
    • 11244269445 scopus 로고    scopus 로고
    • The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle
    • Aylon Y, Liefshitz B, Kupiec M. 2004. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23:4868-4875. http://dx.doi.org/10.1038/sj.emboj.7600469.
    • (2004) EMBO J. , vol.23 , pp. 4868-4875
    • Aylon, Y.1    Liefshitz, B.2    Kupiec, M.3
  • 5
    • 53349162987 scopus 로고    scopus 로고
    • CDK targets Sae2 to control DNA-end resection and homologous recombination
    • Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A, Jackson SP. 2008. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455:689-692. http://dx.doi.org/10.1038/nature07215.
    • (2008) Nature , vol.455 , pp. 689-692
    • Huertas, P.1    Cortes-Ledesma, F.2    Sartori, A.A.3    Aguilera, A.4    Jackson, S.P.5
  • 6
    • 80052492286 scopus 로고    scopus 로고
    • Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation
    • Chen X, Niu H, Chung WH, Zhu Z, Papusha A, Shim EY, Lee SE, Sung P, Ira G. 2011. Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat. Struct. Mol. Biol. 18:1015-1019. http://dx.doi.org/10.1038/nsmb.2105.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1015-1019
    • Chen, X.1    Niu, H.2    Chung, W.H.3    Zhu, Z.4    Papusha, A.5    Shim, E.Y.6    Lee, S.E.7    Sung, P.8    Ira, G.9
  • 7
    • 84861481360 scopus 로고    scopus 로고
    • Cyclin-dependent kinase-dependent phosphorylation of Lif1 and Sae2 controls imprecise nonhomologous end joining accompanied by doublestrand break resection
    • Matsuzaki K, Terasawa M, Iwasaki D, Higashide M, Shinohara M. 2012. Cyclin-dependent kinase-dependent phosphorylation of Lif1 and Sae2 controls imprecise nonhomologous end joining accompanied by doublestrand break resection. Genes Cells 17:473-493. http://dx.doi.org/10.1111/j.1365-2443.2012.01602.x.
    • (2012) Genes Cells , vol.17 , pp. 473-493
    • Matsuzaki, K.1    Terasawa, M.2    Iwasaki, D.3    Higashide, M.4    Shinohara, M.5
  • 8
    • 0029976325 scopus 로고    scopus 로고
    • Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
    • Moore JK, Haber JE. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2164-2173.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 2164-2173
    • Moore, J.K.1    Haber, J.E.2
  • 9
    • 39549114009 scopus 로고    scopus 로고
    • Differential regulation of the cellular response to DNA double-strand breaks in G1
    • Barlow JH, Lisby M, Rothstein R. 2008. Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol. Cell 30:73-85. http://dx.doi.org/10.1016/j.molcel.2008.01.016.
    • (2008) Mol. Cell , vol.30 , pp. 73-85
    • Barlow, J.H.1    Lisby, M.2    Rothstein, R.3
  • 10
    • 10344263324 scopus 로고    scopus 로고
    • Recombination proteins in yeast
    • Krogh BO, Symington LS. 2004. Recombination proteins in yeast. Annu. Rev. Genet. 38:233-271. http://dx.doi.org/10.1146/annurev.genet.38.072902.091500.
    • (2004) Annu. Rev. Genet. , vol.38 , pp. 233-271
    • Krogh, B.O.1    Symington, L.S.2
  • 11
    • 51549095956 scopus 로고    scopus 로고
    • Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
    • Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134: 981-994. http://dx.doi.org/10.1016/j.cell.2008.08.037.
    • (2008) Cell , vol.134 , pp. 981-994
    • Zhu, Z.1    Chung, W.H.2    Shim, E.Y.3    Lee, S.E.4    Ira, G.5
  • 12
    • 78649451417 scopus 로고    scopus 로고
    • Making the best of the loose ends: Mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection
    • Paull TT. 2010. Making the best of the loose ends: Mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection. DNA Repair 9:1283-1291. http://dx.doi.org/10.1016/j.dnarep.2010.09.015.
    • (2010) DNA Repair , vol.9 , pp. 1283-1291
    • Paull, T.T.1
  • 13
    • 68249116573 scopus 로고    scopus 로고
    • DNA end resection: many nucleases make light work
    • Mimitou EP, Symington LS. 2009. DNA end resection: many nucleases make light work. DNA Repair 8:983-995. http://dx.doi.org/10.1016/j.dnarep.2009.04.017.
    • (2009) DNA Repair , vol.8 , pp. 983-995
    • Mimitou, E.P.1    Symington, L.S.2
  • 14
    • 2942594756 scopus 로고    scopus 로고
    • The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation
    • Baroni E, Viscardi V, Cartagena-Lirola H, Lucchini G, Longhese MP. 2004. The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Mol. Cell. Biol. 24: 4151-4165. http://dx.doi.org/10.1128/MCB.24.10.4151-4165.2004.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 4151-4165
    • Baroni, E.1    Viscardi, V.2    Cartagena-Lirola, H.3    Lucchini, G.4    Longhese, M.P.5
  • 15
    • 36248942617 scopus 로고    scopus 로고
    • Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex
    • Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT. 2007. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol. Cell 28:638-651. http://dx.doi.org/10.1016/j.molcel.2007.11.001.
    • (2007) Mol. Cell , vol.28 , pp. 638-651
    • Lengsfeld, B.M.1    Rattray, A.J.2    Bhaskara, V.3    Ghirlando, R.4    Paull, T.T.5
  • 16
    • 0035022013 scopus 로고    scopus 로고
    • Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/ COM1
    • Rattray AJ, McGill CB, Shafer BK, Strathern JN. 2001. Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/ COM1. Genetics 158:109-122.
    • (2001) Genetics , vol.158 , pp. 109-122
    • Rattray, A.J.1    McGill, C.B.2    Shafer, B.K.3    Strathern, J.N.4
  • 17
    • 22344455087 scopus 로고    scopus 로고
    • A mechanism of palindromic gene amplification in Saccharomyces cerevisiae
    • Rattray AJ, Shafer BK, Neelam B, Strathern JN. 2005. A mechanism of palindromic gene amplification in Saccharomyces cerevisiae. Genes Dev. 19:1390-1399. http://dx.doi.org/10.1101/gad.1315805.
    • (2005) Genes Dev. , vol.19 , pp. 1390-1399
    • Rattray, A.J.1    Shafer, B.K.2    Neelam, B.3    Strathern, J.N.4
  • 18
    • 0037169325 scopus 로고    scopus 로고
    • The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements
    • Lobachev KS, Gordenin DA, Resnick MA. 2002. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108:183-193. http://dx.doi.org/10.1016/S0092-8674(02)00614-1.
    • (2002) Cell , vol.108 , pp. 183-193
    • Lobachev, K.S.1    Gordenin, D.A.2    Resnick, M.A.3
  • 19
    • 0030759699 scopus 로고    scopus 로고
    • A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2
    • McKee AH, Kleckner N. 1997. A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146:797- 816.
    • (1997) Genetics , vol.146
    • McKee, A.H.1    Kleckner, N.2
  • 20
    • 0030811331 scopus 로고    scopus 로고
    • Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae
    • Prinz S, Amon A, Klein F. 1997. Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146:781-795.
    • (1997) Genetics , vol.146 , pp. 781-795
    • Prinz, S.1    Amon, A.2    Klein, F.3
  • 21
    • 23944459784 scopus 로고    scopus 로고
    • Endonucleolytic processing of covalent protein-linked DNA double-strand breaks
    • Neale MJ, Pan J, Keeney S. 2005. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:1053-1057. http://dx.doi.org/10.1038/nature03872.
    • (2005) Nature , vol.436 , pp. 1053-1057
    • Neale, M.J.1    Pan, J.2    Keeney, S.3
  • 23
    • 0842282836 scopus 로고    scopus 로고
    • Preparation and analysis of the INO80 complex
    • Shen X. 2004. Preparation and analysis of the INO80 complex. Methods Enzymol. 377:401-412. http://dx.doi.org/10.1016/S0076-6879(03)77026 -8.
    • (2004) Methods Enzymol. , vol.377 , pp. 401-412
    • Shen, X.1
  • 24
    • 53549093050 scopus 로고    scopus 로고
    • The P. furiosus. Mre11/Rad50 complex promotes 5= strand resection at a DNA double-strand break
    • Hopkins B, Paull TT. 2008. The P. furiosus Mre11/Rad50 complex promotes 5= strand resection at a DNA double-strand break. Cell 135:250- 260. http://dx.doi.org/10.1016/j.cell.2008.09.054.
    • (2008) Cell , vol.135 , pp. 250-260
    • Hopkins, B.1    Paull, T.T.2
  • 26
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 27
    • 0026512939 scopus 로고
    • Multifunctional yeast high-copy-number shuttle vectors
    • Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119-122. http://dx.doi.org/10.1016/0378-1119(92)90454-W.
    • (1992) Gene , vol.110 , pp. 119-122
    • Christianson, T.W.1    Sikorski, R.S.2    Dante, M.3    Shero, J.H.4    Hieter, P.5
  • 28
    • 4544281398 scopus 로고    scopus 로고
    • Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins
    • Lisby M, Barlow JH, Burgess RC, Rothstein R. 2004. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699-713. http://dx.doi.org/10.1016/j.cell.2004.08.015.
    • (2004) Cell , vol.118 , pp. 699-713
    • Lisby, M.1    Barlow, J.H.2    Burgess, R.C.3    Rothstein, R.4
  • 29
    • 0036270546 scopus 로고    scopus 로고
    • Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR
    • Reid RJ, Lisby M, Rothstein R. 2002. Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR. Methods Enzymol. 350:258-277.
    • (2002) Methods Enzymol. , vol.350 , pp. 258-277
    • Reid, R.J.1    Lisby, M.2    Rothstein, R.3
  • 31
    • 0028032104 scopus 로고
    • The B subunit of the DNA polymerase alpha-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replication
    • Foiani M, Marini F, Gamba D, Lucchini G, Plevani P. 1994. The B subunit of the DNA polymerase alpha-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replication. Mol. Cell. Biol. 14:923-933.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 923-933
    • Foiani, M.1    Marini, F.2    Gamba, D.3    Lucchini, G.4    Plevani, P.5
  • 32
    • 17644409069 scopus 로고    scopus 로고
    • ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex
    • Lee JH, Paull TT. 2005. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308:551-554. http://dx.doi.org/10.1126/science.1108297.
    • (2005) Science , vol.308 , pp. 551-554
    • Lee, J.H.1    Paull, T.T.2
  • 33
    • 49749115736 scopus 로고    scopus 로고
    • Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE
    • Kinoshita E, Kinoshita-Kikuta E, Matsubara M, Yamada S, Nakamura H, Shiro Y, Aoki Y, Okita K, Koike T. 2008. Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE. Proteomics 8:2994-3003. http://dx.doi.org/10.1002/pmic.200800243.
    • (2008) Proteomics , vol.8 , pp. 2994-3003
    • Kinoshita, E.1    Kinoshita-Kikuta, E.2    Matsubara, M.3    Yamada, S.4    Nakamura, H.5    Shiro, Y.6    Aoki, Y.7    Okita, K.8    Koike, T.9
  • 34
    • 34848886914 scopus 로고    scopus 로고
    • Autophagosome formation: core machinery and adaptations
    • Xie Z, Klionsky DJ. 2007. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9:1102-1109. http://dx.doi.org/10.1038/ncb1007-1102.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 1102-1109
    • Xie, Z.1    Klionsky, D.J.2
  • 37
    • 0034881760 scopus 로고    scopus 로고
    • Budding yeast Rad9 is an ATP-dependent Rad53 activating machine
    • Gilbert CS, Green CM, Lowndes NF. 2001. Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol. Cell 8:129-136. http://dx.doi.org/10.1016/S1097-2765(01)00267-2.
    • (2001) Mol. Cell , vol.8 , pp. 129-136
    • Gilbert, C.S.1    Green, C.M.2    Lowndes, N.F.3
  • 38
    • 34247882072 scopus 로고    scopus 로고
    • Life on the edge: a link between gene expression levels and aggregation rates of human proteins
    • Tartaglia GG, Pechmann S, Dobson CM, Vendruscolo M. 2007. Life on the edge: a link between gene expression levels and aggregation rates of human proteins. Trends Biochem. Sci. 32:204-206. http://dx.doi.org/10.1016/j.tibs.2007.03.005.
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 204-206
    • Tartaglia, G.G.1    Pechmann, S.2    Dobson, C.M.3    Vendruscolo, M.4
  • 39
    • 33746377894 scopus 로고    scopus 로고
    • Protein misfolding, functional amyloid, and human disease
    • Chiti F, Dobson CM. 2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75:333-366. http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901.
    • (2006) Annu. Rev. Biochem. , vol.75 , pp. 333-366
    • Chiti, F.1    Dobson, C.M.2
  • 40
    • 84863479475 scopus 로고    scopus 로고
    • Protein aggregation: mechanisms and functional consequences
    • Invernizzi G, Papaleo E, Sabate R, Ventura S. 2012. Protein aggregation: mechanisms and functional consequences. Int. J. Biochem. Cell Biol. 44: 1541-1554. http://dx.doi.org/10.1016/j.biocel.2012.05.023.
    • (2012) Int. J. Biochem. Cell Biol. , vol.44 , pp. 1541-1554
    • Invernizzi, G.1    Papaleo, E.2    Sabate, R.3    Ventura, S.4
  • 41
    • 84876076016 scopus 로고    scopus 로고
    • Aging and the aggregating proteome
    • David DC. 2012. Aging and the aggregating proteome. Front. Genet. 3:247. http://dx.doi.org/10.3389/fgene.2012.00247.
    • (2012) Front. Genet. , vol.3 , pp. 247
    • David, D.C.1
  • 43
    • 79956188298 scopus 로고    scopus 로고
    • Caught in self-interaction: evolutionary and functional mechanisms of protein homooligomerization
    • Hashimoto K, Nishi H, Bryant S, Panchenko AR. 2011. Caught in self-interaction: evolutionary and functional mechanisms of protein homooligomerization. Phys. Biol. 8:035007. http://dx.doi.org/10.1088/1478-3975/8/3/035007.
    • (2011) Phys. Biol. , vol.8 , pp. 035007
    • Hashimoto, K.1    Nishi, H.2    Bryant, S.3    Panchenko, A.R.4
  • 44
    • 77954313601 scopus 로고    scopus 로고
    • DNA damage and decisions: CtIP coordinates DNArepair and cell cycle checkpoints
    • You Z, Bailis JM. 2010. DNA damage and decisions: CtIP coordinates DNArepair and cell cycle checkpoints. Trends Cell Biol. 20:402-409. http://dx.doi.org/10.1016/j.tcb.2010.04.002.
    • (2010) Trends Cell Biol. , vol.20 , pp. 402-409
    • You, Z.1    Bailis, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.