메뉴 건너뛰기




Volumn 37, Issue 16, 2016, Pages 3870-3910

A survey of methods incorporating spatial information in image classification and spectral unmixing

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE CLASSIFICATION; IMAGE ENHANCEMENT;

EID: 84978857965     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2016.1204032     Document Type: Review
Times cited : (64)

References (280)
  • 1
    • 0001395470 scopus 로고
    • Spectral Mixture Modeling - a New Analysis of Rock and Soil Types at the Viking Lander-1 Site
    • J.B.Adams,, M.O.Smith, and P.E.Johnson. 1986. “Spectral Mixture Modeling - a New Analysis of Rock and Soil Types at the Viking Lander-1 Site.” Journal of Geophysical Research-Solid Earth and Planets 91 (B8): 8098–8112. doi:10.1029/JB091iB08p08098.
    • (1986) Journal of Geophysical Research-Solid Earth and Planets , vol.91 , Issue.B8 , pp. 8098-8112
    • Adams, J.B.1    Smith, M.O.2    Johnson, P.E.3
  • 3
    • 84874098205 scopus 로고    scopus 로고
    • Paper presented at the 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems (SITIS), Naples
    • S.Andres,, D.Arvor, and C.Pierkot. 2012. “Towards an Ontological Approach for Classifying Remote Sensing Images.” Paper presented at the 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems (SITIS), Naples.
    • (2012) Towards an Ontological Approach for Classifying Remote Sensing Images
    • Andres, S.1    Arvor, D.2    Pierkot, C.3
  • 4
    • 78649851956 scopus 로고    scopus 로고
    • Ten Compactness Properties of Circles: Measuring Shape in Geography
    • S.Angel,, J.Parent, and D.L.Civco. 2010. “Ten Compactness Properties of Circles: Measuring Shape in Geography.” The Canadian Geographer 54 (4): 441–461.
    • (2010) The Canadian Geographer , vol.54 , Issue.4 , pp. 441-461
    • Angel, S.1    Parent, J.2    Civco, D.L.3
  • 5
    • 0038445120 scopus 로고    scopus 로고
    • On the Application of Gabor Filtering in Supervised Image Classification
    • N.P.Angelo,, and V.Haertel. 2003. “On the Application of Gabor Filtering in Supervised Image Classification.” International Journal of Remote Sensing 24 (10): 2167–2189. doi:10.1080/01431160210163146.
    • (2003) International Journal of Remote Sensing , vol.24 , Issue.10 , pp. 2167-2189
    • Angelo, N.P.1    Haertel, V.2
  • 7
    • 77953160552 scopus 로고    scopus 로고
    • A Geostatistically Weighted k‐NN Classifier for Remotely Sensed Imagery
    • P.M.Atkinson,, and D.K.Naser. 2010. “A Geostatistically Weighted k‐NN Classifier for Remotely Sensed Imagery.” Geographical Analysis 42 (2): 204–225. doi:10.1111/j.1538-4632.2010.00790.x.
    • (2010) Geographical Analysis , vol.42 , Issue.2 , pp. 204-225
    • Atkinson, P.M.1    Naser, D.K.2
  • 8
    • 0034092755 scopus 로고    scopus 로고
    • Geostatistical Classification for Remote Sensing: An Introduction
    • P.M.Atkinson,, and P.Lewis. 2000. “Geostatistical Classification for Remote Sensing: An Introduction.” Computers & Geosciences 26 (4): 361–371. doi:10.1016/S0098-3004(99)00117-X.
    • (2000) Computers & Geosciences , vol.26 , Issue.4 , pp. 361-371
    • Atkinson, P.M.1    Lewis, P.2
  • 9
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation
    • M.Baatz,, and S.Arno. 2000. “Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation.” Angewandte Geographische InformationsverarbeitungXII: 12–23.
    • (2000) Angewandte Geographische Informationsverarbeitung , vol.12 , pp. 12-23
    • Baatz, M.1    Arno, S.2
  • 12
    • 73749086442 scopus 로고    scopus 로고
    • Definition of a Comprehensive Set of Texture Semivariogram Features and Their Evaluation for Object-Oriented Image Classification
    • A.Balaguer,, L.A.Ruiz, T.Hermosilla, and J.A.Recio. 2010. “Definition of a Comprehensive Set of Texture Semivariogram Features and Their Evaluation for Object-Oriented Image Classification.” Computers & Geosciences 36 (2): 231–240. doi:10.1016/j.cageo.2009.05.003.
    • (2010) Computers & Geosciences , vol.36 , Issue.2 , pp. 231-240
    • Balaguer, A.1    Ruiz, L.A.2    Hermosilla, T.3    Recio, J.A.4
  • 13
    • 84887522825 scopus 로고    scopus 로고
    • Probability Sampling Protocol for Thematic and Spatial Quality Assessment of Classification Maps Generated From Spaceborne/Airborne Very High Resolution Images
    • A.Baraldi,, L.Boschetti, and M.L.Humber. 2014. “Probability Sampling Protocol for Thematic and Spatial Quality Assessment of Classification Maps Generated From Spaceborne/Airborne Very High Resolution Images.” IEEE Transactions onGeoscience and Remote Sensing 52 (1): 701–760. doi:10.1109/TGRS.2013.2243739.
    • (2014) IEEE Transactions onGeoscience and Remote Sensing , vol.52 , Issue.1 , pp. 701-760
    • Baraldi, A.1    Boschetti, L.2    Humber, M.L.3
  • 14
    • 0030458167 scopus 로고    scopus 로고
    • Inferring Urban Land Use from Satellite Sensor Images Using Kernel-Based Spatial Reclassification
    • M.J.Barnsley,, and S.L.Barr. 1996. “Inferring Urban Land Use from Satellite Sensor Images Using Kernel-Based Spatial Reclassification.” Photogrammetric Engineering and Remote Sensing 62 (8): 949–958.
    • (1996) Photogrammetric Engineering and Remote Sensing , vol.62 , Issue.8 , pp. 949-958
    • Barnsley, M.J.1    Barr, S.L.2
  • 15
    • 77956058584 scopus 로고    scopus 로고
    • Hyperspectral Region Classification Using a Three-Dimensional Gabor Filterbank
    • T.C.Bau,, S.Sarkar, and G.Healey. 2010. “Hyperspectral Region Classification Using a Three-Dimensional Gabor Filterbank.” IEEE Transactions on Geoscience and Remote Sensing 48 (9): 3457–3464. doi:10.1109/TGRS.2010.2046494.
    • (2010) IEEE Transactions on Geoscience and Remote Sensing , vol.48 , Issue.9 , pp. 3457-3464
    • Bau, T.C.1    Sarkar, S.2    Healey, G.3
  • 16
    • 84902660024 scopus 로고    scopus 로고
    • A Method Based on Spatial and Spectral Information to Reduce the Solution Space in Endmember Extraction Algorithms
    • M.Beauchemin, 2014. “A Method Based on Spatial and Spectral Information to Reduce the Solution Space in Endmember Extraction Algorithms.” Remote Sensing Letters 5 (5): 471–480. doi:10.1080/2150704x.2014.920549.
    • (2014) Remote Sensing Letters , vol.5 , Issue.5 , pp. 471-480
    • Beauchemin, M.1
  • 19
    • 14644412366 scopus 로고    scopus 로고
    • Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles
    • J.A.Benediktsson,, J.A.Palmason, and J.R.Sveinsson. 2005. “Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles.” IEEE Transactions on Geoscience and Remote Sensing 43 (3): 480–491. doi:10.1109/TGRS.2004.842478.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 20
    • 1642487678 scopus 로고    scopus 로고
    • Multi-Resolution, Object-Oriented Fuzzy Analysis of Remote Sensing Data for GIS-Ready Information
    • U.C.Benz,, P.Hofmann, G.Willhauck, I.Lingenfelder, and M.Heynen. 2004. “Multi-Resolution, Object-Oriented Fuzzy Analysis of Remote Sensing Data for GIS-Ready Information.” ISPRS Journal of Photogrammetry and Remote Sensing 58 (3–4): 239–258. doi:10.1016/j.isprsjprs.2003.10.002.
    • (2004) ISPRS Journal of Photogrammetry and Remote Sensing , vol.58 , Issue.3-4 , pp. 239-258
    • Benz, U.C.1    Hofmann, P.2    Willhauck, G.3    Lingenfelder, I.4    Heynen, M.5
  • 25
    • 73249139477 scopus 로고    scopus 로고
    • Object Based Image Analysis for Remote Sensing
    • T.Blaschke, 2010. “Object Based Image Analysis for Remote Sensing.” ISPRS Journal of Photogrammetry and Remote Sensing 65 (1): 2–16. doi:10.1016/j.isprsjprs.2009.06.004.
    • (2010) ISPRS Journal of Photogrammetry and Remote Sensing , vol.65 , Issue.1 , pp. 2-16
    • Blaschke, T.1
  • 29
    • 0035382401 scopus 로고    scopus 로고
    • What’s Wrong with Pixels? Some Recent Developments Interfacing Remote Sensing and GIS
    • T.Blaschke,, and J.Strobl. 2001. “What’s Wrong with Pixels? Some Recent Developments Interfacing Remote Sensing and GIS.” GeoBIT/GIS 6 (1): 12–17.
    • (2001) GeoBIT/GIS , vol.6 , Issue.1 , pp. 12-17
    • Blaschke, T.1    Strobl, J.2
  • 32
    • 84887478446 scopus 로고    scopus 로고
    • Application of a Single-Tree Identification Algorithm to Lidar Data for the Simulation of Stem Volume Current Annual Increment
    • L.Bottai,, L.Arcidiaco, M.Chiesi, and F.Maselli. 2013. “Application of a Single-Tree Identification Algorithm to Lidar Data for the Simulation of Stem Volume Current Annual Increment.” Journal of Applied Remote Sensing 7: 073699. doi:10.1117/1.JRS.7.073699.
    • (2013) Journal of Applied Remote Sensing , vol.7
    • Bottai, L.1    Arcidiaco, L.2    Chiesi, M.3    Maselli, F.4
  • 33
    • 33746427122 scopus 로고    scopus 로고
    • Graph Cuts and Efficient ND Image Segmentation
    • Y.Boykov,, and G.Funka-Lea. 2006. “Graph Cuts and Efficient ND Image Segmentation.” International Journal of Computer Vision 70 (2): 109–131. doi:10.1007/s11263-006-7934-5.
    • (2006) International Journal of Computer Vision , vol.70 , Issue.2 , pp. 109-131
    • Boykov, Y.1    Funka-Lea, G.2
  • 35
    • 0030432956 scopus 로고    scopus 로고
    • Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity
    • C.Brunsdon,, A.S.Fotheringham, and M.E.Charlton. 1996. “Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity.” Geographical Analysis 28 (4): 281–298. doi:10.1111/gean.1996.28.issue-4.
    • (1996) Geographical Analysis , vol.28 , Issue.4 , pp. 281-298
    • Brunsdon, C.1    Fotheringham, A.S.2    Charlton, M.E.3
  • 36
    • 0142003038 scopus 로고    scopus 로고
    • A Multi-Scale Segmentation/Object Relationship Modelling Methodology for Landscape Analysis
    • C.Burnett,, and T.Blaschke. 2003. “A Multi-Scale Segmentation/Object Relationship Modelling Methodology for Landscape Analysis.” Ecological Modelling 168 (3): 233–249. doi:10.1016/S0304-3800(03)00139-X.
    • (2003) Ecological Modelling , vol.168 , Issue.3 , pp. 233-249
    • Burnett, C.1    Blaschke, T.2
  • 37
    • 0019728194 scopus 로고
    • Spatial Correlation Effects upon Accuracy of Supervised Classification of Land Cover
    • J.B.Campbell, 1981. “Spatial Correlation Effects upon Accuracy of Supervised Classification of Land Cover.” Photogrammetric Engineering & Remote Sensing 47 (3): 355–363.
    • (1981) Photogrammetric Engineering & Remote Sensing , vol.47 , Issue.3 , pp. 355-363
    • Campbell, J.B.1
  • 39
  • 40
    • 85032751634 scopus 로고    scopus 로고
    • Advances in Hyperspectral Image Classification: Earth Monitoring with Statistical Learning Methods
    • G.Camps-Valls,, D.Tuia, L.Bruzzone, and J.Atli Benediktsson. 2014. “Advances in Hyperspectral Image Classification: Earth Monitoring with Statistical Learning Methods.” IEEESignal Processing Magazine 31 (1): 45–54. doi:10.1109/MSP.2013.2279179.
    • (2014) IEEESignal Processing Magazine , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Atli Benediktsson, J.4
  • 43
    • 0032208030 scopus 로고    scopus 로고
    • The Semivariogram in Comparison to the Co-Occurrence Matrix for Classification of Image Texture
    • J.R.Carr,, and F.P.De Miranda. 1998. “The Semivariogram in Comparison to the Co-Occurrence Matrix for Classification of Image Texture.” IEEE Transactions on Geoscience and Remote Sensing 36 (6): 1945–1952. doi:10.1109/36.729366.
    • (1998) IEEE Transactions on Geoscience and Remote Sensing , vol.36 , Issue.6 , pp. 1945-1952
    • Carr, J.R.1    De Miranda, F.P.2
  • 44
    • 84893924014 scopus 로고    scopus 로고
    • The Impact of Object Size on the Thematic Accuracy of Landcover Maps
    • G.Castilla,, A.Hernando, C.H.Zhang, and G.J.McDermid. 2014. “The Impact of Object Size on the Thematic Accuracy of Landcover Maps.” International Journal of Remote Sensing 35 (3): 1029–1037. doi:10.1080/01431161.2013.875630.
    • (2014) International Journal of Remote Sensing , vol.35 , Issue.3 , pp. 1029-1037
    • Castilla, G.1    Hernando, A.2    Zhang, C.H.3    McDermid, G.J.4
  • 46
    • 80455122805 scopus 로고    scopus 로고
    • Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery
    • A.Castrodad,, Z.M.Xing, J.B.Greer, E.Bosch, L.Carin, and G.Sapiro. 2011. “Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery.” IEEE Transactions on Geoscience and Remote Sensing 49 (11): 4263–4281. doi:10.1109/tgrs.2011.2163822.
    • (2011) IEEE Transactions on Geoscience and Remote Sensing , vol.49 , Issue.11 , pp. 4263-4281
    • Castrodad, A.1    Xing, Z.M.2    Greer, J.B.3    Bosch, E.4    Carin, L.5    Sapiro, G.6
  • 47
    • 0001626339 scopus 로고
    • A Classification EM Algorithm for Clustering and Two Stochastic Versions
    • G.Celeux,, and G.Govaert. 1992. “A Classification EM Algorithm for Clustering and Two Stochastic Versions.” Computational Statistics & Data Analysis 14 (3): 315–332. doi:10.1016/0167-9473(92)90042-E.
    • (1992) Computational Statistics & Data Analysis , vol.14 , Issue.3 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 49
    • 2942586682 scopus 로고    scopus 로고
    • Examining the Effect of Spatial Resolution and Texture Window Size on Classification Accuracy: An Urban Environment Case
    • D.Chen,, D.A.Stow, and P.Gong. 2004. “Examining the Effect of Spatial Resolution and Texture Window Size on Classification Accuracy: An Urban Environment Case.” International Journal of Remote Sensing 25 (11): 2177–2192. doi:10.1080/01431160310001618464.
    • (2004) International Journal of Remote Sensing , vol.25 , Issue.11 , pp. 2177-2192
    • Chen, D.1    Stow, D.A.2    Gong, P.3
  • 50
    • 0036827545 scopus 로고    scopus 로고
    • The Effect of Training Strategies on Supervised Classification at Different Spatial Resolutions
    • D.Chen,, and D.Stow. 2002. “The Effect of Training Strategies on Supervised Classification at Different Spatial Resolutions.” Photogrammetric Engineering and Remote Sensing 68 (11): 1155–1162.
    • (2002) Photogrammetric Engineering and Remote Sensing , vol.68 , Issue.11 , pp. 1155-1162
    • Chen, D.1    Stow, D.2
  • 51
    • 84896314126 scopus 로고    scopus 로고
    • Nonlinear Estimation of Material Abundances in Hyperspectral Images With l(1)-Norm Spatial Regularization
    • J.Chen,, C.Richard, and P.Honeine. 2014. “Nonlinear Estimation of Material Abundances in Hyperspectral Images With l(1)-Norm Spatial Regularization.” IEEE Transactions on Geoscience and Remote Sensing 52 (5): 2654–2665. doi:10.1109/tgrs.2013.2264392.
    • (2014) IEEE Transactions on Geoscience and Remote Sensing , vol.52 , Issue.5 , pp. 2654-2665
    • Chen, J.1    Richard, C.2    Honeine, P.3
  • 52
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral Image Classification Using Dictionary-Based Sparse Representation
    • Y.Chen,, N.M.Nasrabadi, and T.D.Tran. 2011. “Hyperspectral Image Classification Using Dictionary-Based Sparse Representation.” IEEE Transactions onGeoscience and Remote Sensing 49 (10): 3973–3985. doi:10.1109/TGRS.2011.2129595.
    • (2011) IEEE Transactions onGeoscience and Remote Sensing , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 53
    • 84871731919 scopus 로고    scopus 로고
    • Hyperspectral Image Classification via Kernel Sparse Representation
    • Y.Chen,, N.M.Nasrabadi, and T.D.Tran. 2013. “Hyperspectral Image Classification via Kernel Sparse Representation.” IEEE Transactions onGeoscience and Remote Sensing 51 (1): 217–231. doi:10.1109/TGRS.2012.2201730.
    • (2013) IEEE Transactions onGeoscience and Remote Sensing , vol.51 , Issue.1 , pp. 217-231
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 54
    • 84901358736 scopus 로고    scopus 로고
    • Structural Feature Modeling of High-Resolution Remote Sensing Images Using Directional Spatial Correlation
    • Y.Chen,, K.Qin, S.Gan, and T.Wu. 2014. “Structural Feature Modeling of High-Resolution Remote Sensing Images Using Directional Spatial Correlation.” IEEE Geoscience and Remote Sensing Letters 11 (10): 1727–1731. doi:10.1109/LGRS.2014.2306972.
    • (2014) IEEE Geoscience and Remote Sensing Letters , vol.11 , Issue.10 , pp. 1727-1731
    • Chen, Y.1    Qin, K.2    Gan, S.3    Wu, T.4
  • 55
    • 0036641822 scopus 로고    scopus 로고
    • Rapid Extraction of Image Texture by Co-Occurrence Using a Hybrid Data Structure
    • D.A.Clausi,, and Y.Zhao. 2002. “Rapid Extraction of Image Texture by Co-Occurrence Using a Hybrid Data Structure.” Computers & Geosciences 28 (6): 763–774. doi:10.1016/S0098-3004(01)00108-X.
    • (2002) Computers & Geosciences , vol.28 , Issue.6 , pp. 763-774
    • Clausi, D.A.1    Zhao, Y.2
  • 56
    • 0041825465 scopus 로고    scopus 로고
    • Grey Level Co-Occurrence Integrated Algorithm (GLCIA): A Superior Computational Method to Rapidly Determine Co-Occurrence Probability Texture Features
    • D.A.Clausi,, and Y.Zhao. 2003. “Grey Level Co-Occurrence Integrated Algorithm (GLCIA): A Superior Computational Method to Rapidly Determine Co-Occurrence Probability Texture Features.” Computers & Geosciences 29 (7): 837–850. doi:10.1016/s0098-3004(03)00089-x.
    • (2003) Computers & Geosciences , vol.29 , Issue.7 , pp. 837-850
    • Clausi, D.A.1    Zhao, Y.2
  • 58
    • 51249086235 scopus 로고    scopus 로고
    • An Object-Based Method for Mapping and Change Analysis in Mangrove Ecosystems
    • G.Conchedda,, L.Durieux, and P.Mayaux. 2008. “An Object-Based Method for Mapping and Change Analysis in Mangrove Ecosystems.” ISPRS Journal of Photogrammetry and Remote Sensing 63 (5): 578–589. doi:10.1016/j.isprsjprs.2008.04.002.
    • (2008) ISPRS Journal of Photogrammetry and Remote Sensing , vol.63 , Issue.5 , pp. 578-589
    • Conchedda, G.1    Durieux, L.2    Mayaux, P.3
  • 59
    • 0026278621 scopus 로고
    • A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data
    • R.G.Congalton, 1991. “A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data.” Remote Sensing of Environment 37 (1): 35–46. doi:10.1016/0034-4257(91)90048-B.
    • (1991) Remote Sensing of Environment , vol.37 , Issue.1 , pp. 35-46
    • Congalton, R.G.1
  • 60
    • 84920075991 scopus 로고    scopus 로고
    • Global Land Cover Mapping: A Review and Uncertainty Analysis
    • R.G.Congalton,, J.Y.Gu, K.Yadav, P.Thenkabail, and M.Ozdogan. 2014. “Global Land Cover Mapping: A Review and Uncertainty Analysis.” Remote Sensing 6 (12): 12070–12093. doi:10.3390/rs61212070.
    • (2014) Remote Sensing , vol.6 , Issue.12 , pp. 12070-12093
    • Congalton, R.G.1    Gu, J.Y.2    Yadav, K.3    Thenkabail, P.4    Ozdogan, M.5
  • 62
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • C.Cortes,, and V.Vapnik. 1995. “Support-Vector Networks.” Machine Learning 20 (3): 273–297. doi:10.1007/BF00994018.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 64
    • 84897021764 scopus 로고    scopus 로고
    • Nonlinear Spectral Mixture Analysis by Determining Per-Pixel Endmember Sets
    • J.T.Cui,, X.R.Li, and L.Y.Zhao. 2014. “Nonlinear Spectral Mixture Analysis by Determining Per-Pixel Endmember Sets.” IEEE Geoscience and Remote Sensing Letters 11 (8): 1404–1408. doi:10.1109/lgrs.2013.2294181.
    • (2014) IEEE Geoscience and Remote Sensing Letters , vol.11 , Issue.8 , pp. 1404-1408
    • Cui, J.T.1    Li, X.R.2    Zhao, L.Y.3
  • 65
    • 0031819401 scopus 로고    scopus 로고
    • Geostatistics and Remote Sensing
    • P.J.Curran,, and P.M.Atkinson. 1998. “Geostatistics and Remote Sensing.” Progress in Physical Geography 22 (1): 61–78. doi:10.1177/030913339802200103.
    • (1998) Progress in Physical Geography , vol.22 , Issue.1 , pp. 61-78
    • Curran, P.J.1    Atkinson, P.M.2
  • 67
    • 67651147992 scopus 로고    scopus 로고
    • Performance of Kriging-Based Soft Classification on Wifs/IRS-1D Image Using Ground Hyperspectral Signatures
    • S.K.Das,, and R.Singh. 2009. “Performance of Kriging-Based Soft Classification on Wifs/IRS-1D Image Using Ground Hyperspectral Signatures.” IEEEGeoscience and Remote Sensing Letters 6 (3): 453–457. doi:10.1109/LGRS.2009.2016988.
    • (2009) IEEEGeoscience and Remote Sensing Letters , vol.6 , Issue.3 , pp. 453-457
    • Das, S.K.1    Singh, R.2
  • 68
    • 0034483255 scopus 로고    scopus 로고
    • Predicting the Areal Extent of Land-Cover Types Using Classified Imagery and Geostatistics
    • S.de Bruin, 2000. “Predicting the Areal Extent of Land-Cover Types Using Classified Imagery and Geostatistics.” Remote Sensing of Environment 74 (3): 387–396. doi:10.1016/S0034-4257(00)00132-2.
    • (2000) Remote Sensing of Environment , vol.74 , Issue.3 , pp. 387-396
    • de Bruin, S.1
  • 69
    • 0028983459 scopus 로고
    • A Fractal Approach to the Classificatoin of Mediterranean Vegetation Types in Remotely Sensed Images
    • S.M.De Jong,, and P.A.Burrough. 1995. “A Fractal Approach to the Classificatoin of Mediterranean Vegetation Types in Remotely Sensed Images.” Photogrammetric Engineering & Remote Sensing 61 (8): 1041–1053.
    • (1995) Photogrammetric Engineering & Remote Sensing , vol.61 , Issue.8 , pp. 1041-1053
    • De Jong, S.M.1    Burrough, P.A.2
  • 70
    • 84874733862 scopus 로고    scopus 로고
    • A Spatially Adaptive Spectral Mixture Analysis for Mapping Subpixel Urban Impervious Surface Distribution
    • C.Deng,, and C.Wu. 2013. “A Spatially Adaptive Spectral Mixture Analysis for Mapping Subpixel Urban Impervious Surface Distribution.” Remote Sensing of Environment 133: 62–70. doi:10.1016/j.rse.2013.02.005.
    • (2013) Remote Sensing of Environment , vol.133 , pp. 62-70
    • Deng, C.1    Wu, C.2
  • 71
    • 33646129679 scopus 로고    scopus 로고
    • Forest Change Detection by Statistical Object-Based Method
    • B.Desclée,, P.Bogaert, and P.Defourny. 2006. “Forest Change Detection by Statistical Object-Based Method.” Remote Sensing of Environment 102 (1–2): 1–11. doi:10.1016/j.rse.2006.01.013.
    • (2006) Remote Sensing of Environment , vol.102 , Issue.1-2 , pp. 1-11
    • Desclée, B.1    Bogaert, P.2    Defourny, P.3
  • 72
    • 84886908849 scopus 로고    scopus 로고
    • Remote Sensing of Tea Plantations Using an SVM Classifier and Pattern-Based Accuracy Assessment Technique
    • M.Dihkan,, N.Guneroglu, F.Karsli, and A.Guneroglu. 2013. “Remote Sensing of Tea Plantations Using an SVM Classifier and Pattern-Based Accuracy Assessment Technique.” International Journal of Remote Sensing 34 (23): 8549–8565. doi:10.1080/01431161.2013.845317.
    • (2013) International Journal of Remote Sensing , vol.34 , Issue.23 , pp. 8549-8565
    • Dihkan, M.1    Guneroglu, N.2    Karsli, F.3    Guneroglu, A.4
  • 74
    • 20444440880 scopus 로고
    • Random Field Models in Image Analysis
    • R.C.Dubes,, and A.K.Jain. 1989. “Random Field Models in Image Analysis.” Journal of Applied Statistics 16 (2): 131–164. doi:10.1080/02664768900000014.
    • (1989) Journal of Applied Statistics , vol.16 , Issue.2 , pp. 131-164
    • Dubes, R.C.1    Jain, A.K.2
  • 76
    • 19944393920 scopus 로고    scopus 로고
    • A Comparison of Local Variance, Fractal Dimension, and Moran’s I as Aids to Multispectral Image Classification
    • C.W.Emerson,, N.S.N.Lam, and D.A.Quattrochi. 2005. “A Comparison of Local Variance, Fractal Dimension, and Moran’s I as Aids to Multispectral Image Classification.” International Journal of Remote Sensing 26 (8): 1575–1588. doi:10.1080/01431160512331326765.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.8 , pp. 1575-1588
    • Emerson, C.W.1    Lam, N.S.N.2    Quattrochi, D.A.3
  • 78
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and Spatial Classification of Hyperspectral Data Using Svms and Morphological Profiles
    • M.Fauvel,, J.A.Benediktsson, J.Chanussot, and J.R.Sveinsson. 2008. “Spectral and Spatial Classification of Hyperspectral Data Using Svms and Morphological Profiles.” IEEE Transactions on Geoscience and Remote Sensing 46 (11): 3804–3814. doi:10.1109/TGRS.2008.922034.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 79
    • 80052740627 scopus 로고    scopus 로고
    • A Spatial–Spectral Kernel-Based Approach for the Classification of Remote-Sensing Images
    • M.Fauvel,, J.Chanussot, and J.A.Benediktsson. 2012. “A Spatial–Spectral Kernel-Based Approach for the Classification of Remote-Sensing Images.” Pattern Recognition 45 (1): 381–392. doi:10.1016/j.patcog.2011.03.035.
    • (2012) Pattern Recognition , vol.45 , Issue.1 , pp. 381-392
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 81
    • 0036213079 scopus 로고    scopus 로고
    • Status of Land Cover Classification Accuracy Assessment
    • G.M.Foody, 2002. “Status of Land Cover Classification Accuracy Assessment.” Remote Sensing of Environment 80 (1): 185–201. doi:10.1016/S0034-4257(01)00295-4.
    • (2002) Remote Sensing of Environment , vol.80 , Issue.1 , pp. 185-201
    • Foody, G.M.1
  • 82
    • 40349114181 scopus 로고    scopus 로고
    • Harshness in Image Classification Accuracy Assessment
    • G.M.Foody, 2008. “Harshness in Image Classification Accuracy Assessment.” International Journal of Remote Sensing 29 (11): 3137–3158. doi:10.1080/01431160701442120.
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.11 , pp. 3137-3158
    • Foody, G.M.1
  • 83
    • 33747610735 scopus 로고    scopus 로고
    • Training Set Size Requirements for the Classification of a Specific Class
    • G.M.Foody,, A.Mathur, C.Sanchez-Hernandez, and D.S.Boyd. 2006. “Training Set Size Requirements for the Classification of a Specific Class.” Remote Sensing of Environment 104 (1): 1–14. doi:10.1016/j.rse.2006.03.004.
    • (2006) Remote Sensing of Environment , vol.104 , Issue.1 , pp. 1-14
    • Foody, G.M.1    Mathur, A.2    Sanchez-Hernandez, C.3    Boyd, D.S.4
  • 84
    • 67349090017 scopus 로고    scopus 로고
    • Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of Hyperspectral Imagery for Urban Environments
    • J.Franke,, D.A.Roberts, K.Halligan, and G.Menz. 2009. “Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of Hyperspectral Imagery for Urban Environments.” Remote Sensing of Environment 113 (8): 1712–1723. doi:10.1016/j.rse.2009.03.018.
    • (2009) Remote Sensing of Environment , vol.113 , Issue.8 , pp. 1712-1723
    • Franke, J.1    Roberts, D.A.2    Halligan, K.3    Menz, G.4
  • 85
    • 0018729995 scopus 로고
    • A Survey on Image Segmentation
    • K.S.Fu,, and J.K.Mui. 1981. “A Survey on Image Segmentation.” Pattern Recognition 13 (1): 3–16. doi:10.1016/0031-3203(81)90028-5.
    • (1981) Pattern Recognition , vol.13 , Issue.1 , pp. 3-16
    • Fu, K.S.1    Mui, J.K.2
  • 86
    • 22144432648 scopus 로고    scopus 로고
    • A New Tool for Variable Multiple Endmember Spectral Mixture Analysis (VMESMA)
    • F.J.García‐Haro,, S.Sommer, and T.Kemper. 2005. “A New Tool for Variable Multiple Endmember Spectral Mixture Analysis (VMESMA).” International Journal of Remote Sensing 26 (10): 2135–2162. doi:10.1080/01431160512331337817.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.10 , pp. 2135-2162
    • García‐Haro, F.J.1    Sommer, S.2    Kemper, T.3
  • 87
    • 70449377908 scopus 로고    scopus 로고
    • Rough Set-Derived Measures in Image Classification Accuracy Assessment
    • Y.Ge,, H.X.Bai, F.Cao, S.P.Li, X.F.Feng, and D.Y.Li. 2009. “Rough Set-Derived Measures in Image Classification Accuracy Assessment.” International Journal of Remote Sensing 30 (20): 5323–5344. doi:10.1080/01431160903131026.
    • (2009) International Journal of Remote Sensing , vol.30 , Issue.20 , pp. 5323-5344
    • Ge, Y.1    Bai, H.X.2    Cao, F.3    Li, S.P.4    Feng, X.F.5    Li, D.Y.6
  • 88
    • 0021518209 scopus 로고
    • Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images
    • S.Geman,, and D.Geman. 1984. “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images.” IEEE Transactions onPattern Analysis and Machine Intelligence PAMI-6 (6): 721–741. doi:10.1109/TPAMI.1984.4767596.
    • (1984) IEEE Transactions onPattern Analysis and Machine Intelligence PAMI-6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 89
    • 84905903346 scopus 로고    scopus 로고
    • Automatic Framework for Spectral–Spatial Classification Based on Supervised Feature Extraction and Morphological Attribute Profiles
    • P.Ghamisi,, J.A.Benediktsson, G.Cavallaro, and A.Plaza. 2014. “Automatic Framework for Spectral–Spatial Classification Based on Supervised Feature Extraction and Morphological Attribute Profiles.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7 (6): 2147–2160. doi:10.1109/JSTARS.2014.2298876.
    • (2014) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol.7 , Issue.6 , pp. 2147-2160
    • Ghamisi, P.1    Benediktsson, J.A.2    Cavallaro, G.3    Plaza, A.4
  • 90
    • 84900815487 scopus 로고    scopus 로고
    • Automatic Spectral–Spatial Classification Framework Based on Attribute Profiles and Supervised Feature Extraction
    • P.Ghamisi,, J.A.Benediktsson, and J.R.Sveinsson. 2014. “Automatic Spectral–Spatial Classification Framework Based on Attribute Profiles and Supervised Feature Extraction.” IEEE Transactions on Geoscience and Remote Sensing 52 (9): 5771–5782. doi:10.1109/TGRS.2013.2292544.
    • (2014) IEEE Transactions on Geoscience and Remote Sensing , vol.52 , Issue.9 , pp. 5771-5782
    • Ghamisi, P.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 91
    • 84921020001 scopus 로고    scopus 로고
    • A Survey on Spectral–Spatial Classification Techniques Based on Attribute Profiles
    • P.Ghamisi,, M.D.Mura, and J.A.Benediktsson. 2015. “A Survey on Spectral–Spatial Classification Techniques Based on Attribute Profiles.” IEEE Transactions on Geoscience and Remote Sensing 53 (5): 2335–2353. doi:10.1109/TGRS.2014.2358934.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.5 , pp. 2335-2353
    • Ghamisi, P.1    Mura, M.D.2    Benediktsson, J.A.3
  • 95
    • 84903528652 scopus 로고    scopus 로고
    • Three-Dimensional Wavelet Texture Feature Extraction and Classification for Multi/Hyperspectral Imagery
    • X.Guo,, X.Huang, and L.Zhang. 2014. “Three-Dimensional Wavelet Texture Feature Extraction and Classification for Multi/Hyperspectral Imagery.” IEEE Geoscience and Remote Sensing Letters 11 (12): 2183–2187. doi:10.1109/LGRS.2014.2323963.
    • (2014) IEEE Geoscience and Remote Sensing Letters , vol.11 , Issue.12 , pp. 2183-2187
    • Guo, X.1    Huang, X.2    Zhang, L.3
  • 97
    • 0028467206 scopus 로고
    • Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace Projection Approach
    • J.C.Harsanyi,, and C.-I.Chang. 1994. “Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace Projection Approach.” IEEE Transactions on Geoscience and Remote Sensing 32 (4): 779–785. doi:10.1109/36.298007.
    • (1994) IEEE Transactions on Geoscience and Remote Sensing , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 98
    • 0242417408 scopus 로고    scopus 로고
    • A Comparison of Three Image-Object Methods for the Multiscale Analysis of Landscape Structure
    • G.J.Hay,, T.Blaschke, D.J.Marceau, and A.Bouchard. 2003. “A Comparison of Three Image-Object Methods for the Multiscale Analysis of Landscape Structure.” ISPRS Journal of Photogrammetry and Remote Sensing 57 (5–6): 327–345. doi:10.1016/S0924-2716(02)00162-4.
    • (2003) ISPRS Journal of Photogrammetry and Remote Sensing , vol.57 , Issue.5-6 , pp. 327-345
    • Hay, G.J.1    Blaschke, T.2    Marceau, D.J.3    Bouchard, A.4
  • 100
    • 85022076596 scopus 로고    scopus 로고
    • Geographic Object-Based Image Analysis (GEOBIA): A New Name for A New Discipline
    • Berlin: Springer-Verlag
    • G.J.Hay,, and G.Castilla. 2008. “Geographic Object-Based Image Analysis (GEOBIA): A New Name for A New Discipline.” In Object-Based Image Analysis, edited by T.Blaschke, S.Lang, and G.Hay, 75–89. Berlin: Springer-Verlag.
    • (2008) Object-Based Image Analysis , pp. 75-89
    • Hay, G.J.1    Castilla, G.2    Blaschke, T.3    Lang, S.4    Hay, G.5
  • 102
    • 0035209178 scopus 로고    scopus 로고
    • A Multiscale Framework for Landscape Analysis: Object-Specific Analysis and Upscaling
    • G.J.Hay,, D.J.Marceau, P.Dubé, and A.Bouchard. 2001. “A Multiscale Framework for Landscape Analysis: Object-Specific Analysis and Upscaling.” Landscape Ecology 16 (6): 471–490. doi:10.1023/A:1013101931793.
    • (2001) Landscape Ecology , vol.16 , Issue.6 , pp. 471-490
    • Hay, G.J.1    Marceau, D.J.2    Dubé, P.3    Bouchard, A.4
  • 103
    • 0035273728 scopus 로고    scopus 로고
    • Fully Constrained Least Squares Linear Spectral Mixture Analysis Method for Material Quantification in Hyperspectral Imagery
    • D.C.Heinz,, and C.-I.-C.Chang. 2001. “Fully Constrained Least Squares Linear Spectral Mixture Analysis Method for Material Quantification in Hyperspectral Imagery.” IEEE Transactions on Geoscience and Remote Sensing 39 (3): 529–545. doi:10.1109/36.911111.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.-C.2
  • 105
    • 0029753756 scopus 로고    scopus 로고
    • Automated Geostatistical Seafloor Classification - Principles, Parameters, Feature Vectors, and Discrimination Criteria
    • U.C.Herzfeld,, and C.A.Higginson. 1996. “Automated Geostatistical Seafloor Classification - Principles, Parameters, Feature Vectors, and Discrimination Criteria.” Computers & Geosciences 22 (1): 35–52. doi:10.1016/0098-3004(96)89522-7.
    • (1996) Computers & Geosciences , vol.22 , Issue.1 , pp. 35-52
    • Herzfeld, U.C.1    Higginson, C.A.2
  • 106
    • 84906326713 scopus 로고    scopus 로고
    • Conditional Random Fields for Multitemporal and Multiscale Classification of Optical Satellite Imagery
    • T.Hoberg,, F.Rottensteiner, R.Q.Feitosa, and C.Heipke. 2015. “Conditional Random Fields for Multitemporal and Multiscale Classification of Optical Satellite Imagery.” IEEE Transactions onGeoscience and Remote Sensing 53 (2): 659–673. doi:10.1109/TGRS.2014.2326886.
    • (2015) IEEE Transactions onGeoscience and Remote Sensing , vol.53 , Issue.2 , pp. 659-673
    • Hoberg, T.1    Rottensteiner, F.2    Feitosa, R.Q.3    Heipke, C.4
  • 107
    • 84907457074 scopus 로고    scopus 로고
    • A Multichannel Gray Level Co-Occurrence Matrix for Multi/Hyperspectral Image Texture Representation
    • X.Huang,, X.Liu, and L.Zhang. 2014a. “A Multichannel Gray Level Co-Occurrence Matrix for Multi/Hyperspectral Image Texture Representation.” Remote Sensing 6 (9): 8424–8445. doi:10.3390/rs6098424.
    • (2014) Remote Sensing , vol.6 , Issue.9 , pp. 8424-8445
    • Huang, X.1    Liu, X.2    Zhang, L.3
  • 108
    • 84902074636 scopus 로고    scopus 로고
    • New Postprocessing Methods for Remote Sensing Image Classification: A Systematic Study
    • X.Huang,, Q.Lu, L.Zhang, and A.Plaza. 2014b. “New Postprocessing Methods for Remote Sensing Image Classification: A Systematic Study.” IEEE Transactions onGeoscience and Remote Sensing 52 (11): 7140–7159. doi:10.1109/TGRS.2014.2308192.
    • (2014) IEEE Transactions onGeoscience and Remote Sensing , vol.52 , Issue.11 , pp. 7140-7159
    • Huang, X.1    Lu, Q.2    Zhang, L.3    Plaza, A.4
  • 109
    • 84863252871 scopus 로고    scopus 로고
    • A Multiscale Urban Complexity Index Based on 3D Wavelet Transform for Spectral–Spatial Feature Extraction and Classification: An Evaluation on the 8-Channel Worldview-2 Imagery
    • X.Huang,, and L.Zhang. 2012. “A Multiscale Urban Complexity Index Based on 3D Wavelet Transform for Spectral–Spatial Feature Extraction and Classification: An Evaluation on the 8-Channel Worldview-2 Imagery.” International Journal of Remote Sensing 33 (8): 2641–2656. doi:10.1080/01431161.2011.614287.
    • (2012) International Journal of Remote Sensing , vol.33 , Issue.8 , pp. 2641-2656
    • Huang, X.1    Zhang, L.2
  • 110
    • 52649118668 scopus 로고    scopus 로고
    • A Multiscale Feature Fusion Approach for Classification of Very High Resolution Satellite Imagery Based on Wavelet Transform
    • X.Huang,, L.Zhang, and P.Li. 2008. “A Multiscale Feature Fusion Approach for Classification of Very High Resolution Satellite Imagery Based on Wavelet Transform.” International Journal of Remote Sensing 29 (20): 5923–5941. doi:10.1080/01431160802139922.
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.20 , pp. 5923-5941
    • Huang, X.1    Zhang, L.2    Li, P.3
  • 111
    • 34247394279 scopus 로고    scopus 로고
    • Classification and Extraction of Spatial Features in Urban Areas Using High-Resolution Multispectral Imagery
    • X.Huang,, L.Zhang, and P.Li. 2007. “Classification and Extraction of Spatial Features in Urban Areas Using High-Resolution Multispectral Imagery.” IEEE Geoscience and Remote Sensing Letters 4 (2): 260–264. doi:10.1109/LGRS.2006.890540.
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.2 , pp. 260-264
    • Huang, X.1    Zhang, L.2    Li, P.3
  • 112
    • 79958806185 scopus 로고    scopus 로고
    • Image Segmentation Based on the Integration of Colour–Texture Descriptors—A Review
    • D.E.Ilea,, and P.F.Whelan. 2011. “Image Segmentation Based on the Integration of Colour–Texture Descriptors—A Review.” Pattern Recognition 44 (10–11): 2479–2501. doi:10.1016/j.patcog.2011.03.005.
    • (2011) Pattern Recognition , vol.44 , Issue.10-11 , pp. 2479-2501
    • Ilea, D.E.1    Whelan, P.F.2
  • 114
  • 115
    • 0036875946 scopus 로고    scopus 로고
    • Adaptive Bayesian Contextual Classification Based on Markov Random Fields
    • Q.Jackson,, and D.A.Landgrebe. 2002. “Adaptive Bayesian Contextual Classification Based on Markov Random Fields.” IEEE Transactions onGeoscience and Remote Sensing 40 (11): 2454–2463. doi:10.1109/TGRS.2002.805087.
    • (2002) IEEE Transactions onGeoscience and Remote Sensing , vol.40 , Issue.11 , pp. 2454-2463
    • Jackson, Q.1    Landgrebe, D.A.2
  • 116
    • 0031672914 scopus 로고    scopus 로고
    • A Multiscale Representation Including Opponent Color Features for Texture Recognition
    • A.Jain,, and G.Healey. 1998. “A Multiscale Representation Including Opponent Color Features for Texture Recognition.” IEEE Transactions on Image Processing 7 (1): 124–128. doi:10.1109/83.650858.
    • (1998) IEEE Transactions on Image Processing , vol.7 , Issue.1 , pp. 124-128
    • Jain, A.1    Healey, G.2
  • 121
    • 36348990884 scopus 로고    scopus 로고
    • Spectral and Spatial Complexity-Based Hyperspectral Unmixing
    • S.Jia,, and Y.T.Qian. 2007. “Spectral and Spatial Complexity-Based Hyperspectral Unmixing.” IEEE Transactions on Geoscience and Remote Sensing 45 (12): 3867–3879. doi:10.1109/tgrs.2007.898443.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 3867-3879
    • Jia, S.1    Qian, Y.T.2
  • 122
    • 58149131252 scopus 로고    scopus 로고
    • Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing
    • S.Jia,, and Y.T.Qian. 2009. “Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing.” IEEE Transactions on Geoscience and Remote Sensing 47 (1): 161–173. doi:10.1109/tgrs.2008.2002882.
    • (2009) IEEE Transactions on Geoscience and Remote Sensing , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.T.2
  • 123
    • 64349105831 scopus 로고    scopus 로고
    • Managing the Spectral-Spatial Mix in Context Classification Using Markov Random Fields
    • X.Jia,, and J.A.Richards. 2008. “Managing the Spectral-Spatial Mix in Context Classification Using Markov Random Fields.” IEEEGeoscience and Remote Sensing Letters 5 (2): 311–314. doi:10.1109/LGRS.2008.916076.
    • (2008) IEEEGeoscience and Remote Sensing Letters , vol.5 , Issue.2 , pp. 311-314
    • Jia, X.1    Richards, J.A.2
  • 124
    • 84870667903 scopus 로고    scopus 로고
    • Remote Sensing of Fractional Green Vegetation Cover Using Spatially-Interpolated Endmembers
    • B.Johnson,, R.Tateishi, and T.Kobayashi. 2012. “Remote Sensing of Fractional Green Vegetation Cover Using Spatially-Interpolated Endmembers.” Remote Sensing 4 (12): 2619–2634. doi:10.3390/rs4092619.
    • (2012) Remote Sensing , vol.4 , Issue.12 , pp. 2619-2634
    • Johnson, B.1    Tateishi, R.2    Kobayashi, T.3
  • 126
    • 79957608758 scopus 로고    scopus 로고
    • Multi-Scale GEOBIA with Very High Spatial Resolution Digital Aerial Imagery: Scale, Texture and Image Objects
    • M.Kim,, T.A.Warner, M.Madden, and D.S.Atkinson. 2011. “Multi-Scale GEOBIA with Very High Spatial Resolution Digital Aerial Imagery: Scale, Texture and Image Objects.” International Journal of Remote Sensing 32 (10): 2825–2850. doi:10.1080/01431161003745608.
    • (2011) International Journal of Remote Sensing , vol.32 , Issue.10 , pp. 2825-2850
    • Kim, M.1    Warner, T.A.2    Madden, M.3    Atkinson, D.S.4
  • 128
    • 33751324806 scopus 로고    scopus 로고
    • Pixel Unmixing via Information of Neighboring Pixels
    • R.L.King,, and N.H.Younan. 2006. “Pixel Unmixing via Information of Neighboring Pixels.” GIScience & Remote Sensing 43 (4): 310–322. doi:10.2747/1548-1603.43.4.310.
    • (2006) GIScience & Remote Sensing , vol.43 , Issue.4 , pp. 310-322
    • King, R.L.1    Younan, N.H.2
  • 129
    • 33750129298 scopus 로고    scopus 로고
    • Convergent Tree-Reweighted Message Passing for Energy Minimization
    • V.Kolmogorov, 2006. “Convergent Tree-Reweighted Message Passing for Energy Minimization.” IEEE Transactions onPattern Analysis and Machine Intelligence 28 (10): 1568–1583. doi:10.1109/TPAMI.2006.200.
    • (2006) IEEE Transactions onPattern Analysis and Machine Intelligence , vol.28 , Issue.10 , pp. 1568-1583
    • Kolmogorov, V.1
  • 131
    • 84886427489 scopus 로고    scopus 로고
    • Sequential Gaussian Mixture Models for two-level Conditional Random Fields
    • Berlin: Springer
    • S.Kosov,, F.Rottensteiner, and C.Heipke. 2013. “Sequential Gaussian Mixture Models for two-level Conditional Random Fields.” In Pattern Recognition, 153–163. Berlin: Springer.
    • (2013) Pattern Recognition , pp. 153-163
    • Kosov, S.1    Rottensteiner, F.2    Heipke, C.3
  • 133
    • 0035677673 scopus 로고    scopus 로고
    • A Geostatistical Approach for Mapping Thematic Classification Accuracy and Evaluating the Impact of Inaccurate Spatial Data on Ecological Model Predictions
    • P.C.Kyriakidis,, and J.L.Dungan. 2001. “A Geostatistical Approach for Mapping Thematic Classification Accuracy and Evaluating the Impact of Inaccurate Spatial Data on Ecological Model Predictions.” Environmental and Ecological Statistics 8 (4): 311–330. doi:10.1023/A:1012778302005.
    • (2001) Environmental and Ecological Statistics , vol.8 , Issue.4 , pp. 311-330
    • Kyriakidis, P.C.1    Dungan, J.L.2
  • 135
    • 85032568212 scopus 로고    scopus 로고
    • Object-Based Image Analysis for Remote Sensing Applications: Modeling Reality–Dealing with Complexity
    • Berlin: Springer
    • S.Lang, 2008. “Object-Based Image Analysis for Remote Sensing Applications: Modeling Reality–Dealing with Complexity.” In Object-Based Image Analysis, edited by T.Blaschke, S.Lang, and G.J.Hay, 3–27. Berlin: Springer.
    • (2008) Object-Based Image Analysis , pp. 3-27
    • Lang, S.1    Blaschke, T.2    Lang, S.3    Hay, G.J.4
  • 136
    • 80455164631 scopus 로고    scopus 로고
    • A Hybrid Automatic Endmember Extraction Algorithm Based on a Local Window
    • H.L.Li,, and L.P.Zhang. 2011a. “A Hybrid Automatic Endmember Extraction Algorithm Based on a Local Window.” IEEE Transactions on Geoscience and Remote Sensing 49 (11): 4223–4238. doi:10.1109/tgrs.2011.2162098.
    • (2011) IEEE Transactions on Geoscience and Remote Sensing , vol.49 , Issue.11 , pp. 4223-4238
    • Li, H.L.1    Zhang, L.P.2
  • 137
    • 84923228523 scopus 로고    scopus 로고
    • Segmentation-Based and Rule-Based Spectral Mixture Analysis for Estimating Urban Imperviousness
    • M.Li,, S.Y.Zang, C.S.Wu, and Y.B.Deng. 2015. “Segmentation-Based and Rule-Based Spectral Mixture Analysis for Estimating Urban Imperviousness.” Advances in Space Research 55 (5): 1307–1315. doi:10.1016/j.asr.2014.12.015.
    • (2015) Advances in Space Research , vol.55 , Issue.5 , pp. 1307-1315
    • Li, M.1    Zang, S.Y.2    Wu, C.S.3    Deng, Y.B.4
  • 138
    • 61449150482 scopus 로고    scopus 로고
    • Multivariate Image Texture by Multivariate Variogram for Multispectral Image Classification
    • P.Li,, T.Cheng, and J.Guo. 2009. “Multivariate Image Texture by Multivariate Variogram for Multispectral Image Classification.” Photogrammetric Engineering & Remote Sensing 75 (2): 147–157. doi:10.14358/PERS.75.2.147.
    • (2009) Photogrammetric Engineering & Remote Sensing , vol.75 , Issue.2 , pp. 147-157
    • Li, P.1    Cheng, T.2    Guo, J.3
  • 140
    • 79960917056 scopus 로고    scopus 로고
    • A Markov Chain Geostatistical Framework for Land-Cover Classification With Uncertainty Assessment Based on Expert-Interpreted Pixels From Remotely Sensed Imagery
    • W.D.Li,, and C.R.Zhang. 2011b. “A Markov Chain Geostatistical Framework for Land-Cover Classification With Uncertainty Assessment Based on Expert-Interpreted Pixels From Remotely Sensed Imagery.” IEEE Transactions on Geoscience and Remote Sensing 49 (8): 2983–2992. doi:10.1109/TGRS.2011.2121916.
    • (2011) IEEE Transactions on Geoscience and Remote Sensing , vol.49 , Issue.8 , pp. 2983-2992
    • Li, W.D.1    Zhang, C.R.2
  • 141
    • 84864768761 scopus 로고    scopus 로고
    • Classification of Hyperspectral Data over Urban Areas Using Directional Morphological Profiles and Semi-Supervised Feature Extraction
    • W.Liao,, R.Bellens, A.Pizurica, W.Philips, and Y.Pi. 2012. “Classification of Hyperspectral Data over Urban Areas Using Directional Morphological Profiles and Semi-Supervised Feature Extraction.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5 (4): 1177–1190. doi:10.1109/JSTARS.2012.2190045.
    • (2012) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol.5 , Issue.4 , pp. 1177-1190
    • Liao, W.1    Bellens, R.2    Pizurica, A.3    Philips, W.4    Pi, Y.5
  • 144
    • 85027952549 scopus 로고    scopus 로고
    • An Approach Based on Constrained Nonnegative Matrix Factorization to Unmix Hyperspectral Data
    • X.S.Liu,, W.Xia, B.Wang, and L.M.Zhang. 2011. “An Approach Based on Constrained Nonnegative Matrix Factorization to Unmix Hyperspectral Data.” IEEE Transactions on Geoscience and Remote Sensing 49 (2): 757–772. doi:10.1109/tgrs.2010.2068053.
    • (2011) IEEE Transactions on Geoscience and Remote Sensing , vol.49 , Issue.2 , pp. 757-772
    • Liu, X.S.1    Xia, W.2    Wang, B.3    Zhang, L.M.4
  • 145
    • 47049085697 scopus 로고    scopus 로고
    • A Framework of Region-Based Spatial Relations for Non-Overlapping Features and Its Application in Object Based Image Analysis
    • Y.Liu,, Q.Guo, and M.Kelly. 2008. “A Framework of Region-Based Spatial Relations for Non-Overlapping Features and Its Application in Object Based Image Analysis.” ISPRS Journal of Photogrammetry and Remote Sensing 63 (4): 461–475. doi:10.1016/j.isprsjprs.2008.01.007.
    • (2008) ISPRS Journal of Photogrammetry and Remote Sensing , vol.63 , Issue.4 , pp. 461-475
    • Liu, Y.1    Guo, Q.2    Kelly, M.3
  • 146
    • 84907288802 scopus 로고    scopus 로고
    • Accuracy Assessment of Object-Based Image Classification: Another STEP
    • I.Lizarazo, 2014. “Accuracy Assessment of Object-Based Image Classification: Another STEP.” International Journal of Remote Sensing 35 (16): 6135–6156. doi:10.1080/01431161.2014.943328.
    • (2014) International Journal of Remote Sensing , vol.35 , Issue.16 , pp. 6135-6156
    • Lizarazo, I.1
  • 147
    • 5444233513 scopus 로고    scopus 로고
    • A Comparison of Texture Measures for the Per-Field Classification of Mediterranean Land Cover
    • C.D.Lloyd,, S.Berberoglu, P.J.Curran, and P.M.Atkinson. 2004. “A Comparison of Texture Measures for the Per-Field Classification of Mediterranean Land Cover.” International Journal of Remote Sensing 25 (19): 3943–3965. doi:10.1080/0143116042000192321.
    • (2004) International Journal of Remote Sensing , vol.25 , Issue.19 , pp. 3943-3965
    • Lloyd, C.D.1    Berberoglu, S.2    Curran, P.J.3    Atkinson, P.M.4
  • 149
    • 33947591833 scopus 로고    scopus 로고
    • A Survey of Image Classification Methods and Techniques for Improving Classification Performance
    • D.Lu,, and Q.Weng. 2007. “A Survey of Image Classification Methods and Techniques for Improving Classification Performance.” International Journal of Remote Sensing 28 (5): 823–870. doi:10.1080/01431160600746456.
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.5 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 151
    • 84872317296 scopus 로고    scopus 로고
    • Requirements for Labelling Forest Polygons in an Object-Based Image Analysis Classification
    • M.G.MacLean,, M.J.Campbell, D.S.Maynard, M.J.Ducey, and R.G.Congalton. 2013. “Requirements for Labelling Forest Polygons in an Object-Based Image Analysis Classification.” International Journal of Remote Sensing 34 (7): 2531–2547. doi:10.1080/01431161.2012.747017.
    • (2013) International Journal of Remote Sensing , vol.34 , Issue.7 , pp. 2531-2547
    • MacLean, M.G.1    Campbell, M.J.2    Maynard, D.S.3    Ducey, M.J.4    Congalton, R.G.5
  • 152
    • 8644250427 scopus 로고    scopus 로고
    • Updating Cover Type Maps Using Sequential Indicator Simulation
    • S.Magnussen,, and S.de Bruin. 2003. “Updating Cover Type Maps Using Sequential Indicator Simulation.” Remote Sensing of Environment 87 (2–3): 161–170. doi:10.1016/S0034-4257(03)00138-X.
    • (2003) Remote Sensing of Environment , vol.87 , Issue.2-3 , pp. 161-170
    • Magnussen, S.1    de Bruin, S.2
  • 153
    • 0037384819 scopus 로고    scopus 로고
    • Comparing Texture Analysis Methods through Classification
    • P.Maillard, 2003. “Comparing Texture Analysis Methods through Classification.” Photogrammetric Engineering & Remote Sensing 69 (4): 357–367. doi:10.14358/PERS.69.4.357.
    • (2003) Photogrammetric Engineering & Remote Sensing , vol.69 , Issue.4 , pp. 357-367
    • Maillard, P.1
  • 154
    • 39749162214 scopus 로고    scopus 로고
    • Object-Based Classification Using Quickbird Imagery for Delineating Forest Vegetation Polygons in a Mediterranean Test Site
    • G.Mallinis,, N.Koutsias, M.Tsakiri-Strati, and M.Karteris. 2008. “Object-Based Classification Using Quickbird Imagery for Delineating Forest Vegetation Polygons in a Mediterranean Test Site.” ISPRS Journal of Photogrammetry and Remote Sensing 63 (2): 237–250. doi:10.1016/j.isprsjprs.2007.08.007.
    • (2008) ISPRS Journal of Photogrammetry and Remote Sensing , vol.63 , Issue.2 , pp. 237-250
    • Mallinis, G.1    Koutsias, N.2    Tsakiri-Strati, M.3    Karteris, M.4
  • 155
    • 79959766442 scopus 로고    scopus 로고
    • Region-Based Spatial Preprocessing for Endmember Extraction and Spectral Unmixing
    • G.Martin,, and A.Plaza. 2011. “Region-Based Spatial Preprocessing for Endmember Extraction and Spectral Unmixing.” IEEE Geoscience and Remote Sensing Letters 8 (4): 745–749. doi:10.1109/lgrs.2011.2107877.
    • (2011) IEEE Geoscience and Remote Sensing Letters , vol.8 , Issue.4 , pp. 745-749
    • Martin, G.1    Plaza, A.2
  • 156
    • 84861723546 scopus 로고    scopus 로고
    • Spatial-Spectral Preprocessing Prior to Endmember Identification and Unmixing of Remotely Sensed Hyperspectral Data
    • G.Martin,, and A.Plaza. 2012. “Spatial-Spectral Preprocessing Prior to Endmember Identification and Unmixing of Remotely Sensed Hyperspectral Data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5 (2): 380–395. doi:10.1109/jstars.2012.2192472.
    • (2012) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol.5 , Issue.2 , pp. 380-395
    • Martin, G.1    Plaza, A.2
  • 157
    • 0035128356 scopus 로고    scopus 로고
    • Definition of Spatially Variable Spectral Endmembers by Locally Calibrated Multivariate Regression Analyses
    • F.Maselli, 2001. “Definition of Spatially Variable Spectral Endmembers by Locally Calibrated Multivariate Regression Analyses.” Remote Sensing of Environment 75 (1): 29–38. doi:10.1016/s0034-4257(00)00153-x.
    • (2001) Remote Sensing of Environment , vol.75 , Issue.1 , pp. 29-38
    • Maselli, F.1
  • 159
    • 85027928214 scopus 로고    scopus 로고
    • Equivalent-Sparse Unmixing Through Spatial and Spectral Constrained Endmember Selection From an Image-Derived Spectral Library
    • S.H.Mei,, Q.Du, and M.Y.He. 2015. “Equivalent-Sparse Unmixing Through Spatial and Spectral Constrained Endmember Selection From an Image-Derived Spectral Library.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8 (6): 2665–2675. doi:10.1109/jstars.2015.2403254.
    • (2015) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol.8 , Issue.6 , pp. 2665-2675
    • Mei, S.H.1    Du, Q.2    He, M.Y.3
  • 160
    • 77956057087 scopus 로고    scopus 로고
    • Spatial Purity Based Endmember Extraction for Spectral Mixture Analysis
    • S.H.Mei,, M.Y.He, Z.Y.Wang, and D.G.Feng. 2010. “Spatial Purity Based Endmember Extraction for Spectral Mixture Analysis.” IEEE Transactions on Geoscience and Remote Sensing 48 (9): 3434–3445. doi:10.1109/tgrs.2010.2046671.
    • (2010) IEEE Transactions on Geoscience and Remote Sensing , vol.48 , Issue.9 , pp. 3434-3445
    • Mei, S.H.1    He, M.Y.2    Wang, Z.Y.3    Feng, D.G.4
  • 161
    • 80455154959 scopus 로고    scopus 로고
    • Improving Spatial–Spectral Endmember Extraction in the Presence of Anomalous Ground Objects
    • S.H.Mei,, M.Y.He, Y.F.Zhang, Z.Y.Wang, and D.G.Feng. 2011. “Improving Spatial–Spectral Endmember Extraction in the Presence of Anomalous Ground Objects.” IEEE Transactions on Geoscience and Remote Sensing 49 (11): 4210–4222. doi:10.1109/tgrs.2011.2163160.
    • (2011) IEEE Transactions on Geoscience and Remote Sensing , vol.49 , Issue.11 , pp. 4210-4222
    • Mei, S.H.1    He, M.Y.2    Zhang, Y.F.3    Wang, Z.Y.4    Feng, D.G.5
  • 162
    • 0344014352 scopus 로고    scopus 로고
    • A Markov Random Field Approach to Spatio-Temporal Contextual Image Classification
    • F.Melgani,, and S.B.Serpico. 2003. “A Markov Random Field Approach to Spatio-Temporal Contextual Image Classification.” IEEE Transactions onGeoscience and Remote Sensing 41 (11): 2478–2487. doi:10.1109/TGRS.2003.817269.
    • (2003) IEEE Transactions onGeoscience and Remote Sensing , vol.41 , Issue.11 , pp. 2478-2487
    • Melgani, F.1    Serpico, S.B.2
  • 163
    • 84889597563 scopus 로고    scopus 로고
    • A Framework for the Geometric Accuracy Assessment of Classified Objects
    • M.Möller,, J.Birger, A.Gidudu, and C.Gläßer. 2013. “A Framework for the Geometric Accuracy Assessment of Classified Objects.” International Journal of Remote Sensing 34 (24): 8685–8698. doi:10.1080/01431161.2013.845319.
    • (2013) International Journal of Remote Sensing , vol.34 , Issue.24 , pp. 8685-8698
    • Möller, M.1    Birger, J.2    Gidudu, A.3    Gläßer, C.4
  • 164
    • 84885019653 scopus 로고    scopus 로고
    • Combining Support Vector Machines and Markov Random Fields in an Integrated Framework for Contextual Image Classification
    • G.Moser,, and S.B.Serpico. 2013. “Combining Support Vector Machines and Markov Random Fields in an Integrated Framework for Contextual Image Classification.” IEEE Transactions onGeoscience and Remote Sensing51 (5): 2734–2752. doi:10.1109/TGRS.2012.2211882.
    • (2013) IEEE Transactions onGeoscience and Remote Sensing , vol.51 , Issue.5 , pp. 2734-2752
    • Moser, G.1    Serpico, S.B.2
  • 165
    • 84947648698 scopus 로고    scopus 로고
    • Land-Cover Mapping by Markov Modeling of Spatial–Contextual Information in Very-High-Resolution Remote Sensing Images
    • G.Moser,, S.B.Serpico, and J.A.Benediktsson. 2013. “Land-Cover Mapping by Markov Modeling of Spatial–Contextual Information in Very-High-Resolution Remote Sensing Images.” Proceedings of the IEEE 101 (3): 631–651. doi:10.1109/JPROC.2012.2211551.
    • (2013) Proceedings of the IEEE , vol.101 , Issue.3 , pp. 631-651
    • Moser, G.1    Serpico, S.B.2    Benediktsson, J.A.3
  • 168
    • 84874802882 scopus 로고    scopus 로고
    • Assessing Reference Dataset Representativeness through Confidence Metrics Based on Information Density
    • G.Mountrakis,, and B.Xi. 2013. “Assessing Reference Dataset Representativeness through Confidence Metrics Based on Information Density.” ISPRS Journal of Photogrammetry and Remote Sensing 78: 129–147. doi:10.1016/j.isprsjprs.2013.01.011.
    • (2013) ISPRS Journal of Photogrammetry and Remote Sensing , vol.78 , pp. 129-147
    • Mountrakis, G.1    Xi, B.2
  • 170
    • 0038519880 scopus 로고    scopus 로고
    • Fractal Approaches in Texture Analysis and Classification of Remotely Sensed Data: Comparisons with Spatial Autocorrelation Techniques and Simple Descriptive Statistics
    • S.W.Myint,. 2003. “Fractal Approaches in Texture Analysis and Classification of Remotely Sensed Data: Comparisons with Spatial Autocorrelation Techniques and Simple Descriptive Statistics.” International Journal of Remote Sensing 24 (9): 1925–1947. doi:10.1080/01431160210155992.
    • (2003) International Journal of Remote Sensing , vol.24 , Issue.9 , pp. 1925-1947
    • Myint, S.W.1
  • 171
    • 33746336973 scopus 로고    scopus 로고
    • Examining Lacunarity Approaches in Comparison with Fractal and Spatial Autocorrelation Techniques for Urban Mapping
    • S.W.Myint,, and N.Lam. 2005. “Examining Lacunarity Approaches in Comparison with Fractal and Spatial Autocorrelation Techniques for Urban Mapping.” Photogrammetric Engineering & Remote Sensing 71 (8): 927–937. doi:10.14358/PERS.71.8.927.
    • (2005) Photogrammetric Engineering & Remote Sensing , vol.71 , Issue.8 , pp. 927-937
    • Myint, S.W.1    Lam, N.2
  • 172
    • 4143148548 scopus 로고    scopus 로고
    • Wavelets for Urban Spatial Feature Discrimination: Comparisons with Fractal, Spatial Autocorrelation, and Spatial Co-Occurrence Approaches
    • S.W.Myint,, N.S.N.Lam, and J.M.Tyler. 2004. “Wavelets for Urban Spatial Feature Discrimination: Comparisons with Fractal, Spatial Autocorrelation, and Spatial Co-Occurrence Approaches.” Photogrammetric Engineering & Remote Sensing 70 (7): 803–812. doi:10.14358/PERS.70.7.803.
    • (2004) Photogrammetric Engineering & Remote Sensing , vol.70 , Issue.7 , pp. 803-812
    • Myint, S.W.1    Lam, N.S.N.2    Tyler, J.M.3
  • 173
    • 16444373735 scopus 로고    scopus 로고
    • Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data
    • J.M.P.Nascimento,, and J.M.B.Dias. 2005. “Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data.” IEEE Transactions on Geoscience and Remote Sensing 43 (4): 898–910. doi:10.1109/tgrs.2005.844293.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 174
    • 84930069044 scopus 로고    scopus 로고
    • Assessing Image Segmentation Quality–Concepts, Methods and Application
    • Berlin: Springer-Verlag
    • M.Neubert,, H.Herold, and G.Meinel. 2008. “Assessing Image Segmentation Quality–Concepts, Methods and Application.” In Object-Based Image Analysis, edited by T.Blaschke, S.Lang, and G.J.Hay, 769–784. Berlin: Springer-Verlag.
    • (2008) Object-Based Image Analysis , pp. 769-784
    • Neubert, M.1    Herold, H.2    Meinel, G.3    Blaschke, T.4    Lang, S.5    Hay, G.J.6
  • 176
    • 0033101072 scopus 로고    scopus 로고
    • Unsupervised Texture Segmentation Using Feature Distributions
    • T.Ojala,, and M.Pietikäinen. 1999. “Unsupervised Texture Segmentation Using Feature Distributions.” Pattern Recognition 32 (3): 477–486. doi:10.1016/S0031-3203(98)00038-7.
    • (1999) Pattern Recognition , vol.32 , Issue.3 , pp. 477-486
    • Ojala, T.1    Pietikäinen, M.2
  • 177
    • 0027658896 scopus 로고
    • A Review on Image Segmentation Techniques
    • N.R.Pal,, and S.K.Pal. 1993. “A Review on Image Segmentation Techniques.” Pattern Recognition 26 (9): 1277–1294. doi:10.1016/0031-3203(93)90135-J.
    • (1993) Pattern Recognition , vol.26 , Issue.9 , pp. 1277-1294
    • Pal, N.R.1    Pal, S.K.2
  • 178
    • 77950961187 scopus 로고    scopus 로고
    • Advanced Fractal Approach for Unsupervised Classification of SAR Images
    • T.Pant,, D.Singh, and T.Srivastava. 2010. “Advanced Fractal Approach for Unsupervised Classification of SAR Images.” Advances in Space Research 45 (11): 1338–1349. doi:10.1016/j.asr.2010.01.008.
    • (2010) Advances in Space Research , vol.45 , Issue.11 , pp. 1338-1349
    • Pant, T.1    Singh, D.2    Srivastava, T.3
  • 179
    • 84855946548 scopus 로고    scopus 로고
    • Geostatistical Integration of Spectral and Spatial Information for Land-Cover Mapping Using Remote Sensing Data
    • N.-W.Park,, K.-H.Chi, and B.-D.Kwon. 2003. “Geostatistical Integration of Spectral and Spatial Information for Land-Cover Mapping Using Remote Sensing Data.” Geosciences Journal 7 (4): 335–341. doi:10.1007/BF02919565.
    • (2003) Geosciences Journal , vol.7 , Issue.4 , pp. 335-341
    • Park, N.-W.1    Chi, K.-H.2    Kwon, B.-D.3
  • 180
    • 0037052861 scopus 로고    scopus 로고
    • Multifractal Analysis and Feature Extraction in Satellite Imagery
    • T.Parrinello,, and R.A.Vaughan. 2002. “Multifractal Analysis and Feature Extraction in Satellite Imagery.” International Journal of Remote Sensing 23 (9): 1799–1825. doi:10.1080/01431160110075820.
    • (2002) International Journal of Remote Sensing , vol.23 , Issue.9 , pp. 1799-1825
    • Parrinello, T.1    Vaughan, R.A.2
  • 181
    • 33750064566 scopus 로고    scopus 로고
    • On Comparing Multifractal and Classical Features in Minimum Distance Classification of AVHRR Imagery
    • T.Parrinello,, and R.A.Vaughan. 2006. “On Comparing Multifractal and Classical Features in Minimum Distance Classification of AVHRR Imagery.” International Journal of Remote Sensing 27 (18): 3943–3959. doi:10.1080/01431160600685241.
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.18 , pp. 3943-3959
    • Parrinello, T.1    Vaughan, R.A.2
  • 182
    • 77953755136 scopus 로고    scopus 로고
    • A Novel Protocol for Accuracy Assessment in Classification of Very High Resolution Images
    • C.Persello,, and L.Bruzzone. 2010. “A Novel Protocol for Accuracy Assessment in Classification of Very High Resolution Images.” IEEE Transactions on Geoscience and Remote Sensing 48 (3): 1232–1244. doi:10.1109/TGRS.2009.2029570.
    • (2010) IEEE Transactions on Geoscience and Remote Sensing , vol.48 , Issue.3 , pp. 1232-1244
    • Persello, C.1    Bruzzone, L.2
  • 183
    • 0035248508 scopus 로고    scopus 로고
    • A New Approach for the Morphological Segmentation of High-Resolution Satellite Imagery
    • M.Pesaresi,, and J.A.Benediktsson. 2001. “A New Approach for the Morphological Segmentation of High-Resolution Satellite Imagery.” IEEE Transactions on Geoscience and Remote Sensing 39 (2): 309–320. doi:10.1109/36.905239.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.2 , pp. 309-320
    • Pesaresi, M.1    Benediktsson, J.A.2
  • 184
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/Spectral Endmember Extraction by Multidimensional Morphological Operations
    • A.Plaza,, P.Martinez, R.Perez, and J.Plaza. 2002. “Spatial/Spectral Endmember Extraction by Multidimensional Morphological Operations.” IEEE Transactions on Geoscience and Remote Sensing 40 (9): 2025–2041. doi:10.1109/tgrs.2002.802494.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 186
    • 79956324768 scopus 로고    scopus 로고
    • Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment
    • R.G.Pontius, Jr, and M.Millones. 2011. “Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment.” International Journal of Remote Sensing 32 (15): 4407–4429. doi:10.1080/01431161.2011.552923.
    • (2011) International Journal of Remote Sensing , vol.32 , Issue.15 , pp. 4407-4429
    • Pontius, R.G.1    Millones, M.2
  • 187
    • 70450268046 scopus 로고    scopus 로고
    • Mapping Urban Areas on a Global Scale: Which of the Eight Maps Now Available Is More Accurate?
    • D.Potere,, A.Schneider, S.Angel, and D.L.Civco. 2009. “Mapping Urban Areas on a Global Scale: Which of the Eight Maps Now Available Is More Accurate?” International Journal of Remote Sensing 30 (24): 6531–6558. doi:10.1080/01431160903121134.
    • (2009) International Journal of Remote Sensing , vol.30 , Issue.24 , pp. 6531-6558
    • Potere, D.1    Schneider, A.2    Angel, S.3    Civco, D.L.4
  • 188
    • 0035125969 scopus 로고    scopus 로고
    • Hierarchical Fuzzy Pattern Matching for the Regional Comparison of Land Use Maps
    • C.Power,, A.Simms, and R.White. 2001. “Hierarchical Fuzzy Pattern Matching for the Regional Comparison of Land Use Maps.” International Journal of Geographical Information Science 15 (1): 77–100. doi:10.1080/136588100750058715.
    • (2001) International Journal of Geographical Information Science , vol.15 , Issue.1 , pp. 77-100
    • Power, C.1    Simms, A.2    White, R.3
  • 189
    • 84889598340 scopus 로고    scopus 로고
    • Accounting for the Area of Polygon Sampling Units for the Prediction of Primary Accuracy Assessment Indices
    • J.Radoux,, and P.Bogaert. 2014. “Accounting for the Area of Polygon Sampling Units for the Prediction of Primary Accuracy Assessment Indices.” Remote Sensing of Environment 142: 9–19. doi:10.1016/j.rse.2013.10.030.
    • (2014) Remote Sensing of Environment , vol.142 , pp. 9-19
    • Radoux, J.1    Bogaert, P.2
  • 191
    • 0035391620 scopus 로고    scopus 로고
    • A Spectral Mixture Process Conditioned by Gibbs-Based Partitioning
    • R.S.Rand,, and D.M.Keenan. 2001. “A Spectral Mixture Process Conditioned by Gibbs-Based Partitioning.” IEEE Transactions on Geoscience and Remote Sensing 39 (7): 1421–1434. doi:10.1109/36.934074.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1421-1434
    • Rand, R.S.1    Keenan, D.M.2
  • 192
    • 0032156917 scopus 로고    scopus 로고
    • Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models
    • D.A.Roberts,, M.Gardner, R.Church, S.Ustin, G.Scheer, and R.O.Green. 1998. “Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models.” Remote Sensing of Environment 65 (3): 267–279. doi:10.1016/S0034-4257(98)00037-6.
    • (1998) Remote Sensing of Environment , vol.65 , Issue.3 , pp. 267-279
    • Roberts, D.A.1    Gardner, M.2    Church, R.3    Ustin, S.4    Scheer, G.5    Green, R.O.6
  • 194
    • 0035392171 scopus 로고    scopus 로고
    • Automated Differentiation of Urban Surfaces Based on Airborne Hyperspectral Imagery
    • S.Roessner,, K.Segl, U.Heiden, and H.Kaufmann. 2001. “Automated Differentiation of Urban Surfaces Based on Airborne Hyperspectral Imagery.” IEEE Transactions on Geoscience and Remote Sensing 39 (7): 1525–1532. doi:10.1109/36.934082.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1525-1532
    • Roessner, S.1    Segl, K.2    Heiden, U.3    Kaufmann, H.4
  • 196
    • 34548036670 scopus 로고    scopus 로고
    • Integration of Spatial-Spectral Information for the Improved Extraction of Endmembers
    • D.M.Rogge,, B.Rivard, J.Zhang, A.Sanchez, J.Harris, and J.Feng. 2007. “Integration of Spatial-Spectral Information for the Improved Extraction of Endmembers.” Remote Sensing of Environment 110 (3): 287–303. doi:10.1016/j.rse.2007.02.019.
    • (2007) Remote Sensing of Environment , vol.110 , Issue.3 , pp. 287-303
    • Rogge, D.M.1    Rivard, B.2    Zhang, J.3    Sanchez, A.4    Harris, J.5    Feng, J.6
  • 197
    • 77952714665 scopus 로고    scopus 로고
    • Dictionaries for Sparse Representation Modeling
    • R.Rubinstein,, A.M.Bruckstein, and M.Elad. 2010. “Dictionaries for Sparse Representation Modeling.” Proceedings of the IEEE 98 (6): 1045–1057. doi:10.1109/JPROC.2010.2040551.
    • (2010) Proceedings of the IEEE , vol.98 , Issue.6 , pp. 1045-1057
    • Rubinstein, R.1    Bruckstein, A.M.2    Elad, M.3
  • 199
    • 84869491579 scopus 로고    scopus 로고
    • An Overview and Comparison of Smooth Labeling Methods for Land-Cover Classification
    • K.Schindler, 2012. “An Overview and Comparison of Smooth Labeling Methods for Land-Cover Classification.” IEEE Transactions onGeoscience and Remote Sensing50 (11): 4534–4545. doi:10.1109/TGRS.2012.2192741.
    • (2012) IEEE Transactions onGeoscience and Remote Sensing , vol.50 , Issue.11 , pp. 4534-4545
    • Schindler, K.1
  • 201
    • 84937821685 scopus 로고    scopus 로고
    • Object Fate Analysis–A Virtual Overlay Method for the Categorisation of Object Transition and Object-Based Accuracy Assessment
    • E.Schöpfer,, and S.Lang. 2006. “Object Fate Analysis–A Virtual Overlay Method for the Categorisation of Object Transition and Object-Based Accuracy Assessment.” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (4): C42.
    • (2006) International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences , vol.36 , Issue.4 , pp. C42
    • Schöpfer, E.1    Lang, S.2
  • 202
    • 0027334540 scopus 로고
    • Linear Mixing and the Estimation of Ground Cover Proportions
    • J.J.Settle,, and N.A.Drake. 1993. “Linear Mixing and the Estimation of Ground Cover Proportions.” International Journal of Remote Sensing 14 (6): 1159–1177. doi:10.1080/01431169308904402.
    • (1993) International Journal of Remote Sensing , vol.14 , Issue.6 , pp. 1159-1177
    • Settle, J.J.1    Drake, N.A.2
  • 203
    • 82155181590 scopus 로고    scopus 로고
    • Three-Dimensional Gabor Wavelets for Pixel-Based Hyperspectral Imagery Classification
    • L.Shen,, and S.Jia. 2011. “Three-Dimensional Gabor Wavelets for Pixel-Based Hyperspectral Imagery Classification.” IEEE Transactions on Geoscience and Remote Sensing 49 (12): 5039–5046. doi:10.1109/TGRS.2011.2157166.
    • (2011) IEEE Transactions on Geoscience and Remote Sensing , vol.49 , Issue.12 , pp. 5039-5046
    • Shen, L.1    Jia, S.2
  • 204
    • 84866291195 scopus 로고    scopus 로고
    • Discriminative Gabor Feature Selection for Hyperspectral Image Classification
    • L.Shen,, Z.Zhu, S.Jia, J.Zhu, and Y.Sun. 2013. “Discriminative Gabor Feature Selection for Hyperspectral Image Classification.” IEEE Geoscience and Remote Sensing Letters 10 (1): 29–33. doi:10.1109/LGRS.2012.2191761.
    • (2013) IEEE Geoscience and Remote Sensing Letters , vol.10 , Issue.1 , pp. 29-33
    • Shen, L.1    Zhu, Z.2    Jia, S.3    Zhu, J.4    Sun, Y.5
  • 205
    • 84899702499 scopus 로고    scopus 로고
    • Incorporating Spatial Information in Spectral Unmixing: A Review
    • C.Shi,, and L.Wang. 2014. “Incorporating Spatial Information in Spectral Unmixing: A Review.” Remote Sensing of Environment 149: 70–87. doi:10.1016/j.rse.2014.03.034.
    • (2014) Remote Sensing of Environment , vol.149 , pp. 70-87
    • Shi, C.1    Wang, L.2
  • 206
    • 18444411712 scopus 로고    scopus 로고
    • Hyperspectral Texture Recognition Using a Multiscale Opponent Representation
    • M.Shi,, and G.Healey. 2003. “Hyperspectral Texture Recognition Using a Multiscale Opponent Representation.” IEEE Transactions on Geoscience and Remote Sensing 41 (5): 1090–1095. doi:10.1109/TGRS.2003.811076.
    • (2003) IEEE Transactions on Geoscience and Remote Sensing , vol.41 , Issue.5 , pp. 1090-1095
    • Shi, M.1    Healey, G.2
  • 207
    • 0025841255 scopus 로고
    • The Least-Squares Mixing Models to Generate Fraction Images Derived from Remote-Sensing Multispectral Data
    • Y.E.Shimabukuro,, and J.A.Smith. 1991. “The Least-Squares Mixing Models to Generate Fraction Images Derived from Remote-Sensing Multispectral Data.” IEEE Transactions on Geoscience and Remote Sensing 29 (1): 16–20. doi:10.1109/36.103288.
    • (1991) IEEE Transactions on Geoscience and Remote Sensing , vol.29 , Issue.1 , pp. 16-20
    • Shimabukuro, Y.E.1    Smith, J.A.2
  • 208
    • 0042676372 scopus 로고    scopus 로고
    • Multidate Adaptive Unmixing and Its Application to Analysis of Ecosystem Transitions along a Climatic Gradient
    • M.Shoshany,, and T.Svoray. 2002. “Multidate Adaptive Unmixing and Its Application to Analysis of Ecosystem Transitions along a Climatic Gradient.” Remote Sensing of Environment 82 (1): 5–20. doi:10.1016/s0034-4257(01)00346-7.
    • (2002) Remote Sensing of Environment , vol.82 , Issue.1 , pp. 5-20
    • Shoshany, M.1    Svoray, T.2
  • 209
    • 84882796980 scopus 로고    scopus 로고
    • Quadratic Self-Correlation: An Improved Method for Computing Local Fractal Dimension in Remote Sensing Imagery
    • A.F.Silvetti,, and C.A.Delrieux. 2013. “Quadratic Self-Correlation: An Improved Method for Computing Local Fractal Dimension in Remote Sensing Imagery.” Computers & Geosciences 60: 142–155. doi:10.1016/j.cageo.2013.06.008.
    • (2013) Computers & Geosciences , vol.60 , pp. 142-155
    • Silvetti, A.F.1    Delrieux, C.A.2
  • 210
    • 0036762736 scopus 로고    scopus 로고
    • Advances in Mathematical Morphology Applied to Geoscience and Remote Sensing
    • P.Soille,, and M.Pesaresi. 2002. “Advances in Mathematical Morphology Applied to Geoscience and Remote Sensing.” IEEE Transactions on Geoscience and Remote Sensing 40 (9): 2042–2055. doi:10.1109/TGRS.2002.804618.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 2042-2055
    • Soille, P.1    Pesaresi, M.2
  • 211
    • 0029772671 scopus 로고    scopus 로고
    • A Markov Random Field Model for Classification of Multisource Satellite Imagery
    • A.H.S.Solberg,, T.Taxt, and A.K.Jain. 1996. “A Markov Random Field Model for Classification of Multisource Satellite Imagery.” IEEE Transactions onGeoscience and Remote Sensing 34 (1): 100–113. doi:10.1109/36.481897.
    • (1996) IEEE Transactions onGeoscience and Remote Sensing , vol.34 , Issue.1 , pp. 100-113
    • Solberg, A.H.S.1    Taxt, T.2    Jain, A.K.3
  • 212
    • 84906786467 scopus 로고    scopus 로고
    • When Pixels Team up: Spatially Weighted Sparse Coding for Hyperspectral Image Classification
    • A.Soltani-Farani,, and H.R.Rabiee. 2015. “When Pixels Team up: Spatially Weighted Sparse Coding for Hyperspectral Image Classification.” IEEE Geoscience and Remote Sensing Letters 12 (1): 107–111. doi:10.1109/lgrs.2014.2328319.
    • (2015) IEEE Geoscience and Remote Sensing Letters , vol.12 , Issue.1 , pp. 107-111
    • Soltani-Farani, A.1    Rabiee, H.R.2
  • 213
    • 79954622955 scopus 로고    scopus 로고
    • Endmember Variability in Spectral Mixture Analysis: A Review
    • B.Somers,, G.P.Asner, L.Tits, and P.Coppin. 2011. “Endmember Variability in Spectral Mixture Analysis: A Review.” Remote Sensing of Environment 115 (7): 1603–1616. doi:10.1016/j.rse.2011.03.003.
    • (2011) Remote Sensing of Environment , vol.115 , Issue.7 , pp. 1603-1616
    • Somers, B.1    Asner, G.P.2    Tits, L.3    Coppin, P.4
  • 216
    • 70249106481 scopus 로고    scopus 로고
    • Sampling Designs for Accuracy Assessment of Land Cover
    • S.V.Stehman, 2009. “Sampling Designs for Accuracy Assessment of Land Cover.” International Journal of Remote Sensing 30 (20): 5243–5272. doi:10.1080/01431160903131000.
    • (2009) International Journal of Remote Sensing , vol.30 , Issue.20 , pp. 5243-5272
    • Stehman, S.V.1
  • 217
    • 0032084126 scopus 로고    scopus 로고
    • Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles
    • S.V.Stehman,, and R.L.Czaplewski. 1998. “Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles.” Remote Sensing of Environment 64 (3): 331–344. doi:10.1016/S0034-4257(98)00010-8.
    • (1998) Remote Sensing of Environment , vol.64 , Issue.3 , pp. 331-344
    • Stehman, S.V.1    Czaplewski, R.L.2
  • 218
    • 81355138730 scopus 로고    scopus 로고
    • Pixels, Blocks of Pixels, and Polygons: Choosing a Spatial Unit for Thematic Accuracy Assessment
    • S.V.Stehman,, and J.D.Wickham. 2011. “Pixels, Blocks of Pixels, and Polygons: Choosing a Spatial Unit for Thematic Accuracy Assessment.” Remote Sensing of Environment 115 (12): 3044–3055. doi:10.1016/j.rse.2011.06.007.
    • (2011) Remote Sensing of Environment , vol.115 , Issue.12 , pp. 3044-3055
    • Stehman, S.V.1    Wickham, J.D.2
  • 219
    • 33751561382 scopus 로고    scopus 로고
    • Fractal Analysis of Remotely Sensed Images: A Review of Methods and Applications
    • W.Sun,, G.Xu, P.Gong, and S.Liang. 2006. “Fractal Analysis of Remotely Sensed Images: A Review of Methods and Applications.” International Journal of Remote Sensing 27 (22): 4963–4990. doi:10.1080/01431160600676695.
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.22 , pp. 4963-4990
    • Sun, W.1    Xu, G.2    Gong, P.3    Liang, S.4
  • 220
    • 33645830269 scopus 로고    scopus 로고
    • Three New Implementations of the Triangular Prism Method for Computing the Fractal Dimension of Remote Sensing Images
    • W.Sun, 2006. “Three New Implementations of the Triangular Prism Method for Computing the Fractal Dimension of Remote Sensing Images.” Photogrammetric Engineering & Remote Sensing 72 (4): 373–382. doi:10.14358/PERS.72.4.373.
    • (2006) Photogrammetric Engineering & Remote Sensing , vol.72 , Issue.4 , pp. 373-382
    • Sun, W.1
  • 221
    • 0032638628 scopus 로고    scopus 로고
    • Least Squares Support Vector Machine Classifiers
    • J.A.K.Suykens,, and J.Vandewalle. 1999. “Least Squares Support Vector Machine Classifiers.” Neural Processing Letters 9 (3): 293–300. doi:10.1023/A:1018628609742.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 223
    • 67949115614 scopus 로고    scopus 로고
    • Spectral–Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques
    • Y.Tarabalka,, J.A.Benediktsson, and J.Chanussot. 2009. “Spectral–Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques.” IEEE Transactions onGeoscience and Remote Sensing 47 (8): 2973–2987. doi:10.1109/TGRS.2009.2016214.
    • (2009) IEEE Transactions onGeoscience and Remote Sensing , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 225
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and Classification of Hyperspectral Images Using Watershed Transformation
    • Y.Tarabalka,, J.Chanussot, and J.A.Benediktsson. 2010. “Segmentation and Classification of Hyperspectral Images Using Watershed Transformation.” Pattern Recognition 43 (7): 2367–2379. doi:10.1016/j.patcog.2010.01.016.
    • (2010) Pattern Recognition , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 228
    • 79952021565 scopus 로고    scopus 로고
    • Pattern-Based Accuracy Assessment of an Urban Footprint Classification Using Terrasar-X Data
    • H.Taubenbock,, T.Esch, A.Felbier, A.Roth, and S.Dech. 2011. “Pattern-Based Accuracy Assessment of an Urban Footprint Classification Using Terrasar-X Data.” IEEEGeoscience and Remote Sensing Letters8 (2): 278–282. doi:10.1109/LGRS.2010.2069083.
    • (2011) IEEEGeoscience and Remote Sensing Letters , vol.8 , Issue.2 , pp. 278-282
    • Taubenbock, H.1    Esch, T.2    Felbier, A.3    Roth, A.4    Dech, S.5
  • 230
    • 85032576258 scopus 로고    scopus 로고
    • Domain-Specific Class Modelling for One-Level Representation of Single Trees
    • New York: Springer
    • D.Tiede,, S.Lang, and C.Hoffmann. 2008. “Domain-Specific Class Modelling for One-Level Representation of Single Trees.” In Object-Based Image Analysis, edited by T.Blaschke, S.Lang, and G.Hay, 133–151. New York: Springer.
    • (2008) Object-Based Image Analysis , pp. 133-151
    • Tiede, D.1    Lang, S.2    Hoffmann, C.3    Blaschke, T.4    Lang, S.5    Hay, G.6
  • 232
    • 84869505872 scopus 로고    scopus 로고
    • Best Merge Region-Growing Segmentation with Integrated Nonadjacent Region Object Aggregation
    • J.C.Tilton,, Y.Tarabalka, P.M.Montesano, and E.Gofman. 2012. “Best Merge Region-Growing Segmentation with Integrated Nonadjacent Region Object Aggregation.” IEEE Transactions onGeoscience and Remote Sensing 50 (11): 4454–4467. doi:10.1109/TGRS.2012.2190079.
    • (2012) IEEE Transactions onGeoscience and Remote Sensing , vol.50 , Issue.11 , pp. 4454-4467
    • Tilton, J.C.1    Tarabalka, Y.2    Montesano, P.M.3    Gofman, E.4
  • 233
  • 234
    • 84878133525 scopus 로고    scopus 로고
    • Feature Extraction of Hyperspectral Image Cubes Using Three-Dimensional Gray-Level Cooccurrence
    • F.Tsai,, and J.-S.Lai. 2013. “Feature Extraction of Hyperspectral Image Cubes Using Three-Dimensional Gray-Level Cooccurrence.” IEEE Transactions on Geoscience and Remote Sensing 51 (6): 3504–3513. doi:10.1109/TGRS.2012.2223704.
    • (2013) IEEE Transactions on Geoscience and Remote Sensing , vol.51 , Issue.6 , pp. 3504-3513
    • Tsai, F.1    Lai, J.-S.2
  • 235
    • 22544455672 scopus 로고    scopus 로고
    • A Contextual Classification Scheme Based on MRF Model with Improved Parameter Estimation and Multiscale Fuzzy Line Process
    • B.Tso,, and R.C.Olsen. 2005. “A Contextual Classification Scheme Based on MRF Model with Improved Parameter Estimation and Multiscale Fuzzy Line Process.” Remote Sensing of Environment 97 (1): 127–136. doi:10.1016/j.rse.2005.04.021.
    • (2005) Remote Sensing of Environment , vol.97 , Issue.1 , pp. 127-136
    • Tso, B.1    Olsen, R.C.2
  • 239
    • 0028552531 scopus 로고
    • Extraction of Mineral Absorption Features from High-Spectralresolution Data Using Non-Parametric Geostatistical Techniques
    • F.Van Der Meer, 1994. “Extraction of Mineral Absorption Features from High-Spectralresolution Data Using Non-Parametric Geostatistical Techniques.” International Journal of Remote Sensing 15 (11): 2193–2214. doi:10.1080/01431169408954238.
    • (1994) International Journal of Remote Sensing , vol.15 , Issue.11 , pp. 2193-2214
    • Van Der Meer, F.1
  • 240
    • 0033589497 scopus 로고    scopus 로고
    • Iterative Spectral Unmixing (ISU)
    • F.Van Der Meer, 1999. “Iterative Spectral Unmixing (ISU).” International Journal of Remote Sensing 20 (17): 3431–3436. doi:10.1080/014311699211462.
    • (1999) International Journal of Remote Sensing , vol.20 , Issue.17 , pp. 3431-3436
    • Van Der Meer, F.1
  • 241
    • 84859777803 scopus 로고    scopus 로고
    • Remote-Sensing Image Analysis and Geostatistics
    • F.Van Der Meer, 2012. “Remote-Sensing Image Analysis and Geostatistics.” International Journal of Remote Sensing 33 (18): 5644–5676. doi:10.1080/01431161.2012.666363.
    • (2012) International Journal of Remote Sensing , vol.33 , Issue.18 , pp. 5644-5676
    • Van Der Meer, F.1
  • 243
    • 27744456278 scopus 로고    scopus 로고
    • MAP Estimation via Agreement on Trees: Message-Passing and Linear Programming
    • M.J.Wainwright,, T.S.Jaakkola, and A.S.Willsky. 2005. “MAP Estimation via Agreement on Trees: Message-Passing and Linear Programming.” IEEE Transactions on Information Theory 51 (11): 3697–3717. doi:10.1109/TIT.2005.856938.
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.11 , pp. 3697-3717
    • Wainwright, M.J.1    Jaakkola, T.S.2    Willsky, A.S.3
  • 244
    • 26944481683 scopus 로고    scopus 로고
    • Technical Report MS-CIS-04-21, Department of Computer and Information Science, University of Pennsylvania
    • H.M.Wallach, 2004. Conditional Random Fields: An Introduction. Technical Report MS-CIS-04-21, Department of Computer and Information Science, University of Pennsylvania.
    • (2004) Conditional Random Fields: An Introduction
    • Wallach, H.M.1
  • 245
    • 10844220846 scopus 로고    scopus 로고
    • Integration of Object-Based and Pixel-Based Classification for Mapping Mangroves with IKONOS Imagery
    • L.Wang,, W.P.Sousa, and P.Gong. 2004. “Integration of Object-Based and Pixel-Based Classification for Mapping Mangroves with IKONOS Imagery.” International Journal of Remote Sensing 25 (24): 5655–5668. doi:10.1080/014311602331291215.
    • (2004) International Journal of Remote Sensing , vol.25 , Issue.24 , pp. 5655-5668
    • Wang, L.1    Sousa, W.P.2    Gong, P.3
  • 246
    • 84908509239 scopus 로고    scopus 로고
    • A Multi-Scale Accuracy Assessment of the MODIS Irrigated Agriculture Data-Set (Mirad) for the State of Nebraska, USA
    • B.D.Wardlow,, and K.Callahan. 2014. “A Multi-Scale Accuracy Assessment of the MODIS Irrigated Agriculture Data-Set (Mirad) for the State of Nebraska, USA.” GIScience & Remote Sensing 51 (5): 575–592. doi:10.1080/15481603.2014.952546.
    • (2014) GIScience & Remote Sensing , vol.51 , Issue.5 , pp. 575-592
    • Wardlow, B.D.1    Callahan, K.2
  • 249
    • 0023163644 scopus 로고
    • The Factor of Scale in Remote Sensing
    • C.E.Woodcock,, and A.H.Strahler. 1987. “The Factor of Scale in Remote Sensing.” Remote Sensing of Environment 21 (3): 311–332. doi:10.1016/0034-4257(87)90015-0.
    • (1987) Remote Sensing of Environment , vol.21 , Issue.3 , pp. 311-332
    • Woodcock, C.E.1    Strahler, A.H.2
  • 250
    • 84905901018 scopus 로고    scopus 로고
    • Spatially Constrained Multiple Endmember Spectral Mixture Analysis for Quantifying Subpixel Urban Impervious Surfaces
    • C.S.Wu,, C.B.Deng, and X.P.Jia. 2014. “Spatially Constrained Multiple Endmember Spectral Mixture Analysis for Quantifying Subpixel Urban Impervious Surfaces.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7 (6): 1976–1984. doi:10.1109/jstars.2014.2318018.
    • (2014) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol.7 , Issue.6 , pp. 1976-1984
    • Wu, C.S.1    Deng, C.B.2    Jia, X.P.3
  • 251
    • 25844472385 scopus 로고    scopus 로고
    • A Comparison of Methods for Estimating Fractional Green Vegetation Cover within A Desert-To-Upland Transition Zone in Central New Mexico, USA
    • J.F.Xiao,, and A.Moody. 2005. “A Comparison of Methods for Estimating Fractional Green Vegetation Cover within A Desert-To-Upland Transition Zone in Central New Mexico, USA.” Remote Sensing of Environment 98 (2–3): 237–250. doi:10.1016/j.rse.2005.07.011.
    • (2005) Remote Sensing of Environment , vol.98 , Issue.2-3 , pp. 237-250
    • Xiao, J.F.1    Moody, A.2
  • 253
    • 85027954201 scopus 로고    scopus 로고
    • An Image-Based Endmember Bundle Extraction Algorithm Using Both Spatial and Spectral Information
    • M.M.Xu,, L.P.Zhang, and B.Du. 2015. “An Image-Based Endmember Bundle Extraction Algorithm Using Both Spatial and Spectral Information.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8 (6): 2607–2617. doi:10.1109/jstars.2014.2373491.
    • (2015) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol.8 , Issue.6 , pp. 2607-2617
    • Xu, M.M.1    Zhang, L.P.2    Du, B.3
  • 255
    • 84881372589 scopus 로고    scopus 로고
    • Intelligent Services for Discovery of Complex Geospatial Features from Remote Sensing Imagery
    • P.Yue,, L.Di, Y.Wei, and W.Han. 2013. “Intelligent Services for Discovery of Complex Geospatial Features from Remote Sensing Imagery.” ISPRS Journal of Photogrammetry and Remote Sensing 83: 151–164. doi:10.1016/j.isprsjprs.2013.02.015.
    • (2013) ISPRS Journal of Photogrammetry and Remote Sensing , vol.83 , pp. 151-164
    • Yue, P.1    Di, L.2    Wei, Y.3    Han, W.4
  • 256
    • 80955150938 scopus 로고    scopus 로고
    • Paper presented at the 2011 IEEE International on Geoscience and Remote Sensing Symposium (IGARSS), July, Vancouver, BC:
    • A.Zare, 2011. “Spatial-Spectral Unmixing Using Fuzzy Local Information.” Paper presented at the 2011 IEEE International on Geoscience and Remote Sensing Symposium (IGARSS), July 24–29, Vancouver, BC.
    • (2011) Spatial-Spectral Unmixing Using Fuzzy Local Information
    • Zare, A.1
  • 257
    • 78649247062 scopus 로고    scopus 로고
    • Paper Presented at the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), June, Reykjavik:
    • A.Zare,, O.Bchir, H.Frigui, and P.Gader. 2010. “Spatially-Smooth Piece-Wise Convex Endmember Detection.” Paper Presented at the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), June 14–16, Reykjavik.
    • (2010) Spatially-Smooth Piece-Wise Convex Endmember Detection
    • Zare, A.1    Bchir, O.2    Frigui, H.3    Gader, P.4
  • 258
    • 84885021738 scopus 로고    scopus 로고
    • Piecewise Convex Multiple-Model Endmember Detection and Spectral Unmixing
    • A.Zare,, P.Gader, O.Bchir, and H.Frigui. 2013. “Piecewise Convex Multiple-Model Endmember Detection and Spectral Unmixing.” IEEE Transactions on Geoscience and Remote Sensing 51 (5): 2853–2862. doi:10.1109/tgrs.2012.2219058.
    • (2013) IEEE Transactions on Geoscience and Remote Sensing , vol.51 , Issue.5 , pp. 2853-2862
    • Zare, A.1    Gader, P.2    Bchir, O.3    Frigui, H.4
  • 259
    • 85032750976 scopus 로고    scopus 로고
    • Endmember Variability in Hyperspectral Analysis: Addressing Spectral Variability During Spectral Unmixing
    • A.Zare,, and K.C.Ho. 2014. “Endmember Variability in Hyperspectral Analysis: Addressing Spectral Variability During Spectral Unmixing.” IEEE Signal Processing Magazine 31 (1): 95–104. doi:10.1109/msp.2013.2279177.
    • (2014) IEEE Signal Processing Magazine , vol.31 , Issue.1 , pp. 95-104
    • Zare, A.1    Ho, K.C.2
  • 260
    • 23844440634 scopus 로고    scopus 로고
    • Quality Assessment for Geo‐Spatial Objects Derived from Remotely Sensed Data
    • Q.Zhan,, M.Molenaar, K.Tempfli, and W.Shi. 2005. “Quality Assessment for Geo‐Spatial Objects Derived from Remotely Sensed Data.” International Journal of Remote Sensing 26 (14): 2953–2974. doi:10.1080/01431160500057764.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.14 , pp. 2953-2974
    • Zhan, Q.1    Molenaar, M.2    Tempfli, K.3    Shi, W.4
  • 261
    • 80052335044 scopus 로고    scopus 로고
    • Adaptive Markov Random Field Approach for Classification of Hyperspectral Imagery
    • B.Zhang,, S.Li, X.Jia, L.Gao, and M.Peng. 2011. “Adaptive Markov Random Field Approach for Classification of Hyperspectral Imagery.” IEEEGeoscience and Remote Sensing Letters8 (5): 973–977. doi:10.1109/LGRS.2011.2145353.
    • (2011) IEEEGeoscience and Remote Sensing Letters , vol.8 , Issue.5 , pp. 973-977
    • Zhang, B.1    Li, S.2    Jia, X.3    Gao, L.4    Peng, M.5
  • 262
    • 84904619267 scopus 로고    scopus 로고
    • Mapping Urban Land Cover Types Using Object-Based Multiple Endmember Spectral Mixture Analysis
    • C.Y.Zhang,, H.Cooper, D.Selch, X.L.Meng, F.Qiu, S.W.Myint, C.Roberts, and Z.X.Xie. 2014a. “Mapping Urban Land Cover Types Using Object-Based Multiple Endmember Spectral Mixture Analysis.” Remote Sensing Letters 5 (6): 521–529. doi:10.1080/2150704x.2014.930197.
    • (2014) Remote Sensing Letters , vol.5 , Issue.6 , pp. 521-529
    • Zhang, C.Y.1    Cooper, H.2    Selch, D.3    Meng, X.L.4    Qiu, F.5    Myint, S.W.6    Roberts, C.7    Xie, Z.X.8
  • 263
    • 84862801737 scopus 로고    scopus 로고
    • Simplified Conditional Random Fields with Class Boundary Constraint for Spectral-Spatial Based Remote Sensing Image Classification
    • G.Zhang,, and X.Jia. 2012. “Simplified Conditional Random Fields with Class Boundary Constraint for Spectral-Spatial Based Remote Sensing Image Classification.” IEEEGeoscience and Remote Sensing Letters 9 (5): 856–860. doi:10.1109/LGRS.2012.2186279.
    • (2012) IEEEGeoscience and Remote Sensing Letters , vol.9 , Issue.5 , pp. 856-860
    • Zhang, G.1    Jia, X.2
  • 265
    • 40849094763 scopus 로고    scopus 로고
    • The Successive Projection Algorithm (SPA), an Algorithm with a Spatial Constraint for the Automatic Search of Endmembers in Hyperspectral Data
    • J.Zhang,, B.Rivard, and D.M.Rogge. 2008. “The Successive Projection Algorithm (SPA), an Algorithm with a Spatial Constraint for the Automatic Search of Endmembers in Hyperspectral Data.” Sensors 8 (2): 1321–1342. doi:10.3390/s8021321.
    • (2008) Sensors , vol.8 , Issue.2 , pp. 1321-1342
    • Zhang, J.1    Rivard, B.2    Rogge, D.M.3
  • 267
    • 34247346536 scopus 로고    scopus 로고
    • A Pixel Shape Index Coupled with Spectral Information for Classification of High Spatial Resolution Remotely Sensed Imagery
    • L.Zhang,, X.Huang, B.Huang, and P.Li. 2006. “A Pixel Shape Index Coupled with Spectral Information for Classification of High Spatial Resolution Remotely Sensed Imagery.” IEEE Transactions on Geoscience and Remote Sensing 44 (10): 2950–2961. doi:10.1109/TGRS.2006.876704.
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.10 , pp. 2950-2961
    • Zhang, L.1    Huang, X.2    Huang, B.3    Li, P.4
  • 268
    • 84922378744 scopus 로고    scopus 로고
    • Segmentation Quality Evaluation Using Region-Based Precision and Recall Measures for Remote Sensing Images
    • X.L.Zhang,, X.Z.Feng, P.F.Xiao, G.J.He, and L.J.Zhu. 2015a. “Segmentation Quality Evaluation Using Region-Based Precision and Recall Measures for Remote Sensing Images.” ISPRS Journal of Photogrammetry and Remote Sensing 102: 73–84. doi:10.1016/j.isprsjprs.2015.01.009.
    • (2015) ISPRS Journal of Photogrammetry and Remote Sensing , vol.102 , pp. 73-84
    • Zhang, X.L.1    Feng, X.Z.2    Xiao, P.F.3    He, G.J.4    Zhu, L.J.5
  • 269
    • 84922331922 scopus 로고    scopus 로고
    • Applying Spectral Mixture Analysis for Large-Scale Sub-Pixel Impervious Cover Estimation Based on Neighbourhood-Specific Endmember Signature Generation
    • Z.Zhang,, C.Liu, J.Luo, Z.Shen, and Z.Shao. 2015b. “Applying Spectral Mixture Analysis for Large-Scale Sub-Pixel Impervious Cover Estimation Based on Neighbourhood-Specific Endmember Signature Generation.” Remote Sensing Letters 6 (1): 1–10. doi:10.1080/2150704X.2014.996677.
    • (2015) Remote Sensing Letters , vol.6 , Issue.1 , pp. 1-10
    • Zhang, Z.1    Liu, C.2    Luo, J.3    Shen, Z.4    Shao, Z.5
  • 270
    • 84920948047 scopus 로고    scopus 로고
    • Detail-Preserving Smoothing Classifier Based on Conditional Random Fields for High Spatial Resolution Remote Sensing Imagery
    • J.Zhao,, Y.Zhong, and L.Zhang. 2015. “Detail-Preserving Smoothing Classifier Based on Conditional Random Fields for High Spatial Resolution Remote Sensing Imagery.” IEEE Transactions onGeoscience and Remote Sensing 53 (5): 2440–2452. doi:10.1109/TGRS.2014.2360100.
    • (2015) IEEE Transactions onGeoscience and Remote Sensing , vol.53 , Issue.5 , pp. 2440-2452
    • Zhao, J.1    Zhong, Y.2    Zhang, L.3
  • 272
    • 84880164554 scopus 로고    scopus 로고
    • Impact of Training and Validation Sample Selection on Classification Accuracy and Accuracy Assessment When Using Reference Polygons in Object-Based Classification
    • Z.Zhen,, L.J.Quackenbush, S.V.Stehman, and L.J.Zhang. 2013. “Impact of Training and Validation Sample Selection on Classification Accuracy and Accuracy Assessment When Using Reference Polygons in Object-Based Classification.” International Journal of Remote Sensing 34 (19): 6914–6930. doi:10.1080/01431161.2013.810822.
    • (2013) International Journal of Remote Sensing , vol.34 , Issue.19 , pp. 6914-6930
    • Zhen, Z.1    Quackenbush, L.J.2    Stehman, S.V.3    Zhang, L.J.4
  • 273
    • 84920828043 scopus 로고    scopus 로고
    • MODIS-Based Fractional Crop Mapping in the US Midwest with Spatially Constrained Phenological Mixture Analysis
    • C.Zhong,, C.Z.Wang, and C.S.Wu. 2015. “MODIS-Based Fractional Crop Mapping in the US Midwest with Spatially Constrained Phenological Mixture Analysis.” Remote Sensing 7 (1): 512–529. doi:10.3390/rs70100512.
    • (2015) Remote Sensing , vol.7 , Issue.1 , pp. 512-529
    • Zhong, C.1    Wang, C.Z.2    Wu, C.S.3
  • 274
    • 77953710563 scopus 로고    scopus 로고
    • Learning Conditional Random Fields for Classification of Hyperspectral Images
    • P.Zhong,, and R.Wang. 2010. “Learning Conditional Random Fields for Classification of Hyperspectral Images.” IEEE Transactions on Image Processing 19 (7): 1890–1907. doi:10.1109/TIP.2010.2045034.
    • (2010) IEEE Transactions on Image Processing , vol.19 , Issue.7 , pp. 1890-1907
    • Zhong, P.1    Wang, R.2
  • 275
    • 79151483750 scopus 로고    scopus 로고
    • Modeling and Classifying Hyperspectral Imagery by Crfs with Sparse Higher Order Potentials
    • P.Zhong,, and R.Wang. 2011. “Modeling and Classifying Hyperspectral Imagery by Crfs with Sparse Higher Order Potentials.” IEEE Transactions onGeoscience and Remote Sensing 49 (2): 688–705. doi:10.1109/TGRS.2010.2059706.
    • (2011) IEEE Transactions onGeoscience and Remote Sensing , vol.49 , Issue.2 , pp. 688-705
    • Zhong, P.1    Wang, R.2
  • 276
    • 84899887971 scopus 로고    scopus 로고
    • A Support Vector Conditional Random Fields Classifier with A Mahalanobis Distance Boundary Constraint for High Spatial Resolution Remote Sensing Imagery
    • Y.Zhong,, X.Lin, and L.Zhang. 2014. “A Support Vector Conditional Random Fields Classifier with A Mahalanobis Distance Boundary Constraint for High Spatial Resolution Remote Sensing Imagery.” IEEE Journal ofSelected Topics in Applied Earth Observations and Remote Sensing 7 (4): 1314–1330. doi:10.1109/JSTARS.4609443.
    • (2014) IEEE Journal ofSelected Topics in Applied Earth Observations and Remote Sensing , vol.7 , Issue.4 , pp. 1314-1330
    • Zhong, Y.1    Lin, X.2    Zhang, L.3
  • 277
    • 84902120621 scopus 로고    scopus 로고
    • A Hybrid Object-Oriented Conditional Random Field Classification Framework for High Spatial Resolution Remote Sensing Imagery
    • Y.Zhong,, J.Zhao, and L.Zhang. 2014. “A Hybrid Object-Oriented Conditional Random Field Classification Framework for High Spatial Resolution Remote Sensing Imagery.” IEEE Transactions onGeoscience and Remote Sensing 52 (11): 7023–7037. doi:10.1109/TGRS.2014.2306692.
    • (2014) IEEE Transactions onGeoscience and Remote Sensing , vol.52 , Issue.11 , pp. 7023-7037
    • Zhong, Y.1    Zhao, J.2    Zhang, L.3
  • 278
    • 0032216270 scopus 로고    scopus 로고
    • Study of Remote Sensing Image Texture Analysis and Classification Using Wavelet
    • C.Zhu,, and X.Yang. 1998. “Study of Remote Sensing Image Texture Analysis and Classification Using Wavelet.” International Journal of Remote Sensing 19 (16): 3197–3203. doi:10.1080/014311698214262.
    • (1998) International Journal of Remote Sensing , vol.19 , Issue.16 , pp. 3197-3203
    • Zhu, C.1    Yang, X.2
  • 280
    • 67949098957 scopus 로고    scopus 로고
    • Spatial Preprocessing for Endmember Extraction
    • M.Zortea,, and A.Plaza. 2009. “Spatial Preprocessing for Endmember Extraction.” IEEE Transactions on Geoscience and Remote Sensing 47 (8): 2679–2693. doi:10.1109/tgrs.2009.2014945.
    • (2009) IEEE Transactions on Geoscience and Remote Sensing , vol.47 , Issue.8 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.