메뉴 건너뛰기




Volumn 45, Issue 12, 2007, Pages 3867-3879

Spectral and spatial complexity-based hyperspectral unmixing

Author keywords

Blind source separation (BSS); Complexity pursuit; Hyperspectral unmixing; Spatial complexity BSS (SCBSS); Spectral and spatial complexity BSS (SSCBSS)

Indexed keywords

COMPLEXITY PURSUIT; HYPERSPECTRAL UNMIXING; SPATIAL COMPLEXITY BSS (SCBSS); SPECTRAL AND SPATIAL COMPLEXITY BSS (SSCBSS);

EID: 36348990884     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2007.898443     Document Type: Conference Paper
Times cited : (130)

References (63)
  • 1
    • 0035406144 scopus 로고    scopus 로고
    • Blind source separation using temporal predictability
    • Jul
    • J. V. Stone, "Blind source separation using temporal predictability," Neural Comput., vol. 13, no. 7, pp.1559-1574, Jul. 2001.
    • (2001) Neural Comput , vol.13 , Issue.7 , pp. 1559-1574
    • Stone, J.V.1
  • 2
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • Jan
    • D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002.
    • (2002) IEEE Signal Process. Mag , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 3
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • Jan
    • D. Manolakis and G. A. Shaw, "Detection algorithms for hyperspectral imaging applications," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 29-43, Jan. 2002.
    • (2002) IEEE Signal Process. Mag , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.1    Shaw, G.A.2
  • 5
    • 12844252952 scopus 로고    scopus 로고
    • Spectral imaging for remote sensing
    • G. A. Shaw and H. Burke, "Spectral imaging for remote sensing," Lincoln Lab. J., vol. 14, no. 1, pp. 3-28, 2003.
    • (2003) Lincoln Lab. J , vol.14 , Issue.1 , pp. 3-28
    • Shaw, G.A.1    Burke, H.2
  • 6
    • 17644371466 scopus 로고    scopus 로고
    • Hyperspectral image processing for automatic target detection applications
    • D. Manolakis, D. Mardon, and G. A. Shaw, "Hyperspectral image processing for automatic target detection applications," Lincoln Lab. J., vol. 14, no. 1, pp. 79-115, 2003.
    • (2003) Lincoln Lab. J , vol.14 , Issue.1 , pp. 79-115
    • Manolakis, D.1    Mardon, D.2    Shaw, G.A.3
  • 7
    • 8144231500 scopus 로고    scopus 로고
    • A survey of spectral unmixing algorithms
    • N. Keshava, "A survey of spectral unmixing algorithms," Lincoln Lab. J., vol. 14, no. 1, pp. 55-73, 2003.
    • (2003) Lincoln Lab. J , vol.14 , Issue.1 , pp. 55-73
    • Keshava, N.1
  • 8
    • 0001256711 scopus 로고
    • Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm
    • R. H. Yuhas, A. F. H. Goetz, and J. W. Boardman, "Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm," in Proc. Summaries 3rd Annu. JPL Airborne Geosci. Workshop, 1992, vol. 1, pp. 147-149.
    • (1992) Proc. Summaries 3rd Annu. JPL Airborne Geosci. Workshop , vol.1 , pp. 147-149
    • Yuhas, R.H.1    Goetz, A.F.H.2    Boardman, J.W.3
  • 9
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Mar
    • D. C. Heinz and C.-I Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 11
    • 0006606953 scopus 로고    scopus 로고
    • Least squares subspace projection approach to mixed pixel classification in hyperspectral images
    • May
    • C.-I. Chang, X. Zhao, M. L. G. Althouse, and J.-J. Pan, "Least squares subspace projection approach to mixed pixel classification in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 898-912, May 1998.
    • (1998) IEEE Trans. Geosci. Remote Sens , vol.36 , Issue.3 , pp. 898-912
    • Chang, C.-I.1    Zhao, X.2    Althouse, M.L.G.3    Pan, J.-J.4
  • 12
    • 29044445372 scopus 로고    scopus 로고
    • Kernel orthogonal subspace projection for hyperspectral signal classification
    • Dec
    • H. Kwon and N. M. Nasrabadi, "Kernel orthogonal subspace projection for hyperspectral signal classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 12, pp. 2952-2962, Dec. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.12 , pp. 2952-2962
    • Kwon, H.1    Nasrabadi, N.M.2
  • 13
    • 0033752388 scopus 로고    scopus 로고
    • Unsupervised signature extraction and separation in hyperspectral images: A noise-adjusted fast independent component analysis
    • Apr
    • T. M. Tu, "Unsupervised signature extraction and separation in hyperspectral images: A noise-adjusted fast independent component analysis," Opt. Eng., vol. 39, no. 4, pp. 897-906, Apr. 2000.
    • (2000) Opt. Eng , vol.39 , Issue.4 , pp. 897-906
    • Tu, T.M.1
  • 15
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 16
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • Jan
    • M. D. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 1, pp. 99-109, Jan. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.1 , pp. 99-109
    • Craig, M.D.1
  • 17
    • 0033099904 scopus 로고    scopus 로고
    • Multispectral and hyperspectral image analysis with convex cones
    • Mar
    • A. Ifarraguerri and C.-I Chang, "Multispectral and hyperspectral image analysis with convex cones," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 756-770, Mar. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , Issue.2 , pp. 756-770
    • Ifarraguerri, A.1    Chang, C.-I.2
  • 18
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVIRIS data using convex geometry concepts
    • J. Boardman, "Automating spectral unmixing of AVIRIS data using convex geometry concepts," in Proc. Summaries 4th Annu. JPL Airborne Geosci. Workshop, 1993, vol. 1, pp. 11-14.
    • (1993) Proc. Summaries 4th Annu. JPL Airborne Geosci. Workshop , vol.1 , pp. 11-14
    • Boardman, J.1
  • 20
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE Conf. Imag. Spectrometry V, 1999, pp. 266-275.
    • (1999) Proc. SPIE Conf. Imag. Spectrometry V , pp. 266-275
    • Winter, M.E.1
  • 21
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr
    • J. M. P. Nascimento and J. M. B. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 22
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Oct
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 23
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D.D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," in Proc. Adv. Neural Inf. Process. Syst., 2000, vol. 13, pp. 556-562.
    • (2000) Proc. Adv. Neural Inf. Process. Syst , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 25
    • 1242263422 scopus 로고    scopus 로고
    • Recovery of constituent spectra using non-negative matrix factorization
    • P. Sajda, S. Du, and L. Parra, "Recovery of constituent spectra using non-negative matrix factorization," Proc. SPIE, vol. 5207, pp. 321-331, 2003.
    • (2003) Proc. SPIE , vol.5207 , pp. 321-331
    • Sajda, P.1    Du, S.2    Parra, L.3
  • 26
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • Jul
    • V. P. Paura, J. Piper, and R. J. Plemmons, "Nonnegative matrix factorization for spectral data analysis," Linear Algebra Appl., vol. 416, no. 1, pp. 29-47, Jul. 2006.
    • (2006) Linear Algebra Appl , vol.416 , Issue.1 , pp. 29-47
    • Paura, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 27
    • 36348955993 scopus 로고    scopus 로고
    • M. Chu, F. Diele, R. Plemmons, and S. Ragni, Optimality, computations and interpretation of nonnegative matrix factorizations. (2004, Oct.). [Online]. Available: http://www.wfu.edu/~plemmons
    • M. Chu, F. Diele, R. Plemmons, and S. Ragni, Optimality, computations and interpretation of nonnegative matrix factorizations. (2004, Oct.). [Online]. Available: http://www.wfu.edu/~plemmons
  • 29
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Apr
    • P. Comon, "Independent component analysis, a new concept?" Signal Process., vol. 36, no. 3, pp. 287-314, Apr. 1994.
    • (1994) Signal Process , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 30
    • 0032187518 scopus 로고    scopus 로고
    • Blind signal separation: Statistical principles
    • Oct
    • J.-F. Cardoso, "Blind signal separation: Statistical principles," Proc. IEEE, vol. 9, no. 10, pp. 2009-2025, Oct. 1998.
    • (1998) Proc. IEEE , vol.9 , Issue.10 , pp. 2009-2025
    • Cardoso, J.-F.1
  • 31
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation, and blind deconvolution
    • Nov
    • A. J. Bell and T. J. Sejnowski, "An information-maximization approach to blind separation, and blind deconvolution," Neural Comput., vol. 7, no. 6, pp. 1129-1159, Nov. 1995.
    • (1995) Neural Comput , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 32
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • May
    • A. Hyvärinen, "Fast and robust fixed-point algorithms for independent component analysis," IEEE Trans. Neural Netw., vol. 10, no. 3, pp. 626-634, May 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1
  • 34
    • 57649229726 scopus 로고    scopus 로고
    • Analyzing hyperspectral data with independent component analysis
    • J. D. Bayliss, J. A. Gualtieri, and R. F. Cromp, "Analyzing hyperspectral data with independent component analysis," Proc. SPIE, vol. 3240, pp. 133-143, 1997.
    • (1997) Proc. SPIE , vol.3240 , pp. 133-143
    • Bayliss, J.D.1    Gualtieri, J.A.2    Cromp, R.F.3
  • 35
    • 0036477174 scopus 로고    scopus 로고
    • Linear spectral random, mixture analysis for hyperspectral imagery
    • Feb
    • S.-S. Chiang, C-I Chang, J. A. Smith, and I. W. Ginsberg, "Linear spectral random, mixture analysis for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 2, pp. 375-392, Feb. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.2 , pp. 375-392
    • Chiang, S.-S.1    Chang, C.-I.2    Smith, J.A.3    Ginsberg, I.W.4
  • 36
    • 1642475068 scopus 로고    scopus 로고
    • Investigation of spectral screening techniques for independent component analysis based hyperspectral image processing
    • S. A. Robila, "Investigation of spectral screening techniques for independent component analysis based hyperspectral image processing," Proc. SPIE, vol. 5093, pp. 241-252, 2003.
    • (2003) Proc. SPIE , vol.5093 , pp. 241-252
    • Robila, S.A.1
  • 37
    • 33748312145 scopus 로고    scopus 로고
    • Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery
    • Sep
    • J. Wang and C.-I Chang, "Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery," IEEE Trans. Geosci., Remote Sens., vol. 44, no. 9, pp. 2601-2616, Sep. 2006.
    • (2006) IEEE Trans. Geosci., Remote Sens , vol.44 , Issue.9 , pp. 2601-2616
    • Wang, J.1    Chang, C.-I.2
  • 38
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • Jan
    • J. M. P. Nascimento and J. M. B. Dias, "Does independent component analysis play a role in unmixing hyperspectral data?" IEEE Trans. Geosci., Remote Sens., vol 43, no. 1, pp. 175-187, Jan. 2005.
    • (2005) IEEE Trans. Geosci., Remote Sens , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 39
    • 13244255412 scopus 로고    scopus 로고
    • A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals
    • Feb
    • Y. Karklin and M. S. Lewicki, "A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals," Neural Comput., vol. 17, no. 2, pp. 397-423, Feb. 2005.
    • (2005) Neural Comput , vol.17 , Issue.2 , pp. 397-423
    • Karklin, Y.1    Lewicki, M.S.2
  • 40
    • 85076364001 scopus 로고
    • Adaptive spatial/spectral detection of subpixel targets with unknown spectral characteristics
    • C. F. Ferrara, "Adaptive spatial/spectral detection of subpixel targets with unknown spectral characteristics," Proc. SPIE, vol. 2235, pp. 82-93, 1994.
    • (1994) Proc. SPIE , vol.2235 , pp. 82-93
    • Ferrara, C.F.1
  • 41
    • 16444366244 scopus 로고    scopus 로고
    • Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data
    • Apr
    • L. O. Jimenez, J. L. Rivera-Medina, E. Rodriguez-Diaz, E. Arzuaga-Cruz, and M. Ramirez-Velez, "Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 844-851, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.4 , pp. 844-851
    • Jimenez, L.O.1    Rivera-Medina, J.L.2    Rodriguez-Diaz, E.3    Arzuaga-Cruz, E.4    Ramirez-Velez, M.5
  • 42
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and die Bayesian restoration of images
    • Nov
    • S. Geman andD. Geman, "Stochastic relaxation, Gibbs distributions, and die Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 6, pp. 721-741, Nov. 1984.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman andD, S.1    Geman2
  • 44
    • 20444472378 scopus 로고    scopus 로고
    • Source separation in noisy astrophysical images modelled by Markov random fields
    • E. E. Kuruoglu, A. Tonazzini, and L. Bianchi, "Source separation in noisy astrophysical images modelled by Markov random fields," in Proc. ICIP, 2004, pp. 2701-2704.
    • (2004) Proc. ICIP , pp. 2701-2704
    • Kuruoglu, E.E.1    Tonazzini, A.2    Bianchi, L.3
  • 45
    • 33745715403 scopus 로고    scopus 로고
    • Maximum likelihood separation of spatially autocorrelated images using a Markov model
    • Aug
    • S. Hosseini, R. Guidara, Y. Deville, and C. Jutten, "Maximum likelihood separation of spatially autocorrelated images using a Markov model," in Proc. MAXENT, Aug. 2005, pp. 105-112.
    • (2005) Proc. MAXENT , pp. 105-112
    • Hosseini, S.1    Guidara, R.2    Deville, Y.3    Jutten, C.4
  • 49
    • 0035448026 scopus 로고    scopus 로고
    • Blind separation of instantaneous mixtures of non stationary sources
    • Sep
    • D.-T. Pham and J.-F. Cardoso, "Blind separation of instantaneous mixtures of non stationary sources," IEEE Trans. Signal Process., vol. 49, no. 9, pp. 1837-1848, Sep. 2001.
    • (2001) IEEE Trans. Signal Process , vol.49 , Issue.9 , pp. 1837-1848
    • Pham, D.-T.1    Cardoso, J.-F.2
  • 50
    • 34147178821 scopus 로고    scopus 로고
    • Improved stone's complexity pursuit for hyperspectral imagery unmixing
    • Aug
    • S. Jia and Y. Qian, "Improved stone's complexity pursuit for hyperspectral imagery unmixing," in Proc. ICPR, Aug. 2006, pp. 817-820.
    • (2006) Proc. ICPR , pp. 817-820
    • Jia, S.1    Qian, Y.2
  • 52
    • 0034314901 scopus 로고    scopus 로고
    • Autonomous atmospheric compensation (AAC) of high, resolution hyperspectral thermal infrared remote-sensing imagery
    • Nov
    • D. Gu, A. R. Gillespie, A. B. Kahle, and F. D. Palluconi, "Autonomous atmospheric compensation (AAC) of high, resolution hyperspectral thermal infrared remote-sensing imagery," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 6, pp. 2557-2570, Nov. 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens , vol.38 , Issue.6 , pp. 2557-2570
    • Gu, D.1    Gillespie, A.R.2    Kahle, A.B.3    Palluconi, F.D.4
  • 53
    • 13244259260 scopus 로고    scopus 로고
    • A note on stone's conjecture of blind signal separation
    • Feb
    • S. Xie, Z. He, and Y. Fu, "A note on stone's conjecture of blind signal separation," Neural Comput., vol. 17, no. 2, pp. 321-330, Feb. 2005.
    • (2005) Neural Comput , vol.17 , Issue.2 , pp. 321-330
    • Xie, S.1    He, Z.2    Fu, Y.3
  • 54
    • 0025530935 scopus 로고
    • MRF model-based algorithms for image segmentation
    • R. C. Dubes, A. K. Jain, S. G. Nadabar, and C. C. Chen, "MRF model-based algorithms for image segmentation," in Proc. ICPR, 1990, pp. 808-814.
    • (1990) Proc. ICPR , pp. 808-814
    • Dubes, R.C.1    Jain, A.K.2    Nadabar, S.G.3    Chen, C.C.4
  • 55
    • 12344323744 scopus 로고    scopus 로고
    • Unsupervised image segmentation using a simple MRF model with a new implementation scheme
    • Dec
    • H. Deng and D. A. Clausi, "Unsupervised image segmentation using a simple MRF model with a new implementation scheme," Pattern Recognit., vol. 37, no. 12, pp. 2323-2335, Dec. 2004.
    • (2004) Pattern Recognit , vol.37 , Issue.12 , pp. 2323-2335
    • Deng, H.1    Clausi, D.A.2
  • 56
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyper-parameters
    • Aug
    • Y. Bengio, "Gradient-based optimization of hyper-parameters," Neural Comput., vol. 12, no. 8, pp. 1889-1900, Aug. 2000.
    • (2000) Neural Comput , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 57
    • 36348984278 scopus 로고    scopus 로고
    • J. V. Stone and J. Porrill, Undercomplete independent component analysis for signal separation and dimension reduction, Psychology Dept., Sheffield Univ., Sheffield, U.K., 1998. Tech. Rep. [Online]. Available: http://www.shef.ac.uk/ pc1jvs/
    • J. V. Stone and J. Porrill, "Undercomplete independent component analysis for signal separation and dimension reduction," Psychology Dept., Sheffield Univ., Sheffield, U.K., 1998. Tech. Rep. [Online]. Available: http://www.shef.ac.uk/ pc1jvs/
  • 58
    • 0344944857 scopus 로고    scopus 로고
    • Further results in the use of independent component analysis for target detection in hyperspectral images
    • S. A. Robila and P. K. Varshney, "Further results in the use of independent component analysis for target detection in hyperspectral images," Proc. SPIE, vol. 5094, pp. 186-195, 2003.
    • (2003) Proc. SPIE , vol.5094 , pp. 186-195
    • Robila, S.A.1    Varshney, P.K.2
  • 59
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • Mar
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650-663, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 60
    • 36348959464 scopus 로고    scopus 로고
    • R. N. Clark, G. A. Swayze, A. Gallagher, T. V. King, and W. M. Calvin, The U.S. geological survey digital spectral library: Version 1: 0.2 to 3.0 microns, U.S. Geol. Surv., Open File Rep. 93-592, 1993.
    • R. N. Clark, G. A. Swayze, A. Gallagher, T. V. King, and W. M. Calvin, "The U.S. geological survey digital spectral library: Version 1: 0.2 to 3.0 microns," U.S. Geol. Surv., Open File Rep. 93-592, 1993.
  • 62
    • 33745684084 scopus 로고    scopus 로고
    • Blind decomposition of mixed pixels using constrained non-negative matrix factorization
    • Jul
    • B. Wang, H. Zhou, and L. Zhang, "Blind decomposition of mixed pixels using constrained non-negative matrix factorization," in Proc. IEEE Int. Geosci., and Remote Sens. Symp., Jul. 2005, pp. 3757-3760.
    • (2005) Proc. IEEE Int. Geosci., and Remote Sens. Symp , pp. 3757-3760
    • Wang, B.1    Zhou, H.2    Zhang, L.3
  • 63
    • 0035309562 scopus 로고    scopus 로고
    • Efficient detection in hyperspectral imagery
    • Apr
    • S. M. Schweizer and J. M. F. Moura, "Efficient detection in hyperspectral imagery," IEEE Trans. Image Processing, vol. 10, no. 4, pp. 584-597, Apr. 2001.
    • (2001) IEEE Trans. Image Processing , vol.10 , Issue.4 , pp. 584-597
    • Schweizer, S.M.1    Moura, J.M.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.