메뉴 건너뛰기




Volumn 49, Issue 11 PART 1, 2011, Pages 4248-4262

Spatially adaptive hyperspectral unmixing

Author keywords

Hypercubes; image region analysis; remote sensing; spectral analysis

Indexed keywords

ENDMEMBERS; GLOBAL SCALE; HYPER-CUBES; HYPERSPECTRAL DATA ANALYSIS; HYPERSPECTRAL UNMIXING; IMAGE REGION ANALYSIS; LINEAR UNMIXING; RESIDUAL ERROR; SPATIAL INFORMATIONS; SPATIAL SCALE; SPATIALLY ADAPTIVE; SPECTRAL UNMIXING; UNMIXING;

EID: 80455124131     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2011.2169680     Document Type: Article
Times cited : (69)

References (34)
  • 1
    • 0028389048 scopus 로고
    • Nonlinear spectral mixing models for vegetative and soil surfaces
    • Mar
    • C. C. Borel and S. A. Gerstl, Nonlinear spectral mixing models for vegetative and soil surfaces, Remote Sens. Environ., vol. 47, no. 3, pp. 403-416, Mar. 1994
    • (1994) Remote Sens. Environ , vol.47 , Issue.3 , pp. 403-416
    • Borel, C.C.1    Gerstl, S.A.2
  • 2
    • 85032751930 scopus 로고    scopus 로고
    • Spectral unmixing
    • DOI 10.1109/79.974727
    • N. Keshava and J. F. Mustard, Spectral unmixing, IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002 (Pubitemid 34237207)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 44-57
    • Keshava, N.1    Mustard, J.F.2
  • 3
    • 77950937101 scopus 로고    scopus 로고
    • Classification performance of random-projection-based dimensionality reduction of hyperspectral imagery
    • Jul
    • J. Fowler, Q. Du, W. Zhu, and N. Younan, Classification performance of random-projection-based dimensionality reduction of hyperspectral imagery, in Proc. IEEE IGARSS, Jul. 2009, vol. 5, pp. V-76-V-79
    • (2009) Proc. IEEE IGARSS , vol.5
    • Fowler, J.1    Du, Q.2    Zhu, W.3    Younan, N.4
  • 4
    • 77950951010 scopus 로고    scopus 로고
    • Does an endmember set really yield maximum simplex volume?
    • DOI 10.1109/IGARSS.2007.4423674, 4423674, 2007 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2007
    • C.-C. Wu and C.-I. Chang, Does an endmember set really yield maximum simplex volume? in Proc. IEEE IGARSS, Jul. 23-28, 2007, pp. 3814-3816 (Pubitemid 351243577)
    • (2008) International Geoscience and Remote Sensing Symposium (IGARSS) , pp. 3814-3816
    • Wu, C.-C.1    Chang, C.-I.2
  • 5
    • 3843151477 scopus 로고    scopus 로고
    • Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries
    • Jul
    • N. Keshava, Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 7, pp. 1552-1565, Jul. 2004
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.7 , pp. 1552-1565
    • Keshava, N.1
  • 7
    • 77952595305 scopus 로고    scopus 로고
    • Estimating the number of endmembers in hyperspectral images using the normal compositional model and a hierarchical bayesian algorithm
    • Jun.
    • O. Eches, N. Dobigeon, and J.-Y. Tourneret, Estimating the number of endmembers in hyperspectral images using the normal compositional model and a hierarchical bayesian algorithm, IEEE J. Sel. Topics Signal Process., vol. 4, no. 3, pp. 582-591, Jun. 2010
    • (2010) IEEE J. Sel. Topics Signal Process , vol.4 , Issue.3 , pp. 582-591
    • Eches, O.1    Dobigeon, N.2    Tourneret, J.-Y.3
  • 8
    • 77951276008 scopus 로고    scopus 로고
    • A Neyman-Pearson approach to estimating the number of endmembers
    • Jul
    • J. Broadwater and A. Banerjee, A Neyman-Pearson approach to estimating the number of endmembers, in Proc. IEEE IGARSS, Jul. 2009, vol. 4, pp. IV-693-IV-696
    • (2009) Proc. IEEE IGARSS , vol.4
    • Broadwater, J.1    Banerjee, A.2
  • 9
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar
    • C.-I. Chang and Q. Du, Estimation of number of spectrally distinct signal sources in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 10
    • 0032666760 scopus 로고    scopus 로고
    • Determination of data dimensionality in hyperspectral imagery-PNAPCA
    • Jul
    • T. Tu, H. Shyu, Y. Sun, and C. Lee, Determination of data dimensionality in hyperspectral imagery-PNAPCA, Multidimensional Syst. Signal Process., vol. 10, no. 3, pp. 255-273, Jul. 1999
    • (1999) Multidimensional Syst. Signal Process , vol.10 , Issue.3 , pp. 255-273
    • Tu, T.1    Shyu, H.2    Sun, Y.3    Lee, C.4
  • 13
    • 84881190018 scopus 로고    scopus 로고
    • A metric of spectral image complexity with application to large area search
    • submitted for publication
    • D. Messinger, A. Ziemann, W. Basener, and A. Schlamm, A metric of spectral image complexity with application to large area search, Opt. Eng., submitted for publication
    • Opt. Eng
    • Messinger, D.1    Ziemann, A.2    Basener, W.3    Schlamm, A.4
  • 15
    • 34548036670 scopus 로고    scopus 로고
    • Integration of spatial-spectral information for the improved extraction of endmembers
    • DOI 10.1016/j.rse.2007.02.019, PII S0034425707000934
    • D. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris, and J. Feng, Integration of spatial-spectral information for the improved extraction of endmembers, Remote Sens. Environ., vol. 110, no. 3, pp. 287-303, Oct. 2007 (Pubitemid 47285207)
    • (2007) Remote Sensing of Environment , vol.110 , Issue.3 , pp. 287-303
    • Rogge, D.M.1    Rivard, B.2    Zhang, J.3    Sanchez, A.4    Harris, J.5    Feng, J.6
  • 16
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • Mar
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650-663, Mar. 2004
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 17
    • 34547229626 scopus 로고    scopus 로고
    • Sparsity promoting iterated constrained endmember detection in hyperspeetral imagery
    • DOI 10.1109/LGRS.2007.895727
    • A. Zare and P. Gader, Sparsity promoting iterated constrained endmember detection in hyperspectral imagery, IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 446-450, Jul. 2007 (Pubitemid 47117457)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.3 , pp. 446-450
    • Zare, A.1    Gader, P.2
  • 18
    • 33845599430 scopus 로고    scopus 로고
    • Iterative spectral unmixing for optimizing per-pixel endmember sets
    • Dec
    • D. M. Rogge, B. Rivard, J. Zhang, and J. Feng, Iterative spectral unmixing for optimizing per-pixel endmember sets, IEEE Trans. Geosci. Remote Sens., vol. 44, no. 12, pp. 3725-3736, Dec. 2006
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.12 , pp. 3725-3736
    • Rogge, D.M.1    Rivard, B.2    Zhang, J.3    Feng, J.4
  • 19
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • DOI 10.1109/TGRS.2002.802494
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, Spatial/spectral endmember extraction by multidimensional morphological operations, IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 2025-2041, Sep. 2002 (Pubitemid 35458399)
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 20
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • Aug
    • M. Zortea and A. Plaza, Spatial preprocessing for endmember extraction, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679-2693, Aug. 2009
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.8 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2
  • 22
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • Jul
    • J. C. Harsanyi and C.-I. Chang, Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach, IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785, Jul. 1994
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 23
    • 44949249595 scopus 로고    scopus 로고
    • A subpixel target detection technique based on the invariant approach
    • J. Schott, K. Lee, R. Raqueño, G. Hoffman, and G. Healey, A subpixel target detection technique based on the invariant approach, presented at the AVIRIS Workshop, 2003
    • (2003) AVIRIS Workshop
    • Schott, J.1    Lee, K.2    Raqueño, R.3    Hoffman, G.4    Healey, G.5
  • 24
    • 15944427807 scopus 로고    scopus 로고
    • Simplex projection methods for selection of endmembers in hyperspectral imagery
    • 2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Science for Society: Exploring and Managing a Changing Planet. IGARSS 2004
    • P. Bajorski, Simplex projection methods for selection of endmembers in hyperspectral imagery, in Proc. IEEE Int. Geosci. Remote Sens. Symp., Sep. 2004, vol. 5, pp. 3207-3210 (Pubitemid 40437775)
    • (2004) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.5 , pp. 3207-3210
    • Bajorski, P.1
  • 28
    • 77952555368 scopus 로고    scopus 로고
    • Pce: Piecewise convex endmember detection
    • Jun.
    • A. Zare and P. Gader, Pce: Piecewise convex endmember detection, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2620-2632, Jun. 2010
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.6 , pp. 2620-2632
    • Zare, A.1    Gader, P.2
  • 29
    • 72049083490 scopus 로고    scopus 로고
    • Local approach to orthogonal subspace-based target detection in hyperspectral images
    • Aug. 26-28
    • S. Matteoli, N. Acito, M. Diani, and G. Corsini, Local approach to orthogonal subspace-based target detection in hyperspectral images, in Proc. 1st WHISPERS, Aug. 26-28, 2009, pp. 1-4
    • (2009) Proc. 1st WHISPERS , pp. 1-4
    • Matteoli, S.1    Acito, N.2    Diani, M.3    Corsini, G.4
  • 30
    • 27544499002 scopus 로고    scopus 로고
    • Megacollect 2004: Hyperspectral collection experiment of terrestrial targets and backgrounds of the RIT megascene and surrounding area (Rochester, New York)
    • N. G. Raqueno, L. E. Smith, D. W. Messinger, C. Salvaggio, R. V. Raqueno, and J. R. Schott, Megacollect 2004: Hyperspectral collection experiment of terrestrial targets and backgrounds of the RIT megascene and surrounding area (Rochester, New York), Proc. SPIE, vol. 5806, p. 554, 2005
    • (2005) Proc. SPIE , vol.5806 , pp. 554
    • Raqueno, N.G.1    Smith, L.E.2    Messinger, D.W.3    Salvaggio, C.4    Raqueno, R.V.5    Schott, J.R.6
  • 31
    • 0001522035 scopus 로고
    • Mapping minerals with imaging spectroscopy
    • Nov
    • R. Clark, G. Swayze, and A. Gallagher. (1993, Nov.). Mapping minerals with imaging spectroscopy. Office Mineral Resour. Bull. Online.. 2039, pp. 141-150. Available: http://speclab.cr.usgs.gov
    • (1993) Office Mineral Resour. Bull. , vol.2039 , pp. 141-150
    • Clark, R.1    Swayze, G.2    Gallagher, A.3
  • 33
    • 1542318143 scopus 로고    scopus 로고
    • Imaging spectroscopy: Earth and planetary remote sensing with the USGS tetracorder and expert systems
    • R. Clark, G. Swayze, K. E. Livo, R. F. Kokaly, S. J. Sutley, J. B. Dalton, R. R. McDougal, and C. A. Gent. (2003). Imaging spectroscopy: Earth and planetary remote sensing with the USGS tetracorder and expert systems. J. Geophys. Res. Online.. 108(5131), pp. 1-44. Availbale: http://speclab.cr.usgs. gov/PAPERS/tetracorder
    • (2003) J. Geophys. Res. , vol.108 , Issue.5131 , pp. 1-44
    • Clark, R.1    Swayze, G.2    Livo, K.E.3    Kokaly, R.F.4    Sutley, S.J.5    Dalton, J.B.6    McDougal, R.R.7    Gent, C.A.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.