메뉴 건너뛰기




Volumn 101, Issue 3, 2013, Pages 631-651

Land-cover mapping by markov modeling of spatial-contextual information in very-high-resolution remote sensing images

Author keywords

Data fusion; land cover mapping; Markov models; Markov random fields; remote sensing image classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA FUSION; IMAGE CLASSIFICATION; MARKOV PROCESSES; REMOTE SENSING; SPEECH COMMUNICATION; SPEECH PROCESSING; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 84947648698     PISSN: 00189219     EISSN: None     Source Type: Journal    
DOI: 10.1109/JPROC.2012.2211551     Document Type: Article
Times cited : (222)

References (105)
  • 3
    • 0036508025 scopus 로고    scopus 로고
    • A process model for remote sensing data analysis
    • DOI 10.1109/TGRS.2002.1000327, PII S0196289202021228
    • V. Madhok and D. A. Landgrebe, BA process model for remote sensing data analysis, IEEE Trans. Geosci. Remote Sens., vol. 40, no. 3, pp. 680-686, Mar. 2002. (Pubitemid 34692244)
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.3 , pp. 680-686
    • Madhok, V.1    Landgrebe, D.A.2
  • 7
    • 14644422971 scopus 로고    scopus 로고
    • Combining pattern classifiers
    • New York Wiley
    • L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. New York: Wiley, 2004.
    • (2004) Methods and Algorithms
    • Kuncheva, L.I.1
  • 9
    • 66549107499 scopus 로고    scopus 로고
    • A novel MRF model for the detection of urban areas in optical high spatial resolution images
    • F. Causa, G. Moser, and S. B. Serpico, BA novel MRF model for the detection of urban areas in optical high spatial resolution images, Rivista Italiana di Telerilevamento, vol. 38, pp. 59-72, 2007.
    • (2007) Rivista Italiana di Telerilevamento , vol.38 , pp. 59-72
    • Causa, F.1    Moser, G.2    Serpico, S.B.3
  • 11
    • 0024752683 scopus 로고
    • Discrete-index Markov-type random processes
    • DOI 10.1109/5.40665
    • H. Derin and P. A. Kelly, BDiscrete-index Markov-type random processes, Proc. IEEE, vol. 77, no. 10, pp. 1485-1510, Oct. 1989. (Pubitemid 20641735)
    • (1989) Proceedings of the IEEE , vol.77 , Issue.10 , pp. 1485-1510
    • Derin Haluk1    Kelly Patrick, A.2
  • 12
    • 84947650483 scopus 로고
    • Queueing systems I: Theory
    • Jun
    • L. Schrage, BQueueing systems, Vol. I: Theory, Proc. IEEE, vol. 65, no. 6, pp. 990-991, Jun. 1977.
    • (1977) Proc IEEE , vol.65 , Issue.6 , pp. 990-991
    • Schrage, L.1
  • 14
    • 0038117478 scopus 로고    scopus 로고
    • Multipath channel modeling with chaotic attractors
    • May
    • E. Costamagna, L. Favalli, and P. Gamba, BMultipath channel modeling with chaotic attractors, Proc. IEEE, vol. 90, no. 5, pp. 842-859, May 2002.
    • (2002) Proc IEEE , vol.90 , Issue.5 , pp. 842-859
    • Costamagna, E.1    Favalli, L.2    Gamba, P.3
  • 15
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Feb
    • L. R. Rabiner, BA tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE, vol. 77, no. 2, pp. 257-286, Feb. 1989.
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 16
    • 47849103330 scopus 로고    scopus 로고
    • Models and algorithms for tracking of maneuvering objects using variable rate particle filters
    • May
    • S. J. Godsill, J. Vermaak, W. Ng, and J. F. Li, BModels and algorithms for tracking of maneuvering objects using variable rate particle filters, Proc. IEEE, vol. 95, no. 5, pp. 925-952, May 2007.
    • (2007) Proc IEEE , vol.95 , Issue.5 , pp. 925-952
    • Godsill, S.J.1    Vermaak, J.2    Ng, W.3    Li, J.F.4
  • 17
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov
    • Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, BGradient-based learning applied to document recognition, Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 18
    • 0016470982 scopus 로고
    • A statistical model for correlation functions of two-level digital facsimiles
    • Feb
    • M. Kunt, BA statistical model for correlation functions of two-level digital facsimiles, Proc. IEEE, vol. 63, no. 2, pp. 327-329, Feb. 1975.
    • (1975) Proc IEEE , vol.63 , Issue.2 , pp. 327-329
    • Kunt, M.1
  • 19
    • 0029247211 scopus 로고
    • Image and video compression algorithms based on recovery techniques using mean field annealing
    • Feb
    • T. Ozcelik, J. C. Brailean, and A. K. Katsaggelos, BImage and video compression algorithms based on recovery techniques using mean field annealing, Proc. IEEE, vol. 83, no. 2, pp. 304-316, Feb. 1995.
    • (1995) Proc. IEEE , vol.83 , Issue.2 , pp. 304-316
    • Ozcelik, T.1    Brailean, J.C.2    Katsaggelos, A.K.3
  • 20
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
    • S. Geman and D. Geman, BStochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 6, pp. 721-741, Jun. 1984. (Pubitemid 15453722)
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman Stuart1    Geman Donald2
  • 21
    • 20444440880 scopus 로고
    • Random field models in image analysis
    • R. C. Dubes and A. K. Jain, BRandom field models in image analysis, J. Appl. Stat., vol. 16, no. 2, pp. 131-164, 1989.
    • (1989) J. Appl. Stat , vol.16 , Issue.2 , pp. 131-164
    • Dubes, R.C.1    Jain, A.K.2
  • 22
    • 0029772671 scopus 로고    scopus 로고
    • A markov random field model for classification of multisource satellite imagery
    • PII S0196289296002999
    • A. H. S. Solberg, T. Taxt, and A. K. Jain, BA Markov random field model for classification of multisource satellite imagery, IEEE Trans. Geosci. Remote Sens., vol. 34, no. 1, pp. 100-113, Jan. 1996. (Pubitemid 126780863)
    • (1996) IEEE Transactions on Geoscience and Remote Sensing , vol.34 , Issue.1 , pp. 100-113
    • Schistad Solberg, A.H.1    Taxt, T.2    Jain, A.K.3
  • 23
    • 33845678010 scopus 로고    scopus 로고
    • Weight parameter optimization by the Ho-Kashyap algorithm in MRF models for supervised image classification
    • DOI 10.1109/TGRS.2006.881118
    • S. B. Serpico and G. Moser, BWeight parameter optimization by the Ho-Kashyap algorithm in MRF models for supervised image classification, IEEE Trans. Geosci. Remote Sens., vol. 44, no. 12, pp. 3695-3705, Dec. 2006. (Pubitemid 44955568)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.12 , pp. 3695-3705
    • Serpico, S.B.1    Moser, G.2
  • 24
    • 77958017904 scopus 로고    scopus 로고
    • SVM-and MRF-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, BSVM-and MRF-based method for accurate classification of hyperspectral images, IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 25
    • 0036875946 scopus 로고    scopus 로고
    • Adaptive Bayesian contextual classification based on Markov random fields
    • Nov
    • Q. Jackson and D. Landgrebe, BAdaptive Bayesian contextual classification based on Markov random fields, IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2454-2463, Nov. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.11 , pp. 2454-2463
    • Jackson, Q.1    Landgrebe, D.2
  • 26
    • 79957440319 scopus 로고    scopus 로고
    • Supervised high resolution dual polarization SAR image classification by finite mixtures and copulas
    • Jun.
    • V. Krylov, G. Moser, S. B. Serpico, and J. Zerubia, BSupervised high resolution dual polarization SAR image classification by finite mixtures and copulas, IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 554-566, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process , vol.5 , Issue.3 , pp. 554-566
    • Krylov, V.1    Moser, G.2    Serpico, S.B.3    Zerubia, J.4
  • 27
    • 24944572607 scopus 로고    scopus 로고
    • Supervised segmentation of remote sensing images based on a tree-structured MRF model
    • DOI 10.1109/TGRS.2005.852163
    • G. Poggi, G. Scarpa, and J. Zerubia, BSupervised segmentation of remote sensing images based on a tree-structured MRF model, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 8, pp. 1901-1911, Aug. 2005. (Pubitemid 41329037)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.8 , pp. 1901-1911
    • Poggi, G.1    Scarpa, G.2    Zerubia, J.B.3
  • 28
    • 14644412825 scopus 로고    scopus 로고
    • Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model
    • Mar
    • H. Deng and D. A. Clausi, BUnsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 528-538,Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 528-538
    • Deng, H.1    Clausi, D.A.2
  • 29
    • 0031186538 scopus 로고    scopus 로고
    • Synthetic aperture radar image segmentation by a detail preserving markov random field approach
    • PII S0196289297044756
    • P. C. Smits and S. G. Dellepiane, BSynthetic aperture radar image segmentation by a detail preserving Markov random field approach, IEEE Trans. Geosci. Remote Sens., vol. 35, no. 4, pp. 844-857, Jul. 1997. (Pubitemid 127771124)
    • (1997) IEEE Transactions on Geoscience and Remote Sensing , vol.35 , Issue.4 , pp. 844-857
    • Smits, P.C.1
  • 30
    • 75449120535 scopus 로고    scopus 로고
    • Huber-Markov model for complex SAR image restoration
    • Jan.
    • M. Soccorsi, D. Gleich, and M. Datcu, BHuber-Markov model for complex SAR image restoration, IEEE Geosci. Remote Sens. Lett., vol. 7, no. 1, pp. 63-67, Jan. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett , vol.7 , Issue.1 , pp. 63-67
    • Soccorsi, M.1    Gleich, D.2    Datcu, M.3
  • 31
    • 0034272146 scopus 로고    scopus 로고
    • Model-based despeckling and information extraction from SAR images
    • May
    • M. Walessa and M. Datcu, BModel-based despeckling and information extraction from SAR images, IEEE Trans. Geosci. Remote Sens., vol. 38, no. 5, pp. 2258-2269, May 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens , vol.38 , Issue.5 , pp. 2258-2269
    • Walessa, M.1    Datcu, M.2
  • 32
    • 78649332936 scopus 로고    scopus 로고
    • A multiresolution Markovian fusion model for the color visualization of hyperspectral images
    • Dec.
    • M. Mignotte, BA multiresolution Markovian fusion model for the color visualization of hyperspectral images, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 12, pp. 4236-4247, Dec. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.12 , pp. 4236-4247
    • Mignotte, M.1
  • 33
    • 3843116557 scopus 로고    scopus 로고
    • Texture feature analysis using a Gauss-Markov model in hyperspectral image classification
    • Jul
    • G. Rellier, X. Descombes, F. Falzon, and J. Zerubia, BTexture feature analysis using a Gauss-Markov model in hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 7, pp. 1543-1551, Jul. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.7 , pp. 1543-1551
    • Rellier, G.1    Descombes, X.2    Falzon, F.3    Zerubia, J.4
  • 34
    • 0028974501 scopus 로고
    • Markovian model for contour grouping
    • S. Urago, J. Zerubia, and M. Berthod, BMarkovian model for contour grouping, Pattern Recognit., vol. 28, no. 5, pp. 683-693, 1995.
    • (1995) Pattern Recognit , vol.28 , Issue.5 , pp. 683-693
    • Urago, S.1    Zerubia, J.2    Berthod, M.3
  • 35
    • 36348942754 scopus 로고    scopus 로고
    • Junction-aware extraction and regularization of urban road networks in high-resolution SAR images
    • Oct
    • M. Negri, P. Gamba, G. Lisini, and F. Tupin, BJunction-aware extraction and regularization of urban road networks in high-resolution SAR images, IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2962-2971, Oct. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.10 , pp. 2962-2971
    • Negri, M.1    Gamba, P.2    Lisini, G.3    Tupin, F.4
  • 37
    • 84870949573 scopus 로고    scopus 로고
    • Unsupervised change detection from multichannel SAR data by Markovian data fusion
    • Jul
    • G. Moser and S. B. Serpico, BUnsupervised change detection from multichannel SAR data by Markovian data fusion, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2114-2128, Jul. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.7 , pp. 2114-2128
    • Moser, G.1    Serpico, S.B.2
  • 38
    • 34247350886 scopus 로고    scopus 로고
    • Unsupervised change detection from multichannel SAR images
    • DOI 10.1109/LGRS.2007.890549
    • G. Moser, S. B. Serpico, and G. Vernazza, BUnsupervised change detection from multichannel SAR images, IEEE Geosci. Remote Sens. Lett., vol. 4, no. 2, pp. 278-282, Apr. 2007. (Pubitemid 46645148)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.2 , pp. 278-282
    • Moser, G.1    Serpico, S.2    Vernazza, G.3
  • 39
    • 79959748493 scopus 로고    scopus 로고
    • Multiscale unsupervised change detection on optical images by Markov random fields and wavelets
    • Jul.
    • G. Moser, E. Angiati, and S. B. Serpico, BMultiscale unsupervised change detection on optical images by Markov random fields and wavelets, IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 725-729, Jul. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , Issue.4 , pp. 725-729
    • Moser, G.1    Angiati, E.2    Serpico, S.B.3
  • 40
    • 0033707763 scopus 로고    scopus 로고
    • Automatic analysis of the difference image for unsupervised change detection
    • Mar
    • L. Bruzzone and D. Fernandez Prieto, BAutomatic analysis of the difference image for unsupervised change detection, IEEE Trans. Geosci. Remote Sens., vol. 38, no. 3, pp. 1171-1182, Mar. 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens , vol.38 , Issue.3 , pp. 1171-1182
    • Bruzzone, L.1    Fernandez Prieto, D.2
  • 41
    • 0344014352 scopus 로고    scopus 로고
    • A Markov random field approach to spatio-temporal contextual image classification
    • Nov
    • F. Melgani and S. B. Serpico, BA Markov random field approach to spatio-temporal contextual image classification, IEEE Trans. Geosci. Remote Sens., vol. 41, no. 11, pp. 2478-2487, Nov. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens , vol.41 , Issue.11 , pp. 2478-2487
    • Melgani, F.1    Serpico, S.B.2
  • 42
    • 33947637730 scopus 로고    scopus 로고
    • Image time-series data mining based on the information-bottleneck principle
    • DOI 10.1109/TGRS.2006.890557
    • L. Gueguen and M. Datcu, BImage time-series data mining based on the information-bottleneck principle, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 827-838, Apr. 2007. (Pubitemid 46495618)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.4 , pp. 827-838
    • Gueguen, L.1    Datcu, M.2
  • 43
    • 2442586371 scopus 로고    scopus 로고
    • The effect of modified Markov random fields on the local minima occurrence in microwave imaging
    • DOI 10.1109/TGRS.2003.811549
    • G. Ferraiuolo and V. Pascazio, BThe effect of modified Markov random fields on the local minima occurrence in microwave imaging, IEEE Trans. Geosci. Remote Sens., vol. 41, no. 5, pp. 1043-1055, May 2003. (Pubitemid 351466566)
    • (2003) IEEE Transactions on Geoscience and Remote Sensing , vol.41 , Issue.5 PART 1 , pp. 1043-1055
    • Ferraiuolo, G.1    Pascazio, V.2
  • 44
    • 2442549031 scopus 로고    scopus 로고
    • Maximum a posteriori estimation of height profiles in InSAR imaging
    • Apr
    • G. Ferraiuolo, V. Pascazio, and G. Schirinzi, BMaximum a posteriori estimation of height profiles in InSAR imaging, IEEE Geosci. Remote Sens. Lett., vol. 1, no. 2, pp. 66-70, Apr. 2004.
    • (2004) IEEE Geosci. Remote Sens. Lett , vol.1 , Issue.2 , pp. 66-70
    • Ferraiuolo, G.1    Pascazio, V.2    Schirinzi, G.3
  • 45
    • 24944442070 scopus 로고    scopus 로고
    • Markov random field on region adjacency graph for the fusion of SAR and optical data in radargrammetric applications
    • DOI 10.1109/TGRS.2005.852080
    • F. Tupin and M. Roux, BMarkov random field on region adjacency graph for the fusion of SAR and optical data in radargrammetric applications, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 8, pp. 1920-1928, Aug. 2005. (Pubitemid 41329039)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.8 , pp. 1920-1928
    • Tupin, F.1    Roux, M.2
  • 46
    • 82155167667 scopus 로고    scopus 로고
    • An image fusion approach based on Markov random fields
    • Dec.
    • X. Min, H. Chen, and P. K. Varshney, BAn image fusion approach based on Markov random fields, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 5116-5127, Dec. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.12 , pp. 5116-5127
    • Min, X.1    Chen, H.2    Varshney, P.K.3
  • 47
    • 0242323688 scopus 로고    scopus 로고
    • A Markov random field-based approach to decision-level fusion for remote sensing image classification
    • Oct
    • R. Nishii, BA Markov random field-based approach to decision-level fusion for remote sensing image classification, IEEE Trans. Geosci. Remote Sens., vol. 41, no. 10, pp. 2316-2319, Oct. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens , vol.41 , Issue.10 , pp. 2316-2319
    • Nishii, R.1
  • 48
    • 37249074400 scopus 로고    scopus 로고
    • A stochastic framework for the identification of building rooftops using a single remote sensing image
    • DOI 10.1109/TGRS.2007.904953
    • A. Katartzis and H. Sahli, BA stochastic framework for the identification of building rooftops using a single remote sensing image, IEEE Trans. Geosci. Remote Sens., vol. 46, no. 1, pp. 259-271, Jan. 2008. (Pubitemid 350281157)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.1 , pp. 259-271
    • Katartzis, A.1    Sahli, H.2
  • 49
    • 0030734976 scopus 로고    scopus 로고
    • A multiresolution methodology for signal-level fusion and data assimilation with applications to remote sensing
    • Jan
    • M. M. Daniel and A. S. Willsky, BA multiresolution methodology for signal-level fusion and data assimilation with applications to remote sensing, Proc. IEEE, vol. 85, no. 1, pp. 164-180, Jan. 1997.
    • (1997) Proc. IEEE , vol.85 , Issue.1 , pp. 164-180
    • Daniel, M.M.1    Willsky, A.S.2
  • 50
    • 21444433029 scopus 로고    scopus 로고
    • Super-resolution land cover mapping using a Markov random field based approach
    • DOI 10.1016/j.rse.2005.02.006, PII S0034425705000866
    • T. Kasetkasem, M. K. Arora, and P. K. Varshney, BSuper-resolution land cover mapping using a Markov random field based approach, Remote Sens. Environ., vol. 96, no. 3-4, pp. 302-314, 2005. (Pubitemid 40912432)
    • (2005) Remote Sensing of Environment , vol.96 , Issue.3-4 , pp. 302-314
    • Kasetkasem, T.1    Arora, M.K.2    Varshney, P.K.3
  • 51
    • 78650591880 scopus 로고    scopus 로고
    • Super resolution for remote sensing images based on a universal hidden Markov tree model
    • Mar.
    • F. Li, X. Jia, D. Fraser, and A. Lambert, BSuper resolution for remote sensing images based on a universal hidden Markov tree model, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 3, pp. 1270-1278, Mar. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.3 , pp. 1270-1278
    • Li, F.1    Jia, X.2    Fraser, D.3    Lambert, A.4
  • 52
    • 0000111836 scopus 로고
    • Exact maximum a posteriori estimation for binary images
    • D. M. Greig, B. T. Porteous, and A. H. Seheult, BExact maximum a posteriori estimation for binary images, J. Roy. Stat. Soc. B, vol. 51, pp. 271-279, 1989.
    • (1989) J. Roy. Stat. Soc. B , vol.51 , pp. 271-279
    • Greig, D.M.1    Porteous, B.T.2    Seheult, A.H.3
  • 53
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • Feb
    • V. Kolmogorov and R. Zabih, BWhat energy functions can be minimized via graph cuts?[ IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp. 147-159, Feb. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell , vol.26 , Issue.2 , pp. 147-159
    • Kolmogorov, V.1    Zabih, R.2
  • 54
    • 0029732459 scopus 로고    scopus 로고
    • A hierarchical markov random field model and multitemperature annealing for parallel image classification
    • DOI 10.1006/gmip.1996.0002
    • Z. Kato, M. Berthod, and J. Zerubia, BHierarchical Markov random field model and multitemperature annealing for parallel image classification, Graph. Models Image Process., vol. 58, no. 1, pp. 18-37, 1996. (Pubitemid 126400280)
    • (1996) Graphical Models and Image Processing , vol.58 , Issue.1 , pp. 18-37
    • Kato, Z.1    Berthod, M.2    Zerubia, J.3
  • 55
    • 14644396140 scopus 로고    scopus 로고
    • A Bayesian approach to classification of multiresolution remote sensing data
    • DOI 10.1109/TGRS.2004.841395
    • G. O. Storvik, R. Fjørtoft, and A. H. S. Solberg, BA Bayesian approach to classification of multi-scale remote sensing data, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 539-547, Mar. 2005. (Pubitemid 40320275)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 539-547
    • Storvik, G.1    Fjortoft, R.2    Solberg, A.H.S.3
  • 56
    • 0345421566 scopus 로고    scopus 로고
    • Multiresolution Markov models for signal and image processing
    • DOI 10.1109/JPROC.2002.800717, PII 1011092002800717
    • A. S. Willsky, BMultiresolution Markov models for signal and image processing, Proc. IEEE, vol. 90, no. 8, pp. 1396-1458, Aug. 2002. (Pubitemid 43785865)
    • (2002) Proceedings of the IEEE , vol.90 , Issue.8 , pp. 1396-1458
    • Willsky, A.S.1
  • 57
    • 0033878097 scopus 로고    scopus 로고
    • Discrete Markov image modeling and inference on the quadtree
    • DOI 10.1109/83.826777
    • J.-M. Laferté, P. Pérez, and F. Heitz, BDiscrete Markov image modeling and inference on the quadtree, IEEE Trans. Image Process., vol. 9, no. 3, pp. 390-404, Mar. 2000. (Pubitemid 30572360)
    • (2000) IEEE Transactions on Image Processing , vol.9 , Issue.3 , pp. 390-404
    • Laferte, J.-M.1    Perez, P.2    Heitz, F.3
  • 58
    • 0028392841 scopus 로고
    • A multiscale random field model for Bayesian image segmentation
    • Mar
    • C. A. Bouman and M. Shapiro, BA multiscale random field model for Bayesian image segmentation, IEEE Trans. Image Process., vol. 3, no. 2, pp. 162-177, Mar. 1994.
    • (1994) IEEE Trans. Image Process , vol.3 , Issue.2 , pp. 162-177
    • Bouman, C.A.1    Shapiro, M.2
  • 59
    • 66549093468 scopus 로고    scopus 로고
    • Classification of high-resolution images based on MRF fusion and multiscale segmentation
    • Boston, MA
    • G. Moser and S. B. Serpico, BClassification of high-resolution images based on MRF fusion and multiscale segmentation, in Proc. IEEE Geosci. Remote Sens. Symp., Boston, MA, 2008, vol. II, pp. 277-280.
    • (2008) Proc IEEE Geosci. Remote Sens. Symp , vol.2 , pp. 277-280
    • Moser, G.1    Serpico, S.B.2
  • 60
    • 77951274144 scopus 로고    scopus 로고
    • Edge-preserving classification of high-resolution remote-sensing images by Markovian data fusion
    • Capetown, South Africa
    • G. Moser and S. B. Serpico, BEdge-preserving classification of high-resolution remote-sensing images by Markovian data fusion, in Proc. IEEE Geosci. Remote Sens. Symp., Capetown, South Africa, 2009, vol. IV, pp. 765-768.
    • (2009) Proc. IEEE Geosci. Remote Sens. Symp , vol.4 , pp. 765-768
    • Moser, G.1    Serpico, S.B.2
  • 61
    • 80955131974 scopus 로고    scopus 로고
    • Contextual high-resolution image classification by Markovian data fusion, adaptive texture extraction, and multiscale segmentation
    • Vancouver, BC, Canada
    • G. Moser and S. B. Serpico, BContextual high-resolution image classification by Markovian data fusion, adaptive texture extraction, and multiscale segmentation, in Proc. IEEE Geosci. Remote Sens. Symp., Vancouver, BC, Canada, 2011, pp. 1155-1158.
    • (2011) Proc IEEE Geosci. Remote Sens. Symp , pp. 1155-1158
    • Moser, G.1    Serpico, S.B.2
  • 62
    • 0032163244 scopus 로고    scopus 로고
    • Spatial information retrieval from remote-sensing images-part ii: Gibbs-markov random fields
    • PII S0196289298068338
    • M. Schroder, H. Rehrauer, K. Seidel, and M. Datcu, BSpatial information retrieval from remote-sensing images. II. Gibbs-Markov random fields, IEEE Trans. Geosci. Remote Sens., vol. 36, no. 5, pp. 1446-1455, May 1998. (Pubitemid 128748548)
    • (1998) IEEE Transactions on Geoscience and Remote Sensing , vol.36 , Issue.5 PART 1 , pp. 1446-1455
    • Schroder, M.1
  • 63
    • 44649165024 scopus 로고    scopus 로고
    • Statistical pattern recognition in remote sensing
    • C.-H. Chen and P.-G. P. Ho, BStatistical pattern recognition in remote sensing, Pattern Recognit., vol. 41, no. 9, pp. 2731-2741, 2008.
    • (2008) Pattern Recognit , vol.41 , Issue.9 , pp. 2731-2741
    • Chen, C.-H.1    Ho, P.-G.P.2
  • 64
    • 84855656767 scopus 로고    scopus 로고
    • Classification of remote sensing data with Markov random field
    • H. Fizazi Izabatene and R. Rabahi, BClassification of remote sensing data with Markov random field, J. Appl. Sci., vol. 10, no. 8, pp. 636-643, 2010.
    • (2010) J. Appl. Sci , vol.10 , Issue.8 , pp. 636-643
    • Fizazi Izabatene, H.1    Rabahi, R.2
  • 65
    • 85056325222 scopus 로고    scopus 로고
    • MRF-based remote-sensing image classification with automatic model-parameter estimation
    • C. H. Chen, Ed. London, U.K: Taylor & Francis/CRC Press
    • S. B. Serpico and G. Moser, BMRF-based remote-sensing image classification with automatic model-parameter estimation, in Signal and Image Processing for Remote Sensing, C. H. Chen, Ed. London, U.K.: Taylor & Francis/CRC Press, 2006, pp. 305-326.
    • (2006) Signal and Image Processing for Remote Sensing , pp. 305-326
    • Serpico, S.B.1    Moser, G.2
  • 67
    • 77957936177 scopus 로고    scopus 로고
    • Riparian vegetation mapping for hydraulic roughness estimation using very high resolution remote sensing data fusion
    • G. Forzieri, G. Moser, E. R. Vivoni, F. Castelli, and F. Canovaro, BRiparian vegetation mapping for hydraulic roughness estimation using very high resolution remote sensing data fusion, J. Hydraul. Eng., vol. 136, pp. 855-867, 2010.
    • (2010) J. Hydraul. Eng , vol.136 , pp. 855-867
    • Forzieri, G.1    Moser, G.2    Vivoni, E.R.3    Castelli, F.4    Canovaro, F.5
  • 68
    • 2642570063 scopus 로고    scopus 로고
    • Automatic variogram parameter extraction for textural classification of the panchromatic IKONOS imagery
    • May
    • Q. Chen and P. Gong, BAutomatic variogram parameter extraction for textural classification of the panchromatic IKONOS imagery, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 5, pp. 1106-1115, May 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.5 , pp. 1106-1115
    • Chen, Q.1    Gong, P.2
  • 69
    • 0142009648 scopus 로고    scopus 로고
    • Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
    • Sep
    • J. A. Benediktsson, M. Pesaresi, and K. Amason, BClassification and feature extraction for remote sensing images from urban areas based on morphological transformations, IEEE Trans. Geosci. Remote Sens., vol. 41, no. 9, pt. 1, pp. 1940-1949, Sep. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens , vol.41 , Issue.9 PART 1 , pp. 1940-1949
    • Benediktsson, J.A.1    Pesaresi, M.2    Amason, K.3
  • 70
    • 31144472175 scopus 로고    scopus 로고
    • Classification of remote sensing images from urban areas using a fuzzy possibilistic model
    • DOI 10.1109/LGRS.2005.856117
    • J. Chanussot, J. A. Benediktsson, and M. Fauvel, BClassification of remote sensing images from urban areas using a fuzzy possibilistic model, IEEE Trans. Geosci. Remote Sens., vol. 3, no. 1, pp. 40-44, Jan. 2006. (Pubitemid 43131893)
    • (2006) IEEE Geoscience and Remote Sensing Letters , vol.3 , Issue.1 , pp. 40-44
    • Chanussot, J.1    Benediktsson, J.A.2    Fauvel, M.3
  • 72
    • 0035248508 scopus 로고    scopus 로고
    • A new approach for the morphological segmentation of high-resolution satellite imagery
    • DOI 10.1109/36.905239, PII S0196289201011597
    • M. Pesaresi and J. A. Benediktsson, BA new approach for the morphological segmentation of high-resolution satellite imagery, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 309-320, Feb. 2001. (Pubitemid 32270994)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.2 , pp. 309-320
    • Pesaresi, M.1    Benediktsson, J.A.2
  • 73
    • 77957007028 scopus 로고    scopus 로고
    • Morphological attribute profiles for the analysis of very high resolution images
    • Oct.
    • M. DallaMura, J. A. Benediktsson, B.Waske, and L. Bruzzone, BMorphological attribute profiles for the analysis of very high resolution images, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3747-3762, Oct. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.10 , pp. 3747-3762
    • Dallamura, M.1    Benediktsson, J.A.2    Waske, B.3    Bruzzone, L.4
  • 74
    • 0030127769 scopus 로고    scopus 로고
    • Wavelets for a vision
    • PII S0018921996025765
    • S.Mallat, BWavelets for a vision, Proc. IEEE, vol. 84, no. 4, pp. 604-614, Apr. 1996. (Pubitemid 126752553)
    • (1996) Proceedings of the IEEE , vol.84 , Issue.4 , pp. 604-614
    • Mallat, S.1
  • 75
    • 14644396531 scopus 로고    scopus 로고
    • Wavelet domain statistical hyperspectral soil texture classification
    • DOI 10.1109/TGRS.2004.841476
    • X. Zhang, N. H. Younan, and C. G. O'Hara, BWavelet domain statistical hyperspectral soil texture classification, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 615-618, Mar. 2005. (Pubitemid 40320283)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 615-618
    • Zhang, X.1    Younan, N.H.2    O'Hara, C.G.3
  • 76
    • 18444411712 scopus 로고    scopus 로고
    • Hyperspectral texture recognition using a multiscale opponent representation
    • DOI 10.1109/TGRS.2003.811076
    • M. Shi and G. Healey, BHyperspectral texture recognition using a multiscale opponent representation, IEEE Trans. Geosci. Remote Sens., vol. 41, no. 5 pp. 1090-1095, May 2003. (Pubitemid 351466571)
    • (2003) IEEE Transactions on Geoscience and Remote Sensing , vol.41 , Issue.5 PART 1 , pp. 1090-1095
    • Shi, M.1    Healey, G.2
  • 78
    • 4544359339 scopus 로고    scopus 로고
    • Fuzzy connectedness and image segmentation
    • DOI 10.1109/JPROC.2003.817883, Emerging Medical Imaging Technology
    • J. K. Udupa and P. K. Saha, BFuzzy connectedness and image segmentation, Proc. IEEE, vol. 91, no. 10, pp. 1649-1669, Oct. 2003. (Pubitemid 40890809)
    • (2003) Proceedings of the IEEE , vol.91 , Issue.10 , pp. 1649-1669
    • Udupa, J.K.1    Saha, P.K.2
  • 79
    • 0030108386 scopus 로고    scopus 로고
    • Nonlinear image labeling for multivalued segmentation
    • PII S1057714996017952
    • S. G. Dellepiane, F. Fontana, and G. L. Vernazza, BNonlinear image labeling for multivalued segmentation, IEEE Trans. Image Process., vol. 5, no. 3, pp. 429-446, Mar. 1996. (Pubitemid 126778104)
    • (1996) IEEE Transactions on Image Processing , vol.5 , Issue.3 , pp. 429-446
    • Dellepiane, S.G.1    Fontana, F.2    Vernazza, G.L.3
  • 80
    • 0031273494 scopus 로고    scopus 로고
    • Automatic watershed segmentation of randomly textured color images
    • PII S1057714997070309
    • L. Shafarenko, M. Petrou, and J. Kittler, BAutomatic watershed segmentation of randomly textured color images, IEEE Trans. Image Process., vol. 6, no. 11, pp. 1530-1544, Nov. 1997. (Pubitemid 127768422)
    • (1997) IEEE Transactions on Image Processing , vol.6 , Issue.11 , pp. 1530-1544
    • Shafarenko, L.1    Petrou, M.2    Kittler, J.3
  • 82
    • 0141885057 scopus 로고    scopus 로고
    • A tree-structured Markov random field model for Bayesian image segmentation
    • Oct
    • C. D'Elia, G. Scarpa, and G. Poggi, BA tree-structured Markov random field model for Bayesian image segmentation, IEEE Trans. Image Process., vol. 12, no. 10, pp. 1259-1273, Oct. 2003.
    • (2003) IEEE Trans. Image Process , vol.12 , Issue.10 , pp. 1259-1273
    • D'Elia, C.1    Scarpa, G.2    Poggi, G.3
  • 83
    • 78650122316 scopus 로고    scopus 로고
    • Analysis of hierarchically related image segmentations
    • Greenbelt, MD, Oct. 27-28
    • J. C. Tilton, BAnalysis of hierarchically related image segmentations, in Proc. IEEE Workshop Adv. Tech. Anal. Remotely Sensed Data, Greenbelt, MD, Oct. 27-28, 2003, pp. 60-69.
    • (2003) Proc IEEE Workshop Adv. Tech. Anal. Remotely Sensed Data , pp. 60-69
    • Tilton, J.C.1
  • 84
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
    • Oct.
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, BSegmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers, IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 40, no. 5, pp. 1267-1279, Oct. 2010.
    • (2010) IEEE Trans. Syst. Man Cybern. B, Cybern , vol.40 , Issue.5 , pp. 1267-1279
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 86
    • 0032635034 scopus 로고    scopus 로고
    • Classification of multisource and hyperspectral data based on decision fusion
    • Mar
    • J. Benediktsson and I. Kanellopoulos, BClassification of multisource and hyperspectral data based on decision fusion, IEEE Trans. Geosci. Remote Sens., vol. 37, no. 3, pp. 1367-1377, Mar. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , Issue.3 , pp. 1367-1377
    • Benediktsson, J.1    Kanellopoulos, I.2
  • 87
    • 0035442720 scopus 로고    scopus 로고
    • Multisensor image segmentation using Dempster-Shafer fusion in Markov fields context
    • DOI 10.1109/36.942557, PII S0196289201054742, Large Scale Passive Microwave Remote Sensing of Soil Moisture
    • A. Bendjebbour, Y. Delignon, L. Fouque, V. Samson, and W. Pieczynski, BMultisensor image segmentation using Dempster-Shafer fusion in Markov fields context, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 8, pp. 1789-1798, Aug. 2001. (Pubitemid 32935693)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.8 , pp. 1789-1798
    • Bendjebbour, A.1    Delignon, Y.2    Fouque, L.3    Samson, V.4    Pieczynski, W.5
  • 88
    • 0023669879 scopus 로고
    • Nonconvex optimization by fast simulated annealing
    • Nov
    • H. H. Szu and R. L. Hartley, BNonconvex optimization by fast simulated annealing, Proc. IEEE, vol. 75, no. 11, pp. 1538-1540, Nov. 1987.
    • (1987) Proc. IEEE , vol.75 , Issue.11 , pp. 1538-1540
    • Szu, H.H.1    Hartley, R.L.2
  • 89
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag, BOn the statistical analysis of dirty pictures, J. Roy. Stat. Soc., vol. 68, pp. 259-302, 1986.
    • (1986) J. Roy. Stat. Soc , vol.68 , pp. 259-302
    • Besag, J.1
  • 90
    • 33947318856 scopus 로고    scopus 로고
    • Ant colony optimization for image regularization based on a nonstationary markov modeling
    • DOI 10.1109/TIP.2007.891150
    • S. Le Hegarat-Mascle, A. Kallel, and X. Descombes, BAnt colony optimization for image regularization based on a nonstationary Markov modeling, IEEE Trans. Image Process., vol. 16, no. 3, pp. 865-878, Mar. 2007. (Pubitemid 46436704)
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.3 , pp. 865-878
    • Le Hegarat-Mascle, S.1    Kallel, A.2    Descombes, X.3
  • 91
    • 80052335044 scopus 로고    scopus 로고
    • Adaptive Markov random field approach for classification of hyperspectral imagery
    • Sep.
    • B. Zhang, S. Li, X. Jia, L. Gao, and M. Peng, BAdaptive Markov random field approach for classification of hyperspectral imagery, IEEE Geosci. Remote Sens. Lett., vol. 8, no. 5, pp. 973-977, Sep. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , Issue.5 , pp. 973-977
    • Zhang, B.1    Li, S.2    Jia, X.3    Gao, L.4    Peng, M.5
  • 92
    • 0036508031 scopus 로고    scopus 로고
    • Cluster-space representation for hyperspectral data classification
    • DOI 10.1109/TGRS.2002.1000319, PII S0196289202033612
    • X. Jia and J. A. Richards, BCluster-space representation for hyperspectral data classification, IEEE Trans. Geosci. Remote Sens., vol. 40, no. 3, pp. 593-598, Mar. 2002. (Pubitemid 34692236)
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.3 , pp. 593-598
    • Jia, X.1    Richards, J.A.2
  • 93
    • 0041339533 scopus 로고    scopus 로고
    • Parameter estimation in Markov random field image modeling with imperfect observations. A comparative study
    • DOI 10.1016/S0167-8655(03)00067-9
    • M. V. Ibanez and A. Simò, BParameter estimation in Markov random field image modeling with imperfect observations. A comparative study, Pattern Recognit. Lett., vol. 24, no. 14, pp. 2377-2389, 2003. (Pubitemid 36911081)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.14 , pp. 2377-2389
    • Ibanez, M.V.1    Simo, A.2
  • 94
    • 0032630688 scopus 로고    scopus 로고
    • Estimating gaussian markov random field parameters in a nonstationary framework: Application to remote sensing imaging
    • Apr
    • X. Descombes, M. Sigelle, and F. Preteux, BEstimating Gaussian Markov random field parameters in a nonstationary framework: Application to remote sensing imaging, IEEE Trans. Image Process., vol. 8, no. 4, pp. 490-503, Apr. 1999.
    • (1999) IEEE Trans. Image Process , vol.8 , Issue.4 , pp. 490-503
    • Descombes, X.1    Sigelle, M.2    Preteux, F.3
  • 95
    • 0032123237 scopus 로고    scopus 로고
    • ML parameter estimation for Markov random fields with applications to Bayesian tomography
    • PII S105771499804367X
    • S. S. Saquib, C. A. Bouman, and K. Sauer, BML parameter estimation for Markov random fields with applications to Bayesian tomography, IEEE Trans. Image Process., vol. 7, no. 7, pp. 1029-1044, Jul. 1998. (Pubitemid 128745416)
    • (1998) IEEE Transactions on Image Processing , vol.7 , Issue.7 , pp. 1029-1044
    • Saquib, S.S.1    Bouman, C.A.2    Sauer, K.3
  • 96
    • 0032687294 scopus 로고    scopus 로고
    • Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood
    • Jul
    • X. Descombes, R. D. Morris, J. Zerubia, and M. Berthod, BEstimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood, IEEE Trans. Image Process., vol. 8, no. 7, pp. 954-963, Jul. 1999.
    • (1999) IEEE Trans. Image Process , vol.8 , Issue.7 , pp. 954-963
    • Descombes, X.1    Morris, R.D.2    Zerubia, J.3    Berthod, M.4
  • 97
    • 0037209490 scopus 로고    scopus 로고
    • EM procedures using mean field-like approximations for Markov model-based image segmentation
    • G. Celeux, F. Forbes, and N. Peyrand, BEM procedures using mean field-like approximations for Markov model-based image segmentation, Pattern Recognit., vol. 36, no. 1, pp. 131-144, 2003.
    • (2003) Pattern Recognit , vol.36 , Issue.1 , pp. 131-144
    • Celeux, G.1    Forbes, F.2    Peyrand, N.3
  • 98
    • 0031189036 scopus 로고    scopus 로고
    • Parameter estimation in hidden fuzzy markov random fields and image segmentation
    • F. Salzenstein and W. Pieczynski, BParameter estimation in hidden fuzzy Markov random fields and image segmentation, Graph. Models Image Process., vol. 59, no. 4, pp. 205-220, 1997. (Pubitemid 127435619)
    • (1997) Graphical Models and Image Processing , vol.59 , Issue.4 , pp. 205-220
    • Salzenstein, F.1    Pieczynski, W.2
  • 99
    • 0023123263 scopus 로고
    • Modeling and segmentation of noisy and textured images using Gibbs random fields
    • Jan
    • H. Derin and H. Elliott, BModeling and segmentation of noisy and textured images using Gibbs random fields, IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-9, no. 1, pp. 29-55, Jan. 1987.
    • (1987) IEEE Trans. Pattern Anal. Mach. Intell , vol.PAMI-9 , Issue.1 , pp. 29-55
    • Derin, H.1    Elliott, H.2
  • 100
    • 0032634224 scopus 로고    scopus 로고
    • Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields
    • Mar
    • B. C. K. Tso and P. M. Mather, BClassification of multisource remote sensing imagery using a genetic algorithm and Markov random fields, IEEE Trans. Geosci. Remote Sens., vol. 37, no. 3, pp. 1255-1260, Mar. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , Issue.3 , pp. 1255-1260
    • Tso, B.C.K.1    Mather, P.M.2
  • 101
    • 64349105831 scopus 로고    scopus 로고
    • Managing the spectral-spatial mix in context classification using Markov random fields
    • Apr
    • X. Jia and J. A. Richards, BManaging the spectral-spatial mix in context classification using Markov random fields, IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 311-314, Apr. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett , vol.5 , Issue.2 , pp. 311-314
    • Jia, X.1    Richards, J.A.2
  • 102
    • 0027592254 scopus 로고
    • A new clustering algorithm applicable to multispectral and polarimetric SAR images
    • Mar
    • Y. F. Wong and E. C. Posner, BA new clustering algorithm applicable to multispectral and polarimetric SAR images, IEEE Trans. Geosci. Remote Sens., vol. 31, no. 3, pp. 634-644, Mar. 1993.
    • (1993) IEEE Trans. Geosci. Remote Sens , vol.31 , Issue.3 , pp. 634-644
    • Wong, Y.F.1    Posner, E.C.2
  • 103
  • 104
    • 78650861785 scopus 로고    scopus 로고
    • Contextual remote-sensing image classification by support vector machines and Markov random fields
    • Honolulu, HI
    • G. Moser and S. B. Serpico, BContextual remote-sensing image classification by support vector machines and Markov random fields, in Proc. IEEE Geosci. Remote Sens. Symp., Honolulu, HI, 2010, pp. 3728-3731.
    • (2010) Proc. IEEE Geosci. Remote Sens. Symp , pp. 3728-3731
    • Moser, G.1    Serpico, S.B.2
  • 105
    • 0036643380 scopus 로고    scopus 로고
    • A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images
    • DOI 10.1016/S0167-8655(02)00052-1, PII S0167865502000521, Selected papers for the 1st International Workshop on Pattern Recognition for Remote Sensing
    • F. Melgani and S. B. Serpico, BA statistical approach to the fusion of the spectral and spatio-temporal contextual information for the classification of remote sensing images, Pattern Recognit. Lett., vol. 23, no. 9, pp. 1053-1061, 2002. (Pubitemid 34476149)
    • (2002) Pattern Recognition Letters , vol.23 , Issue.9 , pp. 1053-1061
    • Melgani, F.1    Serpico, S.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.