메뉴 건너뛰기




Volumn 4, Issue 9, 2012, Pages 2619-2634

Remote sensing of fractional green vegetation cover using spatially-interpolated endmembers

Author keywords

Fractional vegetation cover; Kriging; Linear spectral unmixing; Msavis; Ndvi; Spatial interpolation; Spectral mixture analysis; Subpixel mapping

Indexed keywords

FRACTIONAL VEGETATION COVER; KRIGING; LINEAR SPECTRAL UNMIXING; MSAVIS; NDVI; SPATIAL INTERPOLATION; SPECTRAL MIXTURE ANALYSIS; SUB-PIXEL MAPPING;

EID: 84870667903     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs4092619     Document Type: Article
Times cited : (62)

References (40)
  • 1
    • 0001395470 scopus 로고
    • Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site
    • Adams, J.; Smith, M.; Johnson, P. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site. J. Geophys. Res. 1986, 91, 8098-8112.
    • (1986) J. Geophys. Res. , vol.91 , pp. 8098-8112
    • Adams, J.1    Smith, M.2    Johnson, P.3
  • 2
    • 46349092918 scopus 로고    scopus 로고
    • Accuracy and applicability of linear spectral unmixing in delineating potential erosion areas in tropical watersheds
    • de Asis, A.; Omasa, K.; Oki, K.; Shimizu, Y. Accuracy and applicability of linear spectral unmixing in delineating potential erosion areas in tropical watersheds. Int. J. Remote Sens. 2008, 29, 4151-4171.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 4151-4171
    • Asis, A.D.1    Omasa, K.2    Oki, K.3    Shimizu, Y.4
  • 3
    • 0000796604 scopus 로고    scopus 로고
    • The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models
    • Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models, Int. J. Remote Sens. 1998, 19, 1533-1543.
    • (1998) Int. J. Remote Sens. , vol.19 , pp. 1533-1543
    • Gutman, G.1    Ignatov, A.2
  • 4
    • 0033851838 scopus 로고    scopus 로고
    • Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling
    • Zeng, X.; Dickinson, R.E.; Walker, A.; Shaikh, M.; Defries, R.S.; Qi, J. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteorol. 2000, 39, 826-839.
    • (2000) J. Appl. Meteorol. , vol.39 , pp. 826-839
    • Zeng, X.1    Dickinson, R.E.2    Walker, A.3    Shaikh, M.4    Defries, R.S.5    Qi, J.6
  • 5
    • 40649083532 scopus 로고    scopus 로고
    • The impact of soil reflectance on the quantification of the greenvegetation fraction from NDVI
    • Montandon, L.; Small, E. The impact of soil reflectance on the quantification of the greenvegetation fraction from NDVI. Remote Sens. Environ. 2008, 112, 1835-1845.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 1835-1845
    • Montandon, L.1    Small, E.2
  • 6
    • 65849391373 scopus 로고    scopus 로고
    • Value of real-time vegetation fraction to forecasts of severe convection in high-resolution models
    • James, K.; Stensrud, D.; Yussouf, N. Value of real-time vegetation fraction to forecasts of severe convection in high-resolution models. Weather Forecast. 2009, 24, 187-210.
    • (2009) Weather Forecast. , vol.24 , pp. 187-210
    • James, K.1    Stensrud, D.2    Yussouf, N.3
  • 7
    • 63849265645 scopus 로고    scopus 로고
    • Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area
    • Jiménez-Muñoz, J.; Sobrino, J.; Plaza, A.; Guanter, L.; Moreno, J.; Martinez, P. Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area. Sensors 2009, 9, 768-793.
    • (2009) Sensors , vol.9 , pp. 768-793
    • Jiménez-Muñoz, J.1    Sobrino, J.2    Plaza, A.3    Guanter, L.4    Moreno, J.5    Martinez, P.6
  • 10
    • 25844472385 scopus 로고    scopus 로고
    • A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA
    • Xiao, J.; Moody, A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sens. Environ. 2005, 98, 237-250.
    • (2005) Remote Sens. Environ. , vol.98 , pp. 237-250
    • Xiao, J.1    Moody, A.2
  • 11
    • 67650686122 scopus 로고    scopus 로고
    • Analysis and optimization of NDVI definitions and arealfraction models in remote sensing of vegetation
    • Zhou, X.; Guan, H.; Xie, H.; Wilson, J. Analysis and optimization of NDVI definitions and arealfraction models in remote sensing of vegetation. Int. J. Remote Sens. 2009, 30, 721-751.
    • (2009) Int. J. Remote Sens. , vol.30 , pp. 721-751
    • Zhou, X.1    Guan, H.2    Xie, H.3    Wilson, J.4
  • 13
    • 0035481565 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks
    • Guilfoyle, K.; Althouse, M.; Chang, C. A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2314-2318.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , pp. 2314-2318
    • Guilfoyle, K.1    Althouse, M.2    Chang, C.3
  • 14
    • 77957976782 scopus 로고    scopus 로고
    • Nonlinear spectral mixture analysis for hyperspectral imagery in an unknown environment
    • Naksuntorn, N. Nonlinear spectral mixture analysis for hyperspectral imagery in an unknown environment. IEEE Geosci. Remote Sens. Lett. 2010, 7, 836-840.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , pp. 836-840
    • Naksuntorn, N.1
  • 16
    • 80051906672 scopus 로고    scopus 로고
    • Relationships between errors propogated in fraction of vegetation cover by algorithms based on a two-endmember linear mixture model
    • Obata, K.; Yoshioka, H. Relationships between errors propogated in fraction of vegetation cover by algorithms based on a two-endmember linear mixture model. Remote Sens. 2010, 2, 2680-2699.
    • (2010) Remote Sens. , vol.2 , pp. 2680-2699
    • Obata, K.1    Yoshioka, H.2
  • 17
    • 0037138459 scopus 로고    scopus 로고
    • An evaluation of spectral mixture modeling applied to a semi-arid environment
    • Theseira, M.; Thomas, G.; Sannier, A. An evaluation of spectral mixture modeling applied to a semi-arid environment. Int. J. Remote Sens. 2002, 23, 687-700.
    • (2002) Int. J. Remote Sens. , vol.23 , pp. 687-700
    • Theseira, M.1    Thomas, G.2    Sannier, A.3
  • 18
    • 84860389721 scopus 로고    scopus 로고
    • Inter-algorithm relationships for the estimation of the fraction of vegetation cover based on a two endmember linear mixture model with the VI constraint
    • Obata, K.; Yoshioka, H. Inter-algorithm relationships for the estimation of the fraction of vegetation cover based on a two endmember linear mixture model with the VI constraint. Remote Sens. 2010, 2, 1680-1701.
    • (2010) Remote Sens. , vol.2 , pp. 1680-1701
    • Obata, K.1    Yoshioka, H.2
  • 22
    • 78049359614 scopus 로고    scopus 로고
    • Comparison of topographic correction methods.
    • Richter, R.; Kellenberger, T.; Kaufmann, H. Comparison of topographic correction methods. Remote Sens. 2009, 1, 184-196.
    • (2009) Remote Sens. , vol.1 , pp. 184-196
    • Richter, R.1    Kellenberger, T.2    Kaufmann, H.3
  • 23
    • 0024165401 scopus 로고
    • A soil-adjusted vegetation index (SAVI)
    • Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295-309.
    • (1988) Remote Sens. Environ. , vol.25 , pp. 295-309
    • Huete, A.1
  • 24
    • 13844264503 scopus 로고    scopus 로고
    • The effects of satellite-derived vegetation cover variability on simulated land-atmosphere interactions in the NAMS
    • Matsui, T.; Lakshmi, V.; Small, E. The effects of satellite-derived vegetation cover variability on simulated land-atmosphere interactions in the NAMS. J. Climate 2005, 18, 21-40.
    • (2005) J. Climate , vol.18 , pp. 21-40
    • Matsui, T.1    Lakshmi, V.2    Small, E.3
  • 25
    • 84870665712 scopus 로고    scopus 로고
    • Using geographically weighted variables for image classification
    • Johnson, B.; Tateishi, R.; Xie, Z. Using geographically weighted variables for image classification. Remote Sens. Lett. 2012, 3, 491-499.
    • (2012) Remote Sens. Lett. , vol.3 , pp. 491-499
    • Johnson, B.1    Tateishi, R.2    Xie, Z.3
  • 28
    • 33746419143 scopus 로고    scopus 로고
    • Ecology and management of conifer plantations in Japan: control of tree growth and maintenance of biodiversity
    • Kodani, J. Ecology and management of conifer plantations in Japan: control of tree growth and maintenance of biodiversity. J. Forest Res. 2006, 11, 267-274.
    • (2006) J. Forest Res. , vol.11 , pp. 267-274
    • Kodani, J.1
  • 29
    • 84869102880 scopus 로고    scopus 로고
    • Effects of thinning intensity on species diversity and timber production in a conifer (Cryptomeria japonica) plantation in Japan
    • doi: 10.1007/s10310-011-0316-z
    • Seiwa, K.; Eto, Y.; Masaka, K. Effects of thinning intensity on species diversity and timber production in a conifer (Cryptomeria japonica) plantation in Japan. J. Forest. Res. 2011, doi: 10.1007/s10310-011-0316-z.
    • (2011) J. Forest. Res.
    • Seiwa, K.1    Eto, Y.2    Masaka, K.3
  • 30
    • 84870701433 scopus 로고    scopus 로고
    • Japan Ministry of Agriculture, Forestry and Fisheries
    • Available online, accessed on 20 June 2012
    • Japan Ministry of Agriculture, Forestry and Fisheries, Annual Report on Forest and Forestry in Japan: Fiscal Year 2010 (Summary). 2010. Available online: http://www.rinya.maff.go.jp/j/ kikaku/hakusyo/22hakusho/pdf/22_e.pdf (accessed on 20 June 2012).
    • (2010) Annual Report on Forest and Forestry in Japan: Fiscal Year 2010 (Summary)
  • 31
    • 0032732676 scopus 로고    scopus 로고
    • The use of the empirical line method to calibrate remotely sensed data to reflectance
    • Smith, M.; Milton, E. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653-2662.
    • (1999) Int. J. Remote Sens. , vol.20 , pp. 2653-2662
    • Smith, M.1    Milton, E.2
  • 32
    • 0029659966 scopus 로고    scopus 로고
    • Image-based atmospheric corrections-Revisited and improved Photogramm
    • Chavez, P. Image-based atmospheric corrections-Revisited and improved. Photogramm. Eng. Remote Sensing 1996, 62, 1025-1036.
    • (1996) Eng. Remote Sensing , vol.62 , pp. 1025-1036
    • Chavez, P.1
  • 34
    • 76549254593 scopus 로고
    • Notes on continuous stochastic phenomena
    • Moran, P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17-23.
    • (1950) Biometrika , vol.37 , pp. 17-23
    • Moran, P.1
  • 35
    • 0021032607 scopus 로고
    • Spatial interpolation methods: A review
    • Lam, N. Spatial interpolation methods: A review. Cartogr. Geogr. Inform. 1983, 10, 129-150.
    • (1983) Cartogr. Geogr. Inform. , vol.10 , pp. 129-150
    • Lam, N.1
  • 37
    • 79955887596 scopus 로고    scopus 로고
    • A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors
    • Li, J.; Heap, A. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228-241.
    • (2011) Ecol. Inform. , vol.6 , pp. 228-241
    • Li, J.1    Heap, A.2
  • 38
    • 51649116012 scopus 로고    scopus 로고
    • Kriging metamodeling in simulation A review
    • Kleijnen, J. Kriging metamodeling in simulation: A review. Eur. J. Oper. Res. 2009, 192, 707-716
    • (2009) Eur. J. Oper. Res. , vol.192 , pp. 707-716
    • Kleijnen, J.1
  • 39
    • 33746996079 scopus 로고    scopus 로고
    • Separating grassland and shrub vegetation by multidate pixel-adaptive spectral mixture analysis
    • Kuemmerle, T.; Roder, A.; Hill, J. Separating grassland and shrub vegetation by multidate pixel-adaptive spectral mixture analysis. Int. J. Remote Sens. 2006, 27, 3251-3271.
    • (2006) Int. J. Remote Sens. , vol.27 , pp. 3251-3271
    • Kuemmerle, T.1    Roder, A.2    Hill, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.