메뉴 건너뛰기




Volumn 31, Issue 1, 2014, Pages 95-104

Endmember variability in hyperspectral analysis: Addressing spectral variability during spectral unmixing

Author keywords

[No Author keywords available]

Indexed keywords

ELECTRICAL ENGINEERING; SIGNAL PROCESSING;

EID: 85032750976     PISSN: 10535888     EISSN: None     Source Type: Journal    
DOI: 10.1109/MSP.2013.2279177     Document Type: Article
Times cited : (352)

References (31)
  • 2
    • 0028980239 scopus 로고
    • Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon
    • J. Adams, D. Sabol, V. Kapos, R. Filho, D. Roberts, M. Smith, and A. Gillespie, Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon, Remote Sensing Environ., vol. 52, no. 2, pp. 137-154, May 1995. (Pubitemid 26438386)
    • (1995) Remote Sensing of Environment , vol.52 , Issue.2 , pp. 137-154
    • Adams, J.B.1
  • 3
    • 5044220344 scopus 로고    scopus 로고
    • A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper
    • DOI 10.1016/j.rse.2004.07.013, PII S0034425704002342
    • P. Dennison, K. Halligan, and D. Roberts, A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper, Remote Sensing Environ., vol. 93, pp. 359-367, Nov. 2004. (Pubitemid 39333153)
    • (2004) Remote Sensing of Environment , vol.93 , Issue.3 , pp. 359-367
    • Dennison, P.E.1    Halligan, K.Q.2    Roberts, D.A.3
  • 4
    • 22144432648 scopus 로고    scopus 로고
    • A new tool for variable multiple endmember spectral mixture analysis (VMESMA)
    • DOI 10.1080/01431160512331337817
    • F. Garcia-Haro, S. Sommer, and T. Kemper, A new tool for variable multiple endmember spectral mixture analysis (VMESMA), Int. J. Remote Sensing, vol. 26, no. 10, pp. 2135-2162, May 2005. (Pubitemid 40974624)
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.10 , pp. 2135-2162
    • Garcia-Haro, F.J.1    Sommer, S.2    Kemper, T.3
  • 6
    • 0033225639 scopus 로고    scopus 로고
    • Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions
    • DOI 10.1109/36.803418
    • G. Healey and D. Slater, Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions, IEEE Trans. Geosci. Remote Sensing, vol. 37, no. 6, pp. 2706-2717, Nov. 1999. (Pubitemid 30519603)
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.6 , pp. 2706-2717
    • Healey, G.1
  • 7
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • DOI 10.1109/TGRS.2004.839806
    • J. Nascimento and J. Bioucas-Dias, Does independent component analysis play a role in unmixing hyperspectral data IEEE Trans. Geosci. Remote Sensing, vol. 43, no. 1, pp. 175-187, Jan. 2005. (Pubitemid 40162736)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 8
    • 67650236878 scopus 로고    scopus 로고
    • Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean
    • Set
    • B. Gao, M. Montes, C. Davis, and A. Goetz, Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean, Remote Sensing Environ, vol. 113, Suppl. 1, pp. S17-S24, Sept. 2009.
    • (2009) Remote Sensing Environ , vol.113 , Issue.SUPPL. 1 , pp. 17-24
    • Gao, B.1    Montes, M.2    Davis, C.3    Goetz, A.4
  • 9
    • 79954622955 scopus 로고    scopus 로고
    • Endmember variability in spectral mixture analysis: A review
    • July
    • B. Somers, G. P. Asner, L. Tits, and P. Coppin, Endmember variability in spectral mixture analysis: A review, Remote Sensing Environ., vol. 115, no. 7, pp. 1603-1616, July 2011.
    • (2011) Remote Sensing Environ. , vol.115 , Issue.7 , pp. 1603-1616
    • Somers, B.1    Asner, G.P.2    Tits, L.3    Coppin, P.4
  • 10
    • 0032156917 scopus 로고    scopus 로고
    • Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models
    • DOI 10.1016/S0034-4257(98)00037-6, PII S0034425798000376
    • D. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, and R. O. Green, Mapping chaparral in the Santa Monica mountains using multiple endmember spectral mixture models, Remote Sensing Environ., vol. 65, pp. 267-279, Sept. 1998. (Pubitemid 29360703)
    • (1998) Remote Sensing of Environment , vol.65 , Issue.3 , pp. 267-279
    • Roberts, D.A.1    Gardner, M.2    Church, R.3    Ustin, S.4    Scheer, G.5    Green, R.O.6
  • 11
    • 14744289023 scopus 로고    scopus 로고
    • Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability?
    • DOI 10.1016/j.rse.2005.01.002, PII S0034425705000271
    • C. Song, Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability Remote Sensing Environ., vol. 95, no. 2, pp. 248-263, Mar. 2005. (Pubitemid 40328616)
    • (2005) Remote Sensing of Environment , vol.95 , Issue.2 , pp. 248-263
    • Song, C.1
  • 12
    • 0442314406 scopus 로고    scopus 로고
    • Scale dependence of biophysical structure in deforested areas bordering the Tapajós National Forest, Central Amazon
    • DOI 10.1016/j.rse.2003.03.001
    • G. Asner, M. Bustamante, and A. Townsend, Scale dependence of biophysical structure in deforested areas bordering the Tapajs national forest, Central Amazon, Remote Sensing Environ., vol. 87, pp. 507-520, Mar. 2003. (Pubitemid 38184707)
    • (2003) Remote Sensing of Environment , vol.87 , Issue.4 , pp. 507-520
    • Asner, G.P.1    Bustamante, M.M.C.2    Townsend, A.R.3
  • 13
    • 0033890553 scopus 로고    scopus 로고
    • Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis
    • Mar
    • C. A. Bateson, G. P. Asner, and C. A. Wessman, Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis, IEEE Trans. Geosci. Remote Sensing, vol. 38, no. 2, pp. 1083-1093, Mar. 2000.
    • (2000) IEEE Trans. Geosci. Remote Sensing , vol.38 , Issue.2 , pp. 1083-1093
    • Bateson, C.A.1    Asner, G.P.2    Wessman, C.A.3
  • 14
    • 77958020857 scopus 로고    scopus 로고
    • A novel approach based on Fisher discriminant null space for decomposition of mixed pixels in hyperspectral imagery
    • Oct
    • J. Jin, B. Wang, and L. Zhang, A novel approach based on Fisher discriminant null space for decomposition of mixed pixels in hyperspectral imagery, IEEE Geosci. Remote Sensing Lett., vol. 7, no. 4, pp. 699-703, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sensing Lett. , vol.7 , Issue.4 , pp. 699-703
    • Jin, J.1    Wang, B.2    Zhang, L.3
  • 15
    • 2942522160 scopus 로고    scopus 로고
    • Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE
    • DOI 10.1016/S0034-4257(03)00135-4
    • P. Dennison and D. Roberts, Multiple endmember spectral mixture analysis using endmember average (MESMA), Remote Sensing Environ., vol. 87, nos. 2-3, pp. 123-135, Oct. 2003. (Pubitemid 39661164)
    • (2003) Remote Sensing of Environment , vol.87 , Issue.2-3 , pp. 123-135
    • Dennison, P.E.1    Roberts, D.A.2
  • 17
    • 80455122749 scopus 로고    scopus 로고
    • SVM-based unmixing-to-classification conversion for hyperspectral abundance quantification
    • Nov
    • F. Mianji and Y. Zhang, SVM-based unmixing-to-classification conversion for hyperspectral abundance quantification, IEEE Trans. Geosci. Remote Sensing, vol. 49, no. 11, pp. 4318-4327, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sensing , vol.49 , Issue.11 , pp. 4318-4327
    • Mianji, F.1    Zhang, Y.2
  • 18
    • 78049290930 scopus 로고    scopus 로고
    • A novel technique for subpixel image classification based on support vector machine
    • Nov
    • F. Bovolo, L. Bruzzone, and L. Carlin, A novel technique for subpixel image classification based on support vector machine, IEEE Trans. Image Processing, vol. 19, no. 11, pp. 2983-2999, Nov. 2010.
    • (2010) IEEE Trans. Image Processing , vol.19 , Issue.11 , pp. 2983-2999
    • Bovolo, F.1    Bruzzone, L.2    Carlin, L.3
  • 19
    • 84861741372 scopus 로고    scopus 로고
    • Automated extraction of imagebased endmember bundles for improved spectral unmixing
    • Ar
    • B. Somers, M. Zortea, A. Plaza, and G. Asner, Automated extraction of imagebased endmember bundles for improved spectral unmixing, IEEE J. Select. Topics Appl. Earth Observ., vol. 5, no. 2, pp. 396-408, Apr. 2012.
    • (2012) IEEE J. Select. Topics Appl. Earth Observ. , vol.5 , Issue.2 , pp. 396-408
    • Somers, B.1    Zortea, M.2    Plaza, A.3    Asner, G.4
  • 20
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. Nascimento and J. Bioucas-Dias, Vertex component analysis: A fast algorithm to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sensing, vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 21
    • 80455122805 scopus 로고    scopus 로고
    • Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery
    • Nov
    • A. Castrodad, Z. Xing, J. Greer, E. Bosch, L. Carin, and G. Sapiro, Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery, IEEE Trans. Geosci. Remote Sensing, vol. 49, no. 11, pp. 4263-4281, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sensing , vol.49 , Issue.11 , pp. 4263-4281
    • Castrodad, A.1    Xing, Z.2    Greer, J.3    Bosch, E.4    Carin, L.5    Sapiro, G.6
  • 24
    • 84874661274 scopus 로고    scopus 로고
    • Sampling piecewise convex unmixing and endmember extraction
    • Mar
    • A. Zare, P. Gader, and G. Casella, Sampling piecewise convex unmixing and endmember extraction, IEEE Trans. Geosci. Remote Sensing, vol. 51, no. 3, pp. 1655-1665, Mar. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sensing , vol.51 , Issue.3 , pp. 1655-1665
    • Zare, A.1    Gader, P.2    Casella, G.3
  • 25
    • 33750402597 scopus 로고    scopus 로고
    • Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling
    • DOI 10.1109/TSP.2006.880310
    • S. Moussaoui, D. Brie, A. Mohammad-Djafari, and C. Carteret, Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling, IEEE Trans. Signal Processing, vol. 54, no. 11, pp. 4133-4145, Nov. 2006. (Pubitemid 44637747)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4133-4145
    • Moussaoui, S.1    Brie, D.2    Mohammad-Djafari, A.3    Carteret, C.4
  • 26
    • 70350493345 scopus 로고    scopus 로고
    • Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery
    • Nov
    • N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero, Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery, IEEE Trans. Signal Processing, vol. 57, no. 11, pp. 4355-4368, Nov. 2009.
    • (2009) IEEE Trans. Signal Processing , vol.57 , Issue.11 , pp. 4355-4368
    • Dobigeon, N.1    Moussaoui, S.2    Coulon, M.3    Tourneret, J.-Y.4    Hero, A.O.5
  • 28
    • 77952616442 scopus 로고    scopus 로고
    • Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery
    • June
    • O. Eches, N. Dobigeon, C. Mailhes, and J. Y. Tourneret, Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery, IEEE Trans. Image Processing, vol. 19, no. 6, pp. 1403-1413, June 2010.
    • (2010) IEEE Trans. Image Processing , vol.19 , Issue.6 , pp. 1403-1413
    • Eches, O.1    Dobigeon, N.2    Mailhes, C.3    Tourneret, J.Y.4
  • 31
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery
    • D. Heinz and C.-I. Chang, Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery, IEEE Trans. Geosci. Remote Sensing, vol. 39, pp. 529-545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sensing , vol.39 , pp. 529-545
    • Heinz, D.1    Chang, C.-I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.