메뉴 건너뛰기




Volumn 53, Issue 5, 2015, Pages 2440-2452

Detail-preserving smoothing classifier based on conditional random fields for high spatial resolution remote sensing imagery

Author keywords

Conditional random fields (CRFs); contextual information; detail preserving smoothing; high spatial resolution (HSR); image classification; remote sensing

Indexed keywords

CLASSIFICATION (OF INFORMATION); IMAGE RESOLUTION; IMAGE SEGMENTATION; ITERATIVE METHODS; PIXELS; RANDOM PROCESSES; REMOTE SENSING;

EID: 84920948047     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2014.2360100     Document Type: Article
Times cited : (72)

References (51)
  • 1
    • 84947648698 scopus 로고    scopus 로고
    • Land-cover mapping by Markov modeling of spatial-contextual information in veryhigh-resolution remote sensing images
    • Mar
    • G. Moser, S. B. Serpico, and J. A. Benediktsson, "Land-cover mapping by Markov modeling of spatial-contextual information in veryhigh-resolution remote sensing images," Proc. IEEE, vol. 101, no. 3, pp. 631-651, Mar. 2013.
    • (2013) Proc IEEE , vol.101 , Issue.3 , pp. 631-651
    • Moser, G.1    Serpico, S.B.2    Benediktsson, J.A.3
  • 2
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • May
    • M. Pal and G. M. Foody, "Feature selection for classification of hyperspectral data by SVM," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2297-2307, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 3
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug
    • F.Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 4
    • 77951295198 scopus 로고    scopus 로고
    • Semisupervised neural networks for efficient hyperspectral image classification
    • May
    • F. Ratle, G. Camps-Valls, and J. Weston, "Semisupervised neural networks for efficient hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2271-2282, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2271-2282
    • Ratle, F.1    Camps-Valls, G.2    Weston, J.3
  • 5
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification
    • Jul
    • J. D. Paola and R. A. Schowengerdt, "A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification," IEEE Trans. Geosci. Remote Sens., vol. 33, no. 4, pp. 981-996, Jul. 1995.
    • (1995) IEEE Trans. Geosci. Remote Sens. , vol.33 , Issue.4 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 6
    • 84871666572 scopus 로고    scopus 로고
    • Double shrinking sparse dimension reduction
    • Jan
    • T. Y. Zhou and D. C. Tao, "Double shrinking sparse dimension reduction," IEEE Trans. Image Process., vol. 22, no. 1, pp. 244-257, Jan. 2013.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.1 , pp. 244-257
    • Zhou, T.Y.1    Tao, D.C.2
  • 7
    • 36048992886 scopus 로고    scopus 로고
    • General tensor discriminant analysis and Gabor features for gait recognition
    • Oct
    • D. Tao, X. Li, X. Wu, and S. J. Maybank, "General tensor discriminant analysis and Gabor features for gait recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 10, pp. 1700-1715, Oct. 2007.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.10 , pp. 1700-1715
    • Tao, D.1    Li, X.2    Wu, X.3    Maybank, S.J.4
  • 10
    • 84877887638 scopus 로고    scopus 로고
    • Multiview Hessian regularization for image annotation
    • Jul
    • W. F. Liu and D. C. Tao, "Multiview Hessian regularization for image annotation," IEEE Trans. Image Process., vol. 22, no. 7, pp. 2676-2687, Jul. 2013.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.7 , pp. 2676-2687
    • Liu, W.F.1    Tao, D.C.2
  • 11
    • 84869491579 scopus 로고    scopus 로고
    • An overview and comparison of smooth labeling methods for land-cover classification
    • Nov
    • K. Schindler, "An overview and comparison of smooth labeling methods for land-cover classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4534-4545, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.11 , pp. 4534-4545
    • Schindler, K.1
  • 12
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 13
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • Jan
    • T. Blaschke, "Object based image analysis for remote sensing," ISPRS J. Photogramm. Remote Sens., vol. 65, no. 1, pp. 2-16, Jan. 2010.
    • (2010) ISPRS J. Photogramm. Remote Sens. , vol.65 , Issue.1 , pp. 2-16
    • Blaschke, T.1
  • 14
    • 84891040747 scopus 로고    scopus 로고
    • Multiagent object-based classifier for high spatial resolution imagery
    • Feb
    • Y. Zhong, B. Zhao, and L. Zhang, "Multiagent object-based classifier for high spatial resolution imagery," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 841-857, Feb. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.2 , pp. 841-857
    • Zhong, Y.1    Zhao, B.2    Zhang, L.3
  • 15
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Jul
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, "Segmentation and classification of hyperspectral images using watershed transformation," Pattern Recognit., vol. 43, no. 7, pp. 2367-2379, Jul. 2010.
    • (2010) Pattern Recognit. , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 16
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation
    • J. Strobl, T. Blaschke, and G. Griesebner, Eds. Heidelberg, Germany: Wichmann-Verlag
    • M. Baatz and A. Schäpe, "Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation," in Angewandte Geographische Informationsverarbeitung XII, J. Strobl, T. Blaschke, and G. Griesebner, Eds. Heidelberg, Germany: Wichmann-Verlag, 2000, pp. 12-23.
    • (2000) Angewandte Geographische Informationsverarbeitung , vol.12 , pp. 12-23
    • Baatz, M.1    Schäpe, A.2
  • 17
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • May
    • D. Comaniciu and P.Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603-619, May 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 18
    • 77956962241 scopus 로고    scopus 로고
    • An edge embedded marker-based watershed algorithm for high spatial resolution remote sensing image segmentation
    • Oct
    • D. Li, G. Zhang, Z. Wu, and L. Yi, "An edge embedded marker-based watershed algorithm for high spatial resolution remote sensing image segmentation," IEEE Trans. Image Process., vol. 19, no. 10, pp. 2781-2787, Oct. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.10 , pp. 2781-2787
    • Li, D.1    Zhang, G.2    Wu, Z.3    Yi, L.4
  • 19
    • 1642487678 scopus 로고    scopus 로고
    • Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information
    • Jan
    • U. C. Benz, P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen, "Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information," ISPRS J. Photogramm. Remote Sens., vol. 58, no. 3/4, pp. 239-258, Jan. 2004.
    • (2004) ISPRS J. Photogramm. Remote Sens. , vol.58 , Issue.3-4 , pp. 239-258
    • Benz, U.C.1    Hofmann, P.2    Willhauck, G.3    Lingenfelder, I.4    Heynen, M.5
  • 20
    • 79957819255 scopus 로고    scopus 로고
    • Unsupervised image segmentation evaluation and refinement using a multi-scale approach
    • Jul
    • B. Johnson and Z. Xie, "Unsupervised image segmentation evaluation and refinement using a multi-scale approach," ISPRS J. Photogramm. Remote Sens., vol. 66, no. 4, pp. 473-483, Jul. 2011.
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66 , Issue.4 , pp. 473-483
    • Johnson, B.1    Xie, Z.2
  • 21
    • 0029772671 scopus 로고    scopus 로고
    • A markov random field model for classification of multisource satellite imagery
    • Jan
    • A. H. Solberg, T. Taxt, and A. K. Jain, "A Markov random field model for classification of multisource satellite imagery," IEEE Trans. Geosci. Remote Sens., vol. 34, no. 1, pp. 100-113, Jan. 1996.
    • (1996) IEEE Trans. Geosci. Remote Sens. , vol.34 , Issue.1 , pp. 100-113
    • Solberg, A.H.1    Taxt, T.2    Jain, A.K.3
  • 22
    • 0036875946 scopus 로고    scopus 로고
    • Adaptive Bayesian contextual classification based on Markov random fields
    • Nov
    • Q. Jackson and D. A. Landgrebe, "Adaptive Bayesian contextual classification based on Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2454-2463, Nov. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.11 , pp. 2454-2463
    • Jackson, Q.1    Landgrebe, D.A.2
  • 23
    • 80053515771 scopus 로고    scopus 로고
    • Markov models for image labeling
    • S. Y. Chen, H. Y. Tong, and C. Cattani, "Markov models for image labeling," Math. Probl. Eng., vol. 2012, pp. 814 356-1-814 356-18, 2012.
    • (2012) Math. Probl. Eng. 2012 , vol.814 , pp. 3561-81435618
    • Chen, S.Y.1    Tong, H.Y.2    Cattani, C.3
  • 24
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, the Bayesian restoration of images
    • Nov
    • S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI6, no. 6, pp. 721-741, Nov. 1984.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 25
    • 84885019653 scopus 로고    scopus 로고
    • Combining support vector machines and Markov random fields in an integrated framework for contextual image classification
    • May
    • G. Moser and S. B. Serpico, "Combining support vector machines and Markov random fields in an integrated framework for contextual image classification," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2734-2752, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2734-2752
    • Moser, G.1    Serpico, S.B.2
  • 26
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. C. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in Proc. Int. Conf. ML, 2001, pp. 282-289.
    • (2001) Proc. Int. Conf ML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.C.3
  • 27
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contextual interaction in classification
    • S. Kumar and M. Hebert, "Discriminative random fields: A discriminative framework for contextual interaction in classification," in Proc. IEEE Int. Conf. Comput. Vis., 2003, pp. 1150-1157.
    • (2003) Proc. IEEE Int. Conf. Comput. Vis. , pp. 1150-1157
    • Kumar, S.1    Hebert, M.2
  • 28
    • 33646590894 scopus 로고    scopus 로고
    • Discriminative random fields
    • Jun
    • S. Kumar and M. Hebert, "Discriminative random fields," Int. J. Comput. Vis., vol. 68, no. 2, pp. 179-201, Jun. 2006.
    • (2006) Int. J. Comput. Vis. , vol.68 , Issue.2 , pp. 179-201
    • Kumar, S.1    Hebert, M.2
  • 29
    • 33745824267 scopus 로고    scopus 로고
    • TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition andsegmentation
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi, "TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition andsegmentation,"presented at theEur.Conf.Comput.Vis.,2006,pp.1-15.
    • (2006) Presented at TheEur.Conf.Comput.Vis. , pp. 1-15
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 31
    • 33749993686 scopus 로고    scopus 로고
    • Conditional models for contextual human motion recognition
    • Nov
    • C. Sminchisescu, A. Kanaujia, and D. Metaxas, "Conditional models for contextual human motion recognition," Comput. Vis. Image Understand., vol. 104, no. 2/3, pp. 210-220, Nov. 2006.
    • (2006) Comput. Vis. Image Understand. , vol.104 , Issue.2-3 , pp. 210-220
    • Sminchisescu, C.1    Kanaujia, A.2    Metaxas, D.3
  • 32
    • 84872950801 scopus 로고    scopus 로고
    • A graph-based classification method for hyperspectral images
    • Feb
    • J. Bai, S. Xiang, and C. Pan, "A graph-based classification method for hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 803-817, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 803-817
    • Bai, J.1    Xiang, S.2    Pan, C.3
  • 33
    • 77958017904 scopus 로고    scopus 로고
    • SVM-and MRF-based method for accurate classification of hyperspectral images
    • Oct
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVM-and MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 34
    • 77953710563 scopus 로고    scopus 로고
    • Learning conditional random fields for classification of hyperspectral images
    • Jul
    • P. Zhong and R.Wang, "Learning conditional random fields for classification of hyperspectral images," IEEE Trans. Image Process., vol. 19, no. 7, pp. 1890-1907, Jul. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.7 , pp. 1890-1907
    • Zhong, P.1    Wang, R.2
  • 35
    • 84862801737 scopus 로고    scopus 로고
    • Simplified conditional random fields with class boundary constraint for spectral-spatial based remote sensing image classification
    • Sep
    • G. Zhang and X. Jia, "Simplified conditional random fields with class boundary constraint for spectral-spatial based remote sensing image classification," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 5, pp. 856-860, Sep. 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.5 , pp. 856-860
    • Zhang, G.1    Jia, X.2
  • 36
    • 84899887971 scopus 로고    scopus 로고
    • A support vector conditional random fields classifier with a Mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery
    • Apr
    • Y. Zhong, X. Lin, and L. Zhang, "A support vector conditional random fields classifier with a Mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1314-1330, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1314-1330
    • Zhong, Y.1    Lin, X.2    Zhang, L.3
  • 37
    • 84902120621 scopus 로고    scopus 로고
    • A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery
    • Nov
    • Y. Zhong, J. Zhao, and L. Zhang, "A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 7023-7037, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 7023-7037
    • Zhong, Y.1    Zhao, J.2    Zhang, L.3
  • 38
    • 79151483750 scopus 로고    scopus 로고
    • Modeling and classifying hyperspectral imagery by CRFs with sparse higher order potentials
    • Feb
    • P. Zhong and R. Wang, "Modeling and classifying hyperspectral imagery by CRFs with sparse higher order potentials," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 688-705, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 688-705
    • Zhong, P.1    Wang, R.2
  • 41
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Nov
    • Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts," IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11, pp. 1222-1239, Nov. 2001.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.11 , pp. 1222-1239
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 42
    • 43249091850 scopus 로고    scopus 로고
    • A comparative study of energy minimization methods for Markov random fields with smoothness-based priors
    • Jun
    • R. Szeliski et al., "A comparative study of energy minimization methods for Markov random fields with smoothness-based priors," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 6, pp. 1068-1080, Jun. 2008.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.6 , pp. 1068-1080
    • Szeliski, R.1
  • 43
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Apr
    • C.-C. Chang and C.-J. Lin, "LIBSVM: A library for support vector machines," ACM Trans. Int. Syst. Technol., vol. 2, no. 3, p. 27, Apr. 2011.
    • (2011) ACM Trans. Int. Syst. Technol. , vol.2 , Issue.3 , pp. 27
    • Chang, C.-C.1    Lin, C.-J.2
  • 44
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multiclass classification by pairwise coupling
    • Aug
    • T. F. Wu, C. J. Lin, and R. C. Weng, "Probability estimates for multiclass classification by pairwise coupling," J. Mach. Learn. Res., vol. 5, pp. 975-1005, Aug. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 975-1005
    • Wu, T.F.1    Lin, C.J.2    Weng, R.C.3
  • 45
    • 0034844730 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary ®ion segmentation of objects in N-D images
    • Y. Y. Boykov andM. P. Jolly, "Interactive graph cuts for optimal boundary ®ion segmentation of objects in N-D images," in Proc. IEEE Int. Conf. Comput. Vis., 2001, pp. 105-112.
    • (2001) Proc IEEE Int. Conf. Comput. Vis. , pp. 105-112
    • Boykov, Y.Y.1    Jolly, M.P.2
  • 46
    • 84877632511 scopus 로고    scopus 로고
    • GrabCut: Interactive foreground extraction using iterated graph cuts
    • Aug.
    • C. Rother, V. Kolmogorov, and A. Blake, ""GrabCut": Interactive foreground extraction using iterated graph cuts," ACM Trans. Graph., vol. 23, no. 3, pp. 309-314, Aug. 2004.
    • (2004) ACM Trans. Graph. , vol.23 , Issue.3 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 47
  • 48
    • 60949084344 scopus 로고    scopus 로고
    • Optimizing two-pass connectedcomponent labeling algorithms
    • Feb
    • K. Wu, E. Otoo, and K. Suzuki, "Optimizing two-pass connectedcomponent labeling algorithms," Pattern Anal. Appl., vol. 12, no. 2, pp. 117-135, Feb. 2009.
    • (2009) Pattern Anal. Appl. , vol.12 , Issue.2 , pp. 117-135
    • Wu, K.1    Otoo, E.2    Suzuki, K.3
  • 49
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • Feb
    • V. Kolmogorov and R. Zabin, "What energy functions can be minimized via graph cuts?" IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp. 147-159, Feb. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.2 , pp. 147-159
    • Kolmogorov, V.1    Zabin, R.2
  • 51
    • 0000596361 scopus 로고
    • Note on the sampling error of the difference between correlated proportions or percentages
    • Jun
    • Q. McNemar, "Note on the sampling error of the difference between correlated proportions or percentages," Psychometrika, vol. 12, no. 2, pp. 153-157, Jun. 1947.
    • (1947) Psychometrika , vol.12 , Issue.2 , pp. 153-157
    • McNemar, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.