메뉴 건너뛰기




Volumn 88, Issue , 2014, Pages 101-118

Structured Sparse Method for Hyperspectral Unmixing

Author keywords

Hyperspectral image analysis; Hyperspectral Unmixing (HU); Mixed pixel; Nonnegative Matrix Factorization (NMF); Structured Sparse NMF (SS NMF)

Indexed keywords

SPECTROSCOPY;

EID: 84891131750     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2013.11.014     Document Type: Article
Times cited : (234)

References (54)
  • 3
    • 72049109460 scopus 로고    scopus 로고
    • A variable splitting augmented lagrangian approach to linear spectral unmixing.
    • Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).
    • Bioucas-Dias, J.M., 2009. A variable splitting augmented lagrangian approach to linear spectral unmixing. In: Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). pp. 1-4.
    • (2009) , pp. 1-4
    • Bioucas-Dias, J.M.1
  • 4
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches
    • Bioucas-Dias, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 2012, 5(2):354-379.
    • (2012) IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. , vol.5 , Issue.2 , pp. 354-379
    • Bioucas-Dias, J.M.1
  • 6
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized nonnegative matrix factorization for data representation
    • Cai D., He X., Han J., Huang T.S. Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 2011, 33(8):1548-1560.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) , vol.33 , Issue.8 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.S.4
  • 7
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Chang C.-I., Du Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. (TGRS) 2004, 42(3):608-619.
    • (2004) IEEE Trans. Geosci. Remote Sens. (TGRS) , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 9
    • 80053450397 scopus 로고    scopus 로고
    • Graph-structured multitask regression and an efficient optimization method for general fused lasso
    • abs/1005
    • Chen X., Kim S., Lin Q., Carbonell J.G., Xing E.P. Graph-structured multitask regression and an efficient optimization method for general fused lasso. Comput. Res. Repository (CORR) 2010, abs/1005(3):1-21.
    • (2010) Comput. Res. Repository (CORR) , Issue.3 , pp. 1-21
    • Chen, X.1    Kim, S.2    Lin, Q.3    Carbonell, J.G.4    Xing, E.P.5
  • 12
    • 85015494641 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. 1977, 39(1):1-38.
    • (1977) J. R. Stat. Soc. , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 14
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Donoho D.L. Compressed sensing. IEEE Trans. Inf. Theory 1996, 52(4):1289-1306.
    • (1996) IEEE Trans. Inf. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1
  • 15
    • 84891056207 scopus 로고    scopus 로고
    • Envi-Tutorials, Envi Classic Vegetation Hyperspectral Analysis.
    • Envi-Tutorials, 2013. Envi Classic Vegetation Hyperspectral Analysis. http://www.exelisvis.com/Learn/WhitepapersDetail/TabId/802/PID/2627/TagID/129/TagName/hyperspectralimagery/Default.aspx.
    • (2013)
  • 16
    • 84875790832 scopus 로고    scopus 로고
    • A gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery
    • Geng X., Xiao Z., Ji L., Zhao Y., Wang F. A gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2013, 79(0):211-218.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.79 , Issue.0 , pp. 211-218
    • Geng, X.1    Xiao, Z.2    Ji, L.3    Zhao, Y.4    Wang, F.5
  • 18
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Heinz D.C., Chang C.-I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. (TGRS) 2001, 39(3):529-545.
    • (2001) IEEE Trans. Geosci. Remote Sens. (TGRS) , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 19
    • 84857841726 scopus 로고    scopus 로고
    • Non-negative sparse coding. In: IEEE Workshop Neural Networks for Signal Processing.
    • Hoyer, P.O., 2002. Non-negative sparse coding. In: IEEE Workshop Neural Networks for Signal Processing. pp. 557-565.
    • (2002) , pp. 557-565
    • Hoyer, P.O.1
  • 20
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer P.O., Dayan P. Non-negative matrix factorization with sparseness constraints. J. Mach. Learning Res. (JML) 2004, 5(12):1457-1469.
    • (2004) J. Mach. Learning Res. (JML) , vol.5 , Issue.12 , pp. 1457-1469
    • Hoyer, P.O.1    Dayan, P.2
  • 21
    • 84891061746 scopus 로고    scopus 로고
    • Robust hyperspectral data unmixing with spatial and spectral regularized NMF,
    • Huck, A., Guillaume, M., 2010. Robust hyperspectral data unmixing with spatial and spectral regularized NMF, 1-4.
    • (2010) , pp. 1-4
    • Huck, A.1    Guillaume, M.2
  • 23
    • 36348990884 scopus 로고    scopus 로고
    • Spectral and spatial complexity-based hyperspectral unmixing
    • Jia S., Qian Y. Spectral and spatial complexity-based hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. (TGRS) 2007, 45(12):3867-3879.
    • (2007) IEEE Trans. Geosci. Remote Sens. (TGRS) , vol.45 , Issue.12 , pp. 3867-3879
    • Jia, S.1    Qian, Y.2
  • 24
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jia S., Qian Y. Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. (TGRS) 2009, 47(1):161-173.
    • (2009) IEEE Trans. Geosci. Remote Sens. (TGRS) , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 26
    • 8144231500 scopus 로고    scopus 로고
    • A survey of spectral unmixing algorithms
    • Keshava N. A survey of spectral unmixing algorithms. Lincoln Lab. J. 2003, 14(1):55-78.
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 55-78
    • Keshava, N.1
  • 28
    • 67349093319 scopus 로고    scopus 로고
    • Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
    • Kim H., Park H. Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM J. Matrix Anal. Appl. 2008, 30(2):713-730.
    • (2008) SIAM J. Matrix Anal. Appl. , vol.30 , Issue.2 , pp. 713-730
    • Kim, H.1    Park, H.2
  • 29
    • 0008815681 scopus 로고    scopus 로고
    • Additive versus exponentiated gradient updates for linear prediction
    • Kivinen J., Warmuth M.K. Additive versus exponentiated gradient updates for linear prediction. J. Inf. Comput. Sci. 1997, 132(1):1-64.
    • (1997) J. Inf. Comput. Sci. , vol.132 , Issue.1 , pp. 1-64
    • Kivinen, J.1    Warmuth, M.K.2
  • 30
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects with nonnegative matrix factorization
    • Lee D.D., Seung H.S. Learning the parts of objects with nonnegative matrix factorization. Nature 1999, 401(6755):788-791.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 32
    • 0035683536 scopus 로고    scopus 로고
    • Learning spatially localized, parts-based representation. In: IEEE International Conference on Computer Vision (CVPR).
    • Li, S.Z., Hou, X., Zhang, H., Cheng, Q., 2001. Learning spatially localized, parts-based representation. In: IEEE International Conference on Computer Vision (CVPR). pp. 207-212.
    • (2001) , pp. 207-212
    • Li, S.Z.1    Hou, X.2    Zhang, H.3    Cheng, Q.4
  • 33
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • MIT Press
    • Lin C.-J. Projected gradient methods for nonnegative matrix factorization. Neural Comput. 2007, 19(10):2756-2779. MIT Press.
    • (2007) Neural Comput. , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 34
    • 85027952549 scopus 로고    scopus 로고
    • An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
    • Liu X., Xia W., Wang B., Zhang L. An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. (TGRS) 2011, 49(2):757-772.
    • (2011) IEEE Trans. Geosci. Remote Sens. (TGRS) , vol.49 , Issue.2 , pp. 757-772
    • Liu, X.1    Xia, W.2    Wang, B.3    Zhang, L.4
  • 38
    • 84861723546 scopus 로고    scopus 로고
    • Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data
    • Martin G., Plaza A. Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 2012, 5(2):380-395.
    • (2012) IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. , vol.5 , Issue.2 , pp. 380-395
    • Martin, G.1    Plaza, A.2
  • 39
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Miao L., Qi H., Qi H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. (TGRS) 2007, 45(3):765-777.
    • (2007) IEEE Trans. Geosci. Remote Sens. (TGRS) , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2    Qi, H.3
  • 41
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: a fast algorithm to unmix hyperspectral data
    • Nascimento J.M.P., Dias J.M.B. Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. (TGRS) 2005, 43(4):898-910.
    • (2005) IEEE Trans. Geosci. Remote Sens. (TGRS) , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 42
    • 49449120034 scopus 로고
    • Hierarchical structure in perceptual representation
    • Palmer S.E. Hierarchical structure in perceptual representation. Elsevier J. Cognitive Psych. 1977, 9(4):441-474.
    • (1977) Elsevier J. Cognitive Psych. , vol.9 , Issue.4 , pp. 441-474
    • Palmer, S.E.1
  • 44
    • 80455174031 scopus 로고    scopus 로고
    • Hyperspectral unmixing via sparsity-constrained nonnegative matrix factorization
    • Qian Y., Jia S., Zhou J., Robles-Kelly A. Hyperspectral unmixing via sparsity-constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. (TGRS) 2011, 49(11):4282-4297.
    • (2011) IEEE Trans. Geosci. Remote Sens. (TGRS) , vol.49 , Issue.11 , pp. 4282-4297
    • Qian, Y.1    Jia, S.2    Zhou, J.3    Robles-Kelly, A.4
  • 45
    • 79959533573 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with earth mover's distance metric for image analysis
    • Sandler R., et al. Nonnegative matrix factorization with earth mover's distance metric for image analysis. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 2011, 33(8):1590-1602.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) , vol.33 , Issue.8 , pp. 1590-1602
    • Sandler, R.1
  • 46
    • 85022948951 scopus 로고    scopus 로고
    • Aggregate and mixed-order markov models for statistical language processing.
    • Conference on Empirical Methods in Natural Language Process
    • Saul, L., Pereira, F., 1997. Aggregate and mixed-order markov models for statistical language processing. In: Conference on Empirical Methods in Natural Language Process. pp. 81-89.
    • (1997) , pp. 81-89
    • Saul, L.1    Pereira, F.2
  • 48
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 1996, 58(1):267-288.
    • (1996) J. R. Stat. Soc. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 49
    • 84868254173 scopus 로고    scopus 로고
    • Hyperspectral shape-based unmixing to improve intra- and interclass variability for forest and agro-ecosystem monitoring
    • Tits L., Keersmaecker W.D., Somers B., Asner G.P., Farifteh J., Coppin P. Hyperspectral shape-based unmixing to improve intra- and interclass variability for forest and agro-ecosystem monitoring. ISPRS J. Photogramm. Remote Sens. 2012, 74(0):163-174.
    • (2012) ISPRS J. Photogramm. Remote Sens. , vol.74 , Issue.0 , pp. 163-174
    • Tits, L.1    Keersmaecker, W.D.2    Somers, B.3    Asner, G.P.4    Farifteh, J.5    Coppin, P.6
  • 50
    • 33748312145 scopus 로고    scopus 로고
    • Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery
    • Wang J., Chang C.-I. Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. (TGRS) 2006, 44(9):2601-2616.
    • (2006) IEEE Trans. Geosci. Remote Sens. (TGRS) , vol.44 , Issue.9 , pp. 2601-2616
    • Wang, J.1    Chang, C.-I.2
  • 51
    • 84877927996 scopus 로고    scopus 로고
    • An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing
    • Wang N., Du B., Zhang L. An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 2013, 6(2):554-569.
    • (2013) IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. , vol.6 , Issue.2 , pp. 554-569
    • Wang, N.1    Du, B.2    Zhang, L.3
  • 52
    • 0033310314 scopus 로고    scopus 로고
    • N-findr: an algorithm for fast autonomous spectral end-member determination in hyperspectral data.
    • SPIE Conference Imaging Spectrometry.
    • Winter, M.E., 1999. N-findr: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. In: SPIE Conference Imaging Spectrometry. pp. 266-275.
    • (1999) , pp. 266-275
    • Winter, M.E.1
  • 54
    • 1542347778 scopus 로고    scopus 로고
    • Document clustering based on non-negative matrix factorization.
    • International Conference on Research and Development in Information Retrieval (SIGIR).
    • Xu, W., Liu, X., Gong, Y., 2003. Document clustering based on non-negative matrix factorization. In: International Conference on Research and Development in Information Retrieval (SIGIR). pp. 267-273.
    • (2003) , pp. 267-273
    • Xu, W.1    Liu, X.2    Gong, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.