메뉴 건너뛰기




Volumn 6, Issue 6, 2013, Pages 2462-2471

Spatial-spectral kernel sparse representation for hyperspectral image classification

Author keywords

Classification; hyperspectral image; kernel sparse representation; spatial spectral kernel

Indexed keywords

FILTERING KERNEL; FILTERING METHOD; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL IMAGE CLASSIFICATION; NONLINEAR EXTENSION; SPARSE REPRESENTATION; SPATIAL SIMILARITY; SPATIAL-SPECTRAL KERNEL;

EID: 84890123096     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2013.2252150     Document Type: Article
Times cited : (185)

References (43)
  • 2
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • DOI 10.1109/79.974724
    • D. Manolakis and G. Shaw, "Detection algorithms for hyperspectral imaging applications," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 29-43, 2002. (Pubitemid 34237206)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.G.1    Shaw, G.2
  • 5
    • 0041732265 scopus 로고    scopus 로고
    • Preprocessing eo-1 hyperion hyperspectral data to support the application of agricultural indexes
    • B. Datt, T. McVicar, T. Van Niel, D. Jupp, and J. Pearlman, "Preprocessing eo-1 hyperion hyperspectral data to support the application of agricultural indexes," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 6, pp. 1246-1259, 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.6 , pp. 1246-1259
    • Datt, B.1    McVicar, T.2    Van Niel, T.3    Jupp, D.4    Pearlman, J.5
  • 6
    • 0035918524 scopus 로고    scopus 로고
    • Hymap hyperspectral remote sensing to detect hydrocarbons
    • B. Hörig, F. Kühn, F. Oschütz, andF. Lehmann, "Hymap hyperspectral remote sensing to detect hydrocarbons," Int. J. Remote Sens., vol. 22, no. 8, pp. 1413-1422, 2001.
    • (2001) Int. J. Remote Sens. , vol.22 , Issue.8 , pp. 1413-1422
    • Hörig, B.1    Kühn, F.2    Oschütz, F.3    Lehmann, F.4
  • 7
    • 0036643380 scopus 로고    scopus 로고
    • A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images
    • DOI 10.1016/S0167-8655(02)00052-1, PII S0167865502000521, Selected papers for the 1st International Workshop on Pattern Recognition for Remote Sensing
    • F. Melgani and S. Serpico, "A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images," Pattern Recognit. Lett, vol. 23, no. 9, pp. 1053-1061, 2002. (Pubitemid 34476149)
    • (2002) Pattern Recognition Letters , vol.23 , Issue.9 , pp. 1053-1061
    • Melgani, F.1    Serpico, S.B.2
  • 8
    • 0036476979 scopus 로고    scopus 로고
    • Fuzzy rule-based classification of remotely sensed imagery
    • ABardossy andL. Samamego, "Fuzzy rule-based classification of remotely sensed imagery," IEEE Trans Geosci. Remote Sens., vol. 40, no. 2, pp. 362-374, 2002.
    • (2002) IEEE Trans Geosci. Remote Sens. , vol.40 , Issue.2 , pp. 362-374
    • Bardossy, A.1    Samamego, L.2
  • 9
    • 0036762743 scopus 로고    scopus 로고
    • A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps
    • DOI 10.1109/TGRS.2002.803794
    • L. Bruzzone and R. Cossu, "A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 1984-1996, 2002. (Pubitemid 35458396)
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 1984-1996
    • Bruzzone, L.1    Cossu, R.2
  • 10
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 11
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens. vol. 43, no. 6, pp 1351-1362, 2005. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 12
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • DOI 10.1109/TIP.2006.881969
    • M. Elad and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries," IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736-3745, 2006. (Pubitemid 44811686)
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 13
    • 78049312324 scopus 로고    scopus 로고
    • Image super-resolution via sparse representation
    • J. Yang, J. Wright, T. Huang, and Y. Ma, "Image super-resolution via sparse representation," IEEE Trans. Image Process., vol. 19, no. 11, pp. 2861-2873, 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.11 , pp. 2861-2873
    • Yang, J.1    Wright, J.2    Huang, T.3    Ma, Y.4
  • 16
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Y. Chen, N. Nasrabadi, and T. Tran, "Hyperspectral image classification using dictionary-based sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.2    Tran, T.3
  • 18
    • 78149343905 scopus 로고    scopus 로고
    • Kernel sparse representation for image classification and face recognition
    • Sep. Springer
    • S. Gao, I. Tsang, and L. Chia, "Kernel sparse representation for image classification and face recognition," m Proc. ECCV, Crete, Greece, Sep. 2010, pp. 1-14, Springer.
    • (2010) M Proc. ECCV, Crete, Greece , pp. 1-14
    • Gao, S.1    Tsang, I.2    Chia, L.3
  • 19
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • DOI 10.1023/B:STCO.0000035301.49549.88
    • A. Smola and B. Schölkopf, "A tutorial on support vector regression," Stat. Comput, vol. 14, no 3, pp. 199-222, 2004. (Pubitemid 39063488)
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 20
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances m techniques for hyperspectral image processing
    • A. Plaza et al., "Recent advances m techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, pp. S110-S122, 2009
    • (2009) Remote Sens. Environ. , vol.113
    • Plaza, A.1
  • 21
    • 84863021199 scopus 로고    scopus 로고
    • Hyperspectral image classification via kernel sparse representation
    • Sep.
    • Y. Chen, N. Nasrabadi, and T. Tran, "Hyperspectral image classification via kernel sparse representation," m Proc. ICIP, Sep. 2011, pp. 1233-1236.
    • (2011) M Proc. ICIP , pp. 1233-1236
    • Chen, Y.1    Nasrabadi, N.2    Tran, T.3
  • 23
    • 65049090023 scopus 로고    scopus 로고
    • A composite semisupervised svm for classification of hyperspectral images
    • M. Marconcim, G. Camps-Valls, and L. Bruzzone, "A composite semisupervised svm for classification of hyperspectral images," IEEE Geosci. Remote Sens., vol. 6, no. 2, pp. 234-238, 2009.
    • (2009) IEEE Geosci. Remote Sens. , vol.6 , Issue.2 , pp. 234-238
    • Marconcim, M.1    Camps-Valls, G.2    Bruzzone, L.3
  • 24
    • 65049084094 scopus 로고    scopus 로고
    • Semisupervised remote sensing image classification with cluster kernels
    • D. Tuia and G. Camps-Valls, "Semisupervised remote sensing image classification with cluster kernels," IEEE Geosci. Remote Sens, vol. 6, no. 2, pp. 224-228, 2009.
    • (2009) IEEE Geosci. Remote Sens , vol.6 , Issue.2 , pp. 224-228
    • Tuia, D.1    Camps-Valls, G.2
  • 25
    • 79953094686 scopus 로고    scopus 로고
    • Urban image classification with semisu-pervisedmultiscaleclusterkernels
    • D. Tuia and G. Camps-Valls, "Urban image classification with semisu-pervisedmultiscaleclusterkernels, "IEEEJ. Sel. Topics Quantum Electron., vol. 4, no. 1, pp. 65-74, 2011.
    • (2011) IEEEJ. Sel. Topics Quantum Electron. , vol.4 , Issue.1 , pp. 65-74
    • Tuia, D.1    Camps-Valls, G.2
  • 27
    • 77957993814 scopus 로고    scopus 로고
    • Spatio-spectral remote sensing image classification with graph kernels
    • G. Camps-Valls, N. Shervashidze, and K. Borgwardt, "Spatio-spectral remote sensing image classification with graph kernels," IEEE Geosci. Remote Sens., vol. 7, no. 4, pp. 741-745, 2010.
    • (2010) IEEE Geosci. Remote Sens. , vol.7 , Issue.4 , pp. 741-745
    • Camps-Valls, G.1    Shervashidze, N.2    Borgwardt, K.3
  • 29
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • A. Aizerman, E. Braverman, and L. Rozoner, "Theoretical foundations of the potential function method in pattern recognition learning," Autom. Remote Contr., vol. 25, pp. 821-837, 1964.
    • (1964) Autom. Remote Contr. , vol.25 , pp. 821-837
    • Aizerman, A.1    Braverman, E.2    Rozoner, L.3
  • 31
    • 75449115228 scopus 로고    scopus 로고
    • Multisource composite kernels for urban-image classification
    • D. Tuia, F. Ratle, A. Pozdnoukhov, and G. Camps-Valls, "Multisource composite kernels for urban-image classification," IEEE Geosci. Remote Sens., vol.7, no. 1, pp. 88-92, 2010.
    • (2010) IEEE Geosci. Remote Sens. , vol.7 , Issue.1 , pp. 88-92
    • Tuia, D.1    Ratle, F.2    Pozdnoukhov, A.3    Camps-Valls, G.4
  • 32
    • 24644478715 scopus 로고    scopus 로고
    • A non-local algorithm for image denoising
    • San Diego, CA, USA, Jun. IEEE
    • A. Buades, B. Coll, and J. Morel, "A non-local algorithm for image denoising," in Proc. CVPR, San Diego, CA, USA, Jun. 2005, vol. 2, pp. 60-65, IEEE.
    • (2005) Proc. CVPR , vol.2 , pp. 60-65
    • Buades, A.1    Coll, B.2    Morel, J.3
  • 34
    • 0032319547 scopus 로고    scopus 로고
    • Face recognition based on nearest linear combinations
    • Santa Barbara, CA, USA, Jun.
    • S. Z. Li, "Face recognition based on nearest linear combinations," in Proc CVPR, Santa Barbara, CA, USA, Jun. 1998, pp. 839-844.
    • (1998) Proc CVPR , pp. 839-844
    • Li, S.Z.1
  • 36
    • 78649271874 scopus 로고    scopus 로고
    • Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing
    • Reykjavik, Iceland, Jun. IEEE
    • J. Bioucas-Dias and M. Figueiredo, "Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing," inProc. WHISPERS, Reykjavik, Iceland, Jun. 2010, pp. 1-4, IEEE.
    • (2010) Proc. WHISPERS , pp. 1-4
    • Bioucas-Dias, J.1    Figueiredo, M.2
  • 38
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting
    • P. Combettes et al, "Signal recovery by proximal forward-backward splitting," Multiscale Modeling Simul, vol. 4, no. 4, pp. 1168-1200, 2006.
    • (2006) Multiscale Modeling Simul , vol.4 , Issue.4 , pp. 1168-1200
    • Combettes, P.1
  • 39
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C-C. Chang and C.-J. Lin, "LIBSVM: A library for support vector machines," ACM Tran. Intell. Syst. Technol. vol 2, pp. 27:1-27:27, 2011 [Online]. Available: http://www.csie.ntu.edu.tw/cjlin/libsvm
    • (2011) ACM Tran. Intell. Syst. Technol. , vol.2 , pp. 271-2727
    • Chang, C.-C.1    Lin, C.-J.2
  • 40
    • 80052740627 scopus 로고    scopus 로고
    • A spatial-spectral ker-nelbased approach for the classification of remote-sensing images
    • M. Fauvel, J. Chanussot, and J. Benediktsson, "A spatial-spectral ker-nelbased approach for the classification of remote-sensing images," PatternRecognit, vol. 45, no. 1, pp. 381-392, 2012.
    • (2012) PatternRecognit , vol.45 , Issue.1 , pp. 381-392
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.3
  • 42
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • G. Camps-Valls, T. B. Marsheva, and D. Zhou, "Semi-supervised graph-based hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3044-3054, 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Marsheva, T.B.2    Zhou, D.3
  • 43
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • DOI 10.1109/TGRS.2004.842481
    • J. Ham, Y. Chen, M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, 2005. (Pubitemid 40320271)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.