메뉴 건너뛰기




Volumn 39, Issue 3, 2001, Pages 529-545

Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery

Author keywords

Fully constrained least squares (FCLS); Linear spectral mixture analysis (LSMA); Nonnegatively constrained least squares (NCLS); Sum to one constrained least squares (SCLS); Unsupervised FCLS (UFCLS)

Indexed keywords

FULLY CONSTRAINED LEAST SQUARES (FCLS); LEAST SQUARES ERROR (LSE); LINEAR SPECTRAL MIXTURE ANALYSIS (LSMA);

EID: 0035273728     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/36.911111     Document Type: Article
Times cited : (1739)

References (39)
  • 2
    • 0001395470 scopus 로고
    • Spectral mixture modeling: A new analysis of rock and soil types at the Viking lander 1 suite
    • July 10
    • (1986) J. Geophys. Res. , vol.91 , Issue.B8 , pp. 8098-8112
    • Adams, J.B.1    Smith, M.O.2
  • 35
    • 0034318153 scopus 로고    scopus 로고
    • A generalized orthogonal subspace projection approach to unsupervised multispectral image classification
    • Nov.
    • (2000) IEEE Trans. Geosci. Remote Sensing , vol.38 , pp. 2515-2528
  • 36
    • 0005150458 scopus 로고    scopus 로고
    • Constraint least squares linear spectral mixture methods for material abundance estimation, discrimination, detection, classification, identification, recognition and quantification, data compression and noise estimation in hyperspectral and multispectral imagery
    • Feb. 14
    • (2000) Disclosure of Invention
    • Heinz, D.1    Chang, C.-I.2
  • 38
    • 0034248782 scopus 로고    scopus 로고
    • An information theoretic-based approach to spectral variability, similarity and discriminability for hyperspectral image analysis
    • Aug.
    • (2000) IEEE Trans. Inform. Theory , pp. 1927-1932


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.