메뉴 건너뛰기




Volumn 47, Issue 1, 2009, Pages 161-173

Constrained nonnegative matrix factorization for hyperspectral unmixing

Author keywords

Discontinuity adaptive model; Hyperspectral unmixing; Nonnegative matrix factorization (NMF); Sparse coding

Indexed keywords

ATMOSPHERICS; FACTORIZATION; FORESTRY; HIDDEN MARKOV MODELS; IMAGE SEGMENTATION; LIGHT MEASUREMENT; PROGRAMMING THEORY;

EID: 58149131252     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2008.2002882     Document Type: Article
Times cited : (356)

References (45)
  • 1
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • Jan
    • D. Landgrebe, "Hyperspectral image data analysis", IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002.
    • (2002) IEEE Signal Process. Mag , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 2
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • Jan
    • D. Manolakis and G. Shaw, "Detection algorithms for hyperspectral imaging applications", IEEE Signal Process. Mag., vol. 19. no. 1, pp. 29-43. Jan. 2002.
    • (2002) IEEE Signal Process. Mag , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.1    Shaw, G.2
  • 4
    • 12844252952 scopus 로고    scopus 로고
    • Spectral imaging for remote sensing
    • G. A. Shaw and H.-H. K. Burke, "Spectral imaging for remote sensing", Line. Lab. J., vol. 14, no. 1, pp. 3-28, 2003.
    • (2003) Line. Lab. J , vol.14 , Issue.1 , pp. 3-28
    • Shaw, G.A.1    Burke, H.-H.K.2
  • 6
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVIRIS data using convex geometry concepts
    • Workshop
    • J. Boardman, "Automating spectral unmixing of AVIRIS data using convex geometry concepts", in Proc. Summ. 4th Annu. JPL Airborne Geosci. Workshop, 1993, vol. 1, pp. 11-14.
    • (1993) Proc. Summ. 4th Annu. JPL Airborne Geosci , vol.1 , pp. 11-14
    • Boardman, J.1
  • 7
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • May
    • M. D. Craig, "Minimum-volume transforms for remotely sensed data", IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542-552, May 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.3 , pp. 542-552
    • Craig, M.D.1
  • 9
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data", in Proc. SPIE Conf. Imaging Spectrom. V, 1999, pp. 266-275.
    • (1999) Proc. SPIE Conf. Imaging Spectrom , vol.5 , pp. 266-275
    • Winter, M.E.1
  • 10
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr
    • J. M. P. Nascimento and J. M. B. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data", IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 13
    • 0036477174 scopus 로고    scopus 로고
    • Linear spectral random mixture analysis for hyperspectral imagery
    • Feb
    • S.-S. Chiang, C.-I. Chang, J. A. Smith, and I. W. Ginsberg, "Linear spectral random mixture analysis for hyperspectral imagery", IEEE Trans. Geosci. Remote Sens., vol. 40, no. 2, pp. 375-392, Feb. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.2 , pp. 375-392
    • Chiang, S.-S.1    Chang, C.-I.2    Smith, J.A.3    Ginsberg, I.W.4
  • 14
    • 33748312145 scopus 로고    scopus 로고
    • Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery
    • Sep
    • J. Wang and C.-I. Chang, "Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery", IEEE Trans. Geosci. Remote Sens., vol. 44, no. 9, pp. 2601-2616, Sep. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.9 , pp. 2601-2616
    • Wang, J.1    Chang, C.-I.2
  • 15
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • Jan
    • J. M. P. Nascimento and J. M. B. Dias "Does independent component analysis play a role in unmixing hyperspectral data?" IEEE Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 175-187, Jan. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 16
    • 36348990884 scopus 로고    scopus 로고
    • Spectral and spatial complexity-based hyperspectral unmixing
    • Dec
    • S. Jia and Y. Qian, "Spectral and spatial complexity-based hyperspectral unmixing", IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3867-3879, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.12 , pp. 3867-3879
    • Jia, S.1    Qian, Y.2
  • 17
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Oct
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegative matrix factorization", Nature, vol. 401, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 18
    • 1242263422 scopus 로고    scopus 로고
    • Recovery of constituent spectra using non-negative matrix factorization
    • Nov
    • P. Sajda, S. Du, and L. C. Parra, "Recovery of constituent spectra using non-negative matrix factorization", Proc. SPIE, vol. 5207. pp. 321-331. Nov. 2003.
    • (2003) Proc. SPIE , vol.5207 , pp. 321-331
    • Sajda, P.1    Du, S.2    Parra, L.C.3
  • 19
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • Jul
    • V. P. Pauca, J. Piper, and R. J. Plemmons, "Nonnegative matrix factorization for spectral data analysis", Linear Algebra Appl., vol. 416, no. 1, pp. 29-47, Jul. 2006.
    • (2006) Linear Algebra Appl , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 20
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Cambridge, MA: MIT Press
    • D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization." in Adv. Neural Inform. Process. Syst., vol. 13. Cambridge, MA: MIT Press, 2000, pp. 556-562.
    • (2000) Adv. Neural Inform. Process. Syst , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 22
    • 0034314901 scopus 로고    scopus 로고
    • Autonomous atmospheric compensation (AAC) of high resolution hyperspectral thermal infrared remote-sensing imagery
    • Nov
    • D. Gu, A. R. Gillespie, A. B. Kahle, and F. D. Palluconi, "Autonomous atmospheric compensation (AAC) of high resolution hyperspectral thermal infrared remote-sensing imagery", IEEE Trans. Geosci. Remote Sens., vol. 38, no. 6, pp. 2557-2570, Nov. 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens , vol.38 , Issue.6 , pp. 2557-2570
    • Gu, D.1    Gillespie, A.R.2    Kahle, A.B.3    Palluconi, F.D.4
  • 23
    • 16444366244 scopus 로고    scopus 로고
    • Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data
    • Apr
    • L. O. Jimenez, J. L. Rivera-Medina, E. Rodriguez-Diaz, E. Arzuaga-Cruz, and M. Ramirez-Velez, "Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data", IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 844-851, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.4 , pp. 844-851
    • Jimenez, L.O.1    Rivera-Medina, J.L.2    Rodriguez-Diaz, E.3    Arzuaga-Cruz, E.4    Ramirez-Velez, M.5
  • 24
    • 53349129867 scopus 로고    scopus 로고
    • Integration of spatial-spectral information for resolution enhancement in hyperspectral images
    • May
    • Y. F. Gu, Y. Zhang, and J. P. Zhang, "Integration of spatial-spectral information for resolution enhancement in hyperspectral images", IEEE Trans. Geosci. Remote Sens., vol. 46. no. 5, pp. 1347-1358, May 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.5 , pp. 1347-1358
    • Gu, Y.F.1    Zhang, Y.2    Zhang, J.P.3
  • 25
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • Nov
    • S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images", IEEE Trans. Pattern Anal. Mach. Intell., vol. 6. no. 6, pp. 721-741, Nov. 1984.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 26
    • 0000929221 scopus 로고
    • What is the goal of sensory coding?
    • Jul
    • D. J. Field, "What is the goal of sensory coding?" Neural Comput., vol. 6, no. 4, pp. 559-601, Jul. 1994.
    • (1994) Neural Comput , vol.6 , Issue.4 , pp. 559-601
    • Field, D.J.1
  • 28
    • 0031077064 scopus 로고    scopus 로고
    • Deterministic edge-preserving regularization in computed imaging
    • Feb
    • P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, "Deterministic edge-preserving regularization in computed imaging", IEEE Trans. Image Process., vol. 6, no. 2, pp. 298-311, Feb. 1997.
    • (1997) IEEE Trans. Image Process , vol.6 , Issue.2 , pp. 298-311
    • Charbonnier, P.1    Blanc-Feraud, L.2    Aubert, G.3    Barlaud, M.4
  • 30
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Dec
    • P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints", J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Dec. 2004.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 32
    • 1342332031 scopus 로고    scopus 로고
    • A tutorial on MM algorithms
    • Feb
    • D. R. Hunter and K. Lange, "A tutorial on MM algorithms", Amer. Stat., vol. 58, no. 1, pp. 30-37, Feb. 2004.
    • (2004) Amer. Stat , vol.58 , Issue.1 , pp. 30-37
    • Hunter, D.R.1    Lange, K.2
  • 33
    • 3042684732 scopus 로고    scopus 로고
    • Seeding non-negative matrix factorizations with the spherical K-Means clustering
    • M.S. thesis, Univ. Colorado, Boulder, CO
    • S. Wild, "Seeding non-negative matrix factorizations with the spherical K-Means clustering", M.S. thesis, Univ. Colorado, Boulder, CO, 2002.
    • (2002)
    • Wild, S.1
  • 34
    • 34547198396 scopus 로고    scopus 로고
    • Algorithms and applications for approximate nonnegative matrix factorization
    • Sep
    • M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, "Algorithms and applications for approximate nonnegative matrix factorization." Comput. Stat. Data Anal., vol. 52, no. 1, pp. 155-173, Sep. 2007.
    • (2007) Comput. Stat. Data Anal , vol.52 , Issue.1 , pp. 155-173
    • Berry, M.W.1    Browne, M.2    Langville, A.N.3    Pauca, V.P.4    Plemmons, R.J.5
  • 35
    • 36348959745 scopus 로고    scopus 로고
    • A time-efficient method for anomaly detection in hyperspectral images
    • Dec
    • O. Duran and M. Petrou, "A time-efficient method for anomaly detection in hyperspectral images", IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3894-3904, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.12 , pp. 3894-3904
    • Duran, O.1    Petrou, M.2
  • 36
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Mar
    • D. C. Heinz and C.-I. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery", IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 37
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery", IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 40
    • 31344481519 scopus 로고    scopus 로고
    • A novel approach for spectral unmixing, classification, and concentration estimation of chemical and biological agents
    • Feb
    • C. Kwan, B. Ayhan, G. Chen, J. Wang, B. Ji, and C.-I. Chang, "A novel approach for spectral unmixing, classification, and concentration estimation of chemical and biological agents", IEEE Trans. Geosci. Remote Sens., vol. 44. no. 2, pp. 409-119, Feb. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.2 , pp. 409-119
    • Kwan, C.1    Ayhan, B.2    Chen, G.3    Wang, J.4    Ji, B.5    Chang, C.-I.6
  • 41
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • Mar
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data", IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650-663, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 42
    • 58149122346 scopus 로고    scopus 로고
    • R. N. Clark, G. A. Swayze, A. J. Gallagher, T. V. V. King, and W. M. Calvin, The U.S. geological survey digital spectral library: Version 1: 0.2 to 3.0 microns, U.S. Geological Survey, Denver, CO, Open File Rep. 93-592, 1993.
    • R. N. Clark, G. A. Swayze, A. J. Gallagher, T. V. V. King, and W. M. Calvin, "The U.S. geological survey digital spectral library: Version 1: 0.2 to 3.0 microns", U.S. Geological Survey, Denver, CO, Open File Rep. 93-592, 1993.
  • 43
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Mar
    • L. D. Miao and H. R. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization", IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.D.1    Qi, H.R.2
  • 44
  • 45
    • 36348942491 scopus 로고    scopus 로고
    • Clusteringbased hyperspectral band selection using information measures
    • Dec
    • A. Martínez-Usó, F. Pla, J. M. Sotoca, and P. García-Sevilla, "Clusteringbased hyperspectral band selection using information measures", IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 4158-4171, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.12 , pp. 4158-4171
    • Martínez-Usó, A.1    Pla, F.2    Sotoca, J.M.3    García-Sevilla, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.