메뉴 건너뛰기




Volumn 19, Issue 7, 2010, Pages 1890-1907

Learning conditional random fields for classification of hyperspectral images

Author keywords

Conditional random field (CRF); Contextual information; Hyperpectral image classification; Multinomial logistic regression (MLR); Piecewise training

Indexed keywords

CLASSIFICATION TASKS; CONDITIONAL RANDOM FIELD; CONTEXTUAL INFORMATION; COUNTING PROBLEMS; EXPLICIT MODELING; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL DATA; HYPERSPECTRAL IMAGE CLASSIFICATION; INDEPENDENT CLASSIFIERS; LOCAL METHODS; MULTINOMIAL LOGISTIC REGRESSION; OBSERVED DATA; PIECE-WISE; PROBABILISTIC FRAMEWORK; REAL-WORLD; TRAINING FRAMEWORK; TRAINING METHODS;

EID: 77953710563     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2010.2045034     Document Type: Article
Times cited : (136)

References (58)
  • 2
    • 33947179842 scopus 로고    scopus 로고
    • Fuzzy Markov random fields versus chains for multispectral image segmentation
    • Nov.
    • F. Salzenstein and C. Collet, "Fuzzy Markov random fields versus chains for multispectral image segmentation," IEEE Trans. Pattern Anal. Mach. Intell, vol.28, no.11, pp. 1753-1767, Nov. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell , vol.28 , Issue.11 , pp. 1753-1767
    • Salzenstein, F.1    Collet, C.2
  • 3
    • 0141885057 scopus 로고    scopus 로고
    • A tree-structured Markov random field model for Bayesian image segmentation
    • Oct.
    • C. D'Elia, G. Poggi, and G. Scarpa, "A tree-structured Markov random field model for Bayesian image segmentation," IEEE Trans. Image Process., vol.12, no.10, pp. 1259-1273, Oct. 2003.
    • (2003) IEEE Trans. Image Process. , vol.12 , Issue.10 , pp. 1259-1273
    • D'Elia, C.1    Poggi, G.2    Scarpa, G.3
  • 4
    • 33846636871 scopus 로고    scopus 로고
    • Extraction of spectral channels from hyperspectral images for classification purposes
    • Feb.
    • S. B. Serpico and G. Moser, "Extraction of spectral channels from hyperspectral images for classification purposes," IEEE Trans. Geosci. Remote Sens., vol.45, no.2, pp. 484-495, Feb. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.2 , pp. 484-495
    • Serpico, S.B.1    Moser, G.2
  • 5
  • 6
    • 0036991339 scopus 로고    scopus 로고
    • A model-based mixture-supervised classification approach in hyperspectral data analysis
    • Dec.
    • D. Landgrebe and M. Dundar, "A model-based mixture-supervised classification approach in hyperspectral data analysis," IEEE Trans. Geosci. Remote Sens., vol.40, no.12, pp. 2692-2699, Dec. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.12 , pp. 2692-2699
    • Landgrebe, D.1    Dundar, M.2
  • 7
    • 20444500972 scopus 로고    scopus 로고
    • A Bayesian MRF framework for labeling terrain using hyperspectral imaging
    • Jun.
    • R. Neher and A. Srivastava, "A Bayesian MRF framework for labeling terrain using hyperspectral imaging," IEEE Trans. Geosci. Remote Sens., vol.43, no.6, pp. 1363-1374, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1363-1374
    • Neher, R.1    Srivastava, A.2
  • 8
    • 23844524154 scopus 로고    scopus 로고
    • A unified framework for MAP estimation in remote sensing image segmentation
    • Jul.
    • A. A. Farag, R. M. Mohamed, and A. El-Baz, "A unified framework for MAP estimation in remote sensing image segmentation," IEEE Trans. Geosci. Remote Sens., vol.43, no.7, pp. 1617-1634, Jul. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.7 , pp. 1617-1634
    • Farag, A.A.1    Mohamed, R.M.2    El-Baz, A.3
  • 9
    • 0036875946 scopus 로고    scopus 로고
    • Adaptive Bayesian contextual classification based on Markov random fields
    • Nov.
    • Q. Jackson and D. A. Landgrebe, "Adaptive Bayesian contextual classification based on Markov random fields," IEEE Trans. Geosci. Remote Sens., vol.40, no.11, pp. 2454-2463, Nov. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.11 , pp. 2454-2463
    • Jackson, Q.1    Landgrebe, D.A.2
  • 11
    • 0025454918 scopus 로고
    • Classification of the SPOT image using spectral and spatial features of primitive regions that have nearly uniform color
    • Jul.
    • T. Kusaka, H. Egawa, and Y. Kawata, "Classification of the SPOT image using spectral and spatial features of primitive regions that have nearly uniform color," IEEE Trans. Geosci. Remote Sens., vol.28, no.4, pp. 749-752, Jul. 1990.
    • (1990) IEEE Trans. Geosci. Remote Sens. , vol.28 , Issue.4 , pp. 749-752
    • Kusaka, T.1    Egawa, H.2    Kawata, Y.3
  • 12
    • 0032654451 scopus 로고    scopus 로고
    • Updating land-cover maps by using texture information from very high-resolution space-borne imagery
    • May
    • P. C. Smits and A. Annoni, "Updating land-cover maps by using texture information from very high-resolution space-borne imagery," IEEE Trans. Geosci. Remote Sens., vol.37, no.3, pp. 1244-1254, May 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.3 , pp. 1244-1254
    • Smits, P.C.1    Annoni, A.2
  • 13
    • 3843116557 scopus 로고    scopus 로고
    • Texture feature analysis using a Gauss-Markov model in hyperspectral image classification
    • Jul.
    • G. Rellier, X. Descombes, F. Falzon, and J. Zerubia, "Texture feature analysis using a Gauss-Markov model in hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol.42, no.7, pp. 1543-1551, Jul. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.7 , pp. 1543-1551
    • Rellier, G.1    Descombes, X.2    Falzon, F.3    Zerubia, J.4
  • 14
    • 0142009648 scopus 로고    scopus 로고
    • Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
    • Sep.
    • J. A. Benediktsson, M. Pesaresi, and K. Arnason, "Classification and feature extraction for remote sensing images from urban areas based on morphological transformations," IEEE Trans. Geosci. Remote Sens., vol.41, no.9, pp. 1940-1949, Sep. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.9 , pp. 1940-1949
    • Benediktsson, J.A.1    Pesaresi, M.2    Arnason, K.3
  • 15
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Mar.
    • J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles," IEEE Trans. Geosci. Remote Sens., vol.43, no.3, pp. 480-491, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 16
    • 10944240176 scopus 로고    scopus 로고
    • Classifying land development in high-resolution satellite imagery using hybrid structural-multispectral features
    • Dec.
    • C. Ünsalan and K. L. Boyer, "Classifying land development in high-resolution satellite imagery using hybrid structural-multispectral features," IEEE Trans. Geosci. Remote Sensing, vol.42, no.12, pp. 2840-2850, Dec. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sensing , vol.42 , Issue.12 , pp. 2840-2850
    • Ünsalan, C.1    Boyer, K.L.2
  • 18
    • 39549088344 scopus 로고    scopus 로고
    • Bayesian approach with hidden Markov modeling and mean field approximation for hyperspectral data analysis
    • Feb.
    • N. Bali and A. Mohammad-Djafari, "Bayesian approach with hidden Markov modeling and mean field approximation for hyperspectral data analysis," IEEE Trans. Image Process., vol.17, no.2, pp. 217-225, Feb. 2008.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.2 , pp. 217-225
    • Bali, N.1    Mohammad-Djafari, A.2
  • 19
    • 0016882368 scopus 로고
    • Classification of multispectral image data by extraction and classification of homogeneous objects
    • Jan.
    • R. L. Kettig and D. A. Landgrebe, "Classification of multispectral image data by extraction and classification of homogeneous objects," IEEE Trans. Geosci. Electronics, vol.GE-14, no.1, pp. 19-26, Jan. 1976.
    • (1976) IEEE Trans. Geosci. Electronics , vol.GE-14 , Issue.1 , pp. 19-26
    • Kettig, R.L.1    Landgrebe, D.A.2
  • 21
    • 0037247155 scopus 로고    scopus 로고
    • A class of discrete multiresolution random fields and its application to image segmentation
    • Jan.
    • R. Wilson and C.-T. Li, "A class of discrete multiresolution random fields and its application to image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol.25, no.1, pp. 42-56, Jan. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.1 , pp. 42-56
    • Wilson, R.1    Li, C.-T.2
  • 22
    • 0028392841 scopus 로고
    • A multiscale random field model for Bayesian image segmentation
    • Mar.
    • C. A. Bouman and M. Shapiro, "A multiscale random field model for Bayesian image segmentation," IEEE Trans. Image Process., vol.3, no.2, pp. 162-177, Mar. 1994.
    • (1994) IEEE Trans. Image Process. , vol.3 , Issue.2 , pp. 162-177
    • Bouman, C.A.1    Shapiro, M.2
  • 23
    • 0042440720 scopus 로고    scopus 로고
    • Man-made structure detection in natural images using a causal multiscale random field
    • S. Kumar and M. Hebert, "Man-made structure detection in natural images using a causal multiscale random field," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2003, vol.1, pp. 119-126.
    • (2003) Proc. IEEE Conf. Computer Vision and Pattern Recognition , vol.1 , pp. 119-126
    • Kumar, S.1    Hebert, M.2
  • 24
    • 0742322229 scopus 로고    scopus 로고
    • Hierarchical Markovian segmentation of multispectral images for the reconstruction of water depth maps
    • J.-N. Provost, C. Collet, P. Rostaing, P. Perez, and P. Bouthemy, "Hierarchical Markovian segmentation of multispectral images for the reconstruction of water depth maps," Comput. Vis. Image Understand., vol.93, no.2, pp. 155-174, 2004.
    • (2004) Comput. Vis. Image Understand. , vol.93 , Issue.2 , pp. 155-174
    • Provost, J.-N.1    Collet, C.2    Rostaing, P.3    Perez, P.4    Bouthemy, P.5
  • 25
    • 27744467521 scopus 로고    scopus 로고
    • Unsupervised signal restoration using hidden Markov chains with copulas
    • DOI 10.1016/j.sigpro.2005.01.018, PII S0165168405001209
    • N. Brunel and W. Pieczynski, "Unsupervised signal restoration using hidden Markov chains with copulas," Signal Process., vol.85, no.12, pp. 2304-2315, 2005. (Pubitemid 41606024)
    • (2005) Signal Processing , vol.85 , Issue.12 , pp. 2304-2315
    • Brunel, N.1    Pieczynski, W.2
  • 27
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice data
    • J. Besag, "Statistical analysis of non-lattice data," The Statistician, vol.24, no.3, pp. 179-195, 1975.
    • (1975) The Statistician , vol.24 , Issue.3 , pp. 179-195
    • Besag, J.1
  • 28
    • 34547987363 scopus 로고    scopus 로고
    • Piecewise pseudolikelihood for efficient training of conditional random fields
    • C. Sutton and A. McCallum, "Piecewise pseudolikelihood for efficient training of conditional random fields," in Proc. Int. Conf. Machine Learning, 2007, pp. 863-870.
    • (2007) Proc. Int. Conf. Machine Learning , pp. 863-870
    • Sutton, C.1    McCallum, A.2
  • 29
    • 80053230819 scopus 로고    scopus 로고
    • Piecewise training of undirected models
    • C. Sutton and A. McCallum, "Piecewise training of undirected models," in Proc. Conf. UAI, 2005, pp. 568-575.
    • (2005) Proc. Conf. UAI , pp. 568-575
    • Sutton, C.1    McCallum, A.2
  • 32
    • 33644850861 scopus 로고    scopus 로고
    • Adynamic conditional random field model for foreground and shadow segmentation
    • Feb.
    • Y.Wang, K. F. Loe, and J. K.Wu, "Adynamic conditional random field model for foreground and shadow segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol.28, no.2, pp. 279-289, Feb. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.2 , pp. 279-289
    • Wang, Y.1    Loe, K.F.2    Wu, J.K.3
  • 33
    • 33745848658 scopus 로고    scopus 로고
    • A hierarchical field framework for unified context-based classification
    • S. Kumar and M. Hebert, "A hierarchical field framework for unified context-based classification," in Proc. IEEE Int. Conf. Computer Vision, 2005, pp. 1284-1291.
    • (2005) Proc. IEEE Int. Conf. Computer Vision , pp. 1284-1291
    • Kumar, S.1    Hebert, M.2
  • 34
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contextual interaction in classification
    • S. Kumar and M. Hebert, "Discriminative random fields: A discriminative framework for contextual interaction in classification," in Proc. IEEE Int. Conf. Computer Vision, 2003, vol.2, pp. 1150-1157.
    • (2003) Proc. IEEE Int. Conf. Computer Vision , vol.2 , pp. 1150-1157
    • Kumar, S.1    Hebert, M.2
  • 35
    • 34247473104 scopus 로고    scopus 로고
    • Using combination of statistical models and multilevel structural information for detecting urban areas from a single gray-level image
    • May
    • P. Zhong and R. Wang, "Using combination of statistical models and multilevel structural information for detecting urban areas from a single gray-level image," IEEE Trans. Geosci. Remote Sens., vol.45, no.5, pp. 1469-1482, May 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.5 , pp. 1469-1482
    • Zhong, P.1    Wang, R.2
  • 36
    • 33745824894 scopus 로고    scopus 로고
    • Conditional random fields for object recognition
    • A. Quattoni, M. Collins, and T. Darrel, "Conditional random fields for object recognition," in Proc. Conf. NIPS, 2004, vol.2, pp. 1097-1104.
    • (2004) Proc. Conf. NIPS , vol.2 , pp. 1097-1104
    • Quattoni, A.1    Collins, M.2    Darrel, T.3
  • 38
    • 36348971282 scopus 로고    scopus 로고
    • A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images
    • Dec.
    • P. Zhong and R. Wang, "A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images," IEEE Trans. Geosci. Remote Sens., vol.45, no.12, pp. 3978-3988, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.12 , pp. 3978-3988
    • Zhong, P.1    Wang, R.2
  • 39
    • 33749993686 scopus 로고    scopus 로고
    • Conditional models for contextual human motion recognition
    • DOI 10.1016/j.cviu.2006.07.014, PII S1077314206001093
    • C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas, "Conditional models for contextual human motion recognition," Comput. Vis. Image Understand., vol.104, pp. 210-220, 2006. (Pubitemid 44573870)
    • (2006) Computer Vision and Image Understanding , vol.104 , Issue.SPEC. ISS. , pp. 210-220
    • Sminchisescu, C.1    Kanaujia, A.2    Metaxas, D.3
  • 41
    • 69949122268 scopus 로고    scopus 로고
    • Learning sparse CRFs for feature selection and classification of hyperspectral imagery
    • Dec.
    • P. Zhong and R.Wang, "Learning sparse CRFs for feature selection and classification of hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol.46, no.12, pp. 4186-4197, Dec. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.12 , pp. 4186-4197
    • Zhong, P.1    Wang, R.2
  • 42
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun.
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol.43, no.6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 43
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol.42, no.8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 44
    • 35648938713 scopus 로고    scopus 로고
    • Hyperspectral image classification by bootstrap AdaBoost with random decision stumps
    • Nov.
    • S. Kawaguchi and R. Nishii, "Hyperspectral image classification by bootstrap AdaBoost with random decision stumps," IEEE Trans. Geosci. Remote Sens., vol.45, no.11, pp. 3845-3851, Nov. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.11 , pp. 3845-3851
    • Kawaguchi, S.1    Nishii, R.2
  • 45
    • 35348821947 scopus 로고    scopus 로고
    • Hyperspectral image classification using relevance vector machines
    • Oct.
    • B. Demir and S. Ertürk, "Hyperspectral image classification using relevance vector machines," IEEE Geosci. Remote Sens. Lett., vol.4, no.4, pp. 586-590, Oct. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.4 , pp. 586-590
    • Demir, B.1    Ertürk, S.2
  • 46
    • 36349029276 scopus 로고    scopus 로고
    • Border vector detection and adaptation for classification of multispectral and hyperspectral remote sensing images
    • Dec.
    • N. G. Kasapoglu and O. K. Ersoy, "Border vector detection and adaptation for classification of multispectral and hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol.45, no.12, pp. 3880-3893, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.12 , pp. 3880-3893
    • Kasapoglu, N.G.1    Ersoy, O.K.2
  • 47
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in Proc. Int. Conf. ML, 2001, pp. 282-289.
    • (2001) Proc. Int. Conf. ML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 48
    • 64149108290 scopus 로고    scopus 로고
    • Dynamic learning of sparse multinomial logistic regression for feature selection and classification of hyperspectral data
    • Apr.
    • P. Zhong, P. Zhang, and R.Wang, "Dynamic learning of sparse multinomial logistic regression for feature selection and classification of hyperspectral data," IEEE Geosci. Remote Sens. Lett., vol.5, no.2, pp. 280-284, Apr. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.2 , pp. 280-284
    • Zhong, P.1    Zhang, P.2    Wang, R.3
  • 49
    • 33750584880 scopus 로고    scopus 로고
    • Logistic regression for feature selection and soft classification of remote sensing data
    • Oct.
    • Q. Cheng, P. K. Varshney, and M. K. Arora, "Logistic regression for feature selection and soft classification of remote sensing data," IEEE Geosci. Remote Sens. Lett., vol.3, no.4, pp. 491-494, Oct. 2006.
    • (2006) IEEE Geosci. Remote Sens. Lett. , vol.3 , Issue.4 , pp. 491-494
    • Cheng, Q.1    Varshney, P.K.2    Arora, M.K.3
  • 50
    • 0000364411 scopus 로고
    • Selection of variables in discriminant analysis by F-statistic and error rate
    • Nov.
    • J. D. F. Habbema and J. Hermans, "Selection of variables in discriminant analysis by F-statistic and error rate," Technometrics, vol.19, no.4, pp. 487-493, Nov. 1977.
    • (1977) Technometrics , vol.19 , Issue.4 , pp. 487-493
    • Habbema, J.D.F.1    Hermans, J.2
  • 52
    • 33745824267 scopus 로고    scopus 로고
    • TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi, "TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation," in Proc. Conf. ECCV, 2006, vol.1, pp. 1-15.
    • (2006) Proc. Conf. ECCV , vol.1 , pp. 1-15
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 53
    • 50649117578 scopus 로고    scopus 로고
    • Mixture-of-parts pictorial structures for objects with variable part sets
    • Rio de Janeiro, Brazil
    • R. Hess, A. Fern, and E. Mortensen, "Mixture-of-parts pictorial structures for objects with variable part sets," in Proc. IEEE Int. Conf. Computer Vision, Rio de Janeiro, Brazil, 2007, pp. 1-8.
    • (2007) Proc. IEEE Int. Conf. Computer Vision , pp. 1-8
    • Hess, R.1    Fern, A.2    Mortensen, E.3
  • 54
    • 84898964205 scopus 로고    scopus 로고
    • A revolution: Belief proapagation in graphs with cycles
    • B. Frey and D. J. C. Mackay, "A revolution: Belief proapagation in graphs with cycles," in Proc. Conf. NIPS, 1997, vol.10, pp. 479-485.
    • (1997) Proc. Conf. NIPS , vol.10 , pp. 479-485
    • Frey, B.1    MacKay, D.J.C.2
  • 55
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • Feb.
    • V. Kolmogorov and R. Zabin, "What energy functions can be minimized via graph cuts?," IEEE Trans. Pattern Anal. Mach. Intell., vol.26, no.2, pp. 147-159, Feb. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.2 , pp. 147-159
    • Kolmogorov, V.1    Zabin, R.2
  • 56
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • G. M. Foody, "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy," Photogramm. Eng. Remote Sens., vol.70, no.5, pp. 627-633, 2004.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1
  • 57
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimalSVM classification system for hyperspectral remote sensing images
    • Nov.
    • Y. Bazi and F. Melgani, "Toward an optimalSVM classification system for hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol.44, no.11, pp. 3374-3385, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 58
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognition
    • Jan.
    • G. F. Hughs, "On the mean accuracy of statistical pattern recognition," IEEE Trans. Inf. Theory, vol.IT-14, no.1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughs, G.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.