메뉴 건너뛰기




Volumn 48, Issue 9, 2010, Pages 3434-3445

Spatial purity based endmember extraction for spectral mixture analysis

Author keywords

Endmember extraction (EE); Endmember identification; Hyperspectral remote sensing; Spatial purity (SP) index; Spectral mixture analysis (SMA); Spectral spatial

Indexed keywords

ENDMEMBER EXTRACTION; ENDMEMBERS; HYPERSPECTRAL REMOTE SENSING; SPATIAL PURITY (SP) INDEX; SPECTRAL MIXTURE ANALYSIS; SPECTRAL-SPATIAL;

EID: 77956057087     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2010.2046671     Document Type: Article
Times cited : (91)

References (55)
  • 2
    • 0242459816 scopus 로고    scopus 로고
    • H-COMP: A tool for quantitative and comparative analysis of endmember identification algorithms
    • J. Plaza, A. Plaza, P. Martínez, and R. Perez, "H-COMP: A tool for quantitative and comparative analysis of endmember identification algorithms," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2003, vol.1, pp. 291-293.
    • (2003) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.1 , pp. 291-293
    • Plaza, J.1    Plaza, A.2    Martínez, P.3    Perez, R.4
  • 3
    • 1542318143 scopus 로고    scopus 로고
    • Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems
    • Dec.
    • R. Clark, G. Swayze, K. Livo, R. Kokaly, S. Sutley, J. Dalton, R. Mc-Dougal, and C. Gent, "Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems," J. Geophys. Res., vol. 108, no. E12, p. 5131, Dec. 2003.
    • (2003) J. Geophys. Res. , vol.108 , Issue.E12 , pp. 5131
    • Clark, R.1    Swayze, G.2    Livo, K.3    Kokaly, R.4    Sutley, S.5    Dalton, J.6    Mc-Dougal, R.7    Gent, C.8
  • 4
    • 33845599430 scopus 로고    scopus 로고
    • Iterative spectral unmixing for optimizing per-pixel endmember sets
    • Dec.
    • D. Rogge, B. Rivard, J. Zhang, and J. Feng, "Iterative spectral unmixing for optimizing per-pixel endmember sets," IEEE Trans. Geosci. Remote Sens., vol.44, no.12, pp. 3725-3736, Dec. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.12 , pp. 3725-3736
    • Rogge, D.1    Rivard, B.2    Zhang, J.3    Feng, J.4
  • 6
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. Winter, "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE Image Spectrometry V, 1999, vol.3753, pp. 266-277.
    • (1999) Proc. SPIE Image Spectrometry v , vol.3753 , pp. 266-277
    • Winter, M.1
  • 7
    • 0032083396 scopus 로고    scopus 로고
    • ISDAS: A system for processing/ analyzing hyperspectral data
    • Jun.
    • K. Staenz, T. Szeredi, and J. Schwarz, "ISDAS: A system for processing/ analyzing hyperspectral data," Can. J. Remote Sens., vol.24, no.2, pp. 99-113, Jun. 1998.
    • (1998) Can. J. Remote Sens. , vol.24 , Issue.2 , pp. 99-113
    • Staenz, K.1    Szeredi, T.2    Schwarz, J.3
  • 8
    • 67649842169 scopus 로고    scopus 로고
    • Improved spectral unmixing of hyperspectral images using spatially homogeneous endmembers
    • M. Zortea and A. Plaza, "Improved spectral unmixing of hyperspectral images using spatially homogeneous endmembers," in Proc. IEEE Int. Symp. Signal Process. Inf. Technol., 2008, pp. 258-263.
    • (2008) Proc. IEEE Int. Symp. Signal Process. Inf. Technol. , pp. 258-263
    • Zortea, M.1    Plaza, A.2
  • 11
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • Aug.
    • M. Zortea and A. Plaza, "Spatial preprocessing for endmember extraction," IEEE Trans. Geosci. Remote Sens., vol.47, no.8, pp. 2679-2693, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2
  • 12
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • Sep.
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "Spatial/spectral endmember extraction by multidimensional morphological operations," IEEE Trans. Geosci. Remote Sens., vol.40, no.9, pp. 2025-2041, Sep. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 13
    • 34548036670 scopus 로고    scopus 로고
    • Integration of spatial-spectral information for the improved extraction of endmembers
    • Oct.
    • D. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris, and J. Feng, "Integration of spatial-spectral information for the improved extraction of endmembers," Remote Sens. Environ., vol.110, no.3, pp. 287-303, Oct. 2007.
    • (2007) Remote Sens. Environ. , vol.110 , Issue.3 , pp. 287-303
    • Rogge, D.1    Rivard, B.2    Zhang, J.3    Sanchez, A.4    Harris, J.5    Feng, J.6
  • 14
    • 0028742731 scopus 로고
    • Geometric mixture analysis of imaging spectrometry data
    • Aug.
    • J. Boardman, "Geometric mixture analysis of imaging spectrometry data," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Aug. 1994, vol.4, pp. 2369-2371.
    • (1994) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.4 , pp. 2369-2371
    • Boardman, J.1
  • 17
    • 0029753233 scopus 로고    scopus 로고
    • A method for manual endmember selection and spectral unmixing
    • Mar.
    • A. Bateson and B. Curtiss, "A method for manual endmember selection and spectral unmixing," Remote Sens. Environ., vol.55, no.3, pp. 229-243, Mar. 1996.
    • (1996) Remote Sens. Environ. , vol.55 , Issue.3 , pp. 229-243
    • Bateson, A.1    Curtiss, B.2
  • 18
    • 84887415911 scopus 로고    scopus 로고
    • A new growing method for simplex-based endmember extraction algorithm
    • Oct.
    • C. Chang, C. Wu, W. Liu, and Y. Ouyang, "A new growing method for simplex-based endmember extraction algorithm," IEEE Trans. Geosci. Remote Sens., vol.44, no.10, pp. 2804-2819, Oct. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.1    Wu, C.2    Liu, W.3    Ouyang, Y.4
  • 19
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar.
    • C. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol.42, no.3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.1    Du, Q.2
  • 20
    • 0033099904 scopus 로고    scopus 로고
    • Multispectral and hyperspectral image analysis with convex cones
    • Mar.
    • A. Ifarraguerri and C. Chang, "Multispectral and hyperspectral image analysis with convex cones," IEEE Trans. Geosci. Remote Sens., vol.37, no.2, pp. 756-770, Mar. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.2 , pp. 756-770
    • Ifarraguerri, A.1    Chang, C.2
  • 21
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr.
    • J. Nascimento and J. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol.43, no.4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.1    Dias, J.2
  • 22
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • May
    • M. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol.32, no.3, pp. 542-552, May 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.3 , pp. 542-552
    • Craig, M.1
  • 23
    • 0033890553 scopus 로고    scopus 로고
    • Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis
    • Mar.
    • C. Bateson, G. Asner, and C. Wessman, "Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis," IEEE Trans. Geosci. Remote Sens., vol.38, no.2, pp. 1083-1094, Mar. 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.2 , pp. 1083-1094
    • Bateson, C.1    Asner, G.2    Wessman, C.3
  • 24
    • 0019584940 scopus 로고
    • An algorithm for linear least squares problems with equality and nonnegativity constraints
    • Dec.
    • K. Haskell and R. Hanson, "An algorithm for linear least squares problems with equality and nonnegativity constraints," Math. Program., vol.21, no.1, pp. 98-118, Dec. 1981.
    • (1981) Math. Program. , vol.21 , Issue.1 , pp. 98-118
    • Haskell, K.1    Hanson, R.2
  • 25
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • Jul.
    • J. C. Harsanyi and C.-I Chang, "Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach," IEEE Trans. Geosci. Remote Sens., vol.32, no.4, pp. 779-785, Jul. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 26
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Mar.
    • D. Heinz and C. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol.39, no.3, pp. 529-545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.1    Chang, C.2
  • 27
    • 34047244201 scopus 로고    scopus 로고
    • A maximum entropy approach to unsupervised mixed-pixel decomposition
    • Apr.
    • L. Miao, H. Qi, and H. Szu, "A maximum entropy approach to unsupervised mixed-pixel decomposition," IEEE Trans. Image Process., vol.16, no.4, pp. 1008-1021, Apr. 2007.
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.4 , pp. 1008-1021
    • Miao, L.1    Qi, H.2    Szu, H.3
  • 29
    • 1642290713 scopus 로고    scopus 로고
    • Automatic spectral target recognition in hyperspectral imagery
    • Oct.
    • H. Ren and C. Chang, "Automatic spectral target recognition in hyperspectral imagery," IEEE Trans. Aerosp. Electron. Syst., vol.39, no.4, pp. 1232-1249, Oct. 2003.
    • (2003) IEEE Trans. Aerosp. Electron. Syst. , vol.39 , Issue.4 , pp. 1232-1249
    • Ren, H.1    Chang, C.2
  • 33
    • 61349196839 scopus 로고    scopus 로고
    • Support vector machine-based endmember extraction
    • Mar.
    • A. Filippi and R. Archibald, "Support vector machine-based endmember extraction," IEEE Trans. Geosci. Remote Sens., vol.47, no.3, pp. 771-791, Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 771-791
    • Filippi, A.1    Archibald, R.2
  • 35
    • 33748312145 scopus 로고    scopus 로고
    • Applications of independent component analysis (ICA) in endmember extraction and abundance quantification for hyperspectral imagery
    • Sep.
    • J. Wang and C. Chang, "Applications of independent component analysis (ICA) in endmember extraction and abundance quantification for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol.44, no.9, pp. 2601-2616, Sep. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.9 , pp. 2601-2616
    • Wang, J.1    Chang, C.2
  • 36
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • Jul.
    • V. Pauca, J. Piper, and R. Plemmons, "Nonnegative matrix factorization for spectral data analysis," Linear Algebra Appl., vol.416, no.1, pp. 29-47, Jul. 2006.
    • (2006) Linear Algebra Appl. , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.1    Piper, J.2    Plemmons, R.3
  • 37
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Mar.
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol.45, no.3, pp. 765-777, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 38
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • Jan.
    • J. Nascimento and J. Dias, "Does independent component analysis play a role in unmixing hyperspectral data?" IEEE Trans. Geosci. Remote Sens., vol.43, no.1, pp. 175-187, Jan. 2005
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.1    Dias, J.2
  • 41
    • 0026613559 scopus 로고
    • Singular value decomposition in multispectral radiometry
    • Jun.
    • S. Danaher and E. O'Mongain, "Singular value decomposition in multispectral radiometry," Int. J. Remote Sens., vol.13, no.9, pp. 1771-1777, Jun. 1992.
    • (1992) Int. J. Remote Sens. , vol.13 , Issue.9 , pp. 1771-1777
    • Danaher, S.1    O'Mongain, E.2
  • 42
    • 0024818882 scopus 로고
    • Inversion of imaging spectrometry data using singular value decomposition
    • Jul.
    • J. Boardman, "Inversion of imaging spectrometry data using singular value decomposition," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 1989, vol.4, pp. 2069-2072.
    • (1989) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.4 , pp. 2069-2072
    • Boardman, J.1
  • 44
    • 0001457509 scopus 로고
    • Some methods of classification and analysis of multivariate observations
    • J. B. Macqueen, "Some methods of classification and analysis of multivariate observations," in Proc. 5th Berkeley Symp. Math. Stat. Probab., 1967, pp. 281-297.
    • (1967) Proc. 5th Berkeley Symp. Math. Stat. Probab. , pp. 281-297
    • MacQueen, J.B.1
  • 46
    • 0032636659 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral remote sensing classification
    • J. Gualtieri and R. Cromp, "Support vector machines for hyperspectral remote sensing classification," in Proc. SPIE Int. Soc. Opt. Eng., 1999, vol.3584, pp. 221-232.
    • (1999) Proc. SPIE Int. Soc. Opt. Eng. , vol.3584 , pp. 221-232
    • Gualtieri, J.1    Cromp, R.2
  • 48
    • 18844367208 scopus 로고    scopus 로고
    • Band selection based on feature weighting for classification of hyperspectral data
    • Apr.
    • R. Huang and M. He, "Band selection based on feature weighting for classification of hyperspectral data," IEEE Geosci. Remote Sens. Lett., vol.2, no.2, pp. 156-159, Apr. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett. , vol.2 , Issue.2 , pp. 156-159
    • Huang, R.1    He, M.2
  • 49
    • 33846223397 scopus 로고    scopus 로고
    • Exploration of methods for estimation of number of endmembers in hyperspectral imagery
    • Oct.
    • C. Wu, W. Liu, and C. Chang, "Exploration of methods for estimation of number of endmembers in hyperspectral imagery," in Proc. SPIE Chem. Biol. Sens. Ind. Environ. Monitoring II, Oct. 2006, vol.6378, p. 63781C.
    • (2006) Proc. SPIE Chem. Biol. Sens. Ind. Environ. Monitoring II , vol.6378
    • Wu, C.1    Liu, W.2    Chang, C.3
  • 51
    • 13144293109 scopus 로고    scopus 로고
    • Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery
    • Feb.
    • H. Kwon and N. Nasrabadi, "Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol.43, no.2, pp. 388-397, Feb. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.2 , pp. 388-397
    • Kwon, H.1    Nasrabadi, N.2
  • 52
  • 53
    • 77956058894 scopus 로고    scopus 로고
    • Fully constrained oblique projection approach to mixed pixel linear unmixing
    • M. He and S. Mei, "Fully constrained oblique projection approach to mixed pixel linear unmixing," in Proc. ISPRS, 2008, pp. 661-666.
    • (2008) Proc. ISPRS , pp. 661-666
    • He, M.1    Mei, S.2
  • 54
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • Mar.
    • A. Plaza, P. Martinez, R. Pérez, and J. Plaza, "A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol.42, no.3, pp. 650-663, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Pérez, R.3    Plaza, J.4
  • 55
    • 49349108623 scopus 로고
    • A threshold selection method from gray-level histograms
    • N. Otsu, "A threshold selection method from gray-level histograms," Automatica, vol.11, pp. 285-296, 1975.
    • (1975) Automatica , vol.11 , pp. 285-296
    • Otsu, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.