메뉴 건너뛰기




Volumn 49, Issue 11 PART 1, 2011, Pages 4239-4247

Enhancing hyperspectral image unmixing with spatial correlations

Author keywords

Bayesian inference; hyperspectral images; Markov random fields (MRFs); Monte Carlo methods; spectral unmixing

Indexed keywords

BAYESIAN INFERENCE; HYPER-SPECTRAL IMAGES; MARKOV RANDOM FIELDS (MRFS); MONTE CARLO; SPECTRAL UNMIXING;

EID: 80455155174     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2011.2140119     Document Type: Article
Times cited : (138)

References (34)
  • 1
  • 4
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. C. Heinz and C.-I. Chang, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001 (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 5
    • 72349088357 scopus 로고    scopus 로고
    • Linear unmixing of hyperspectral images using a scaled gradient method
    • Cardiff, U.K. Aug
    • C. Theys, N. Dobigeon, J.-Y. Tourneret, and H. Lantéri, Linear unmixing of hyperspectral images using a scaled gradient method, in Proc. IEEESP Workshop SSP, Cardiff, U.K., Aug. 2009, pp. 729-732
    • (2009) Proc. IEEESP Workshop SSP , pp. 729-732
    • Theys, C.1    Dobigeon, N.2    Tourneret, J.-Y.3    Lantéri, H.4
  • 6
    • 46749145829 scopus 로고    scopus 로고
    • Semi-supervised linear spectral using a hierarchical Bayesian model for hyperspectral imagery
    • Jul
    • N. Dobigeon, J.-Y. Tourneret, and C.-I. Chang, Semi-supervised linear spectral using a hierarchical Bayesian model for hyperspectral imagery, IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2684-2695, Jul. 2008
    • (2008) IEEE Trans. Signal Process , vol.56 , Issue.7 , pp. 2684-2695
    • Dobigeon, N.1    Tourneret, J.-Y.2    Chang, C.-I.3
  • 7
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • J. Besag, Spatial interaction and the statistical analysis of lattice systems, J. Roy. Stat. Soc. Ser. B, vol. 36, no. 2, pp. 192-236, 1974
    • (1974) J. Roy. Stat. Soc. Ser. B , vol.36 , Issue.2 , pp. 192-236
    • Besag, J.1
  • 8
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 6, pp. 721-741, Nov. 1984 (Pubitemid 15453722)
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 9
    • 0042883921 scopus 로고    scopus 로고
    • Spatially smooth partitioning of hyperspectral imagery using spectral/spatial measures of disparity
    • Jun
    • R. S. Rand and D. M. Keenan, Spatially smooth partitioning of hyperspectral imagery using spectral/spatial measures of disparity, IEEE Trans. Geosci. Remote Sens., vol. 41, no. 6, pp. 1479-1490, Jun. 2003
    • (2003) IEEE Trans. Geosci. Remote Sens , vol.41 , Issue.6 , pp. 1479-1490
    • Rand, R.S.1    Keenan, D.M.2
  • 10
    • 3843116557 scopus 로고    scopus 로고
    • Texture feature analysis using a Gauss-Markov model in hyperspectral image classification
    • Jul
    • G. Rellier, X. Descombes, F. Falzon, and J. Zerubia, Texture feature analysis using a Gauss-Markov model in hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 7, pp. 1543-1551, Jul. 2004
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.7 , pp. 1543-1551
    • Rellier, G.1    Descombes, X.2    Falzon, F.3    Zerubia, J.4
  • 11
    • 39549088344 scopus 로고    scopus 로고
    • Bayesian approach with Hidden Markov modeling and mean field approximation for hyperspectral data analysis
    • DOI 10.1109/TIP.2007.914227
    • N. Bali and A. Mohammad-Djafari, Bayesian approach with hidden Markov modeling and mean field approximation for hyperspectral data analysis, IEEE Trans. Image Process., vol. 17, no. 2, pp. 217-225, Feb. 2008 (Pubitemid 351279249)
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.2 , pp. 217-225
    • Bali, N.1    Mohammad-Djafari, A.2
  • 12
    • 0024072154 scopus 로고
    • Spatial classification using fuzzy membership models
    • Sep
    • J. T. Kent and K. V. Mardia, Spatial classification using fuzzy membership models, IEEE Trans. Pattern Anal. Mach. Intell., vol. 10, no. 5, pp. 659-671, Sep. 1988
    • (1988) IEEE Trans. Pattern Anal. Mach. Intell , vol.10 , Issue.5 , pp. 659-671
    • Kent, J.T.1    Mardia, K.V.2
  • 13
    • 70350493345 scopus 로고    scopus 로고
    • Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery
    • Nov
    • N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero, Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery, IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355- 4368, Nov. 2009
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.11 , pp. 4355-4368
    • Dobigeon, N.1    Moussaoui, S.2    Coulon, M.3    Tourneret, J.-Y.4    Hero, A.O.5
  • 14
    • 0042492825 scopus 로고
    • The Potts model
    • Jan
    • F.Wu, The Potts model, Rev. Modern Phys., vol. 54, no. 1, pp. 235-268, Jan. 1982
    • (1982) Rev. Modern Phys , vol.54 , Issue.1 , pp. 235-268
    • Wu, F.1
  • 15
    • 20444500972 scopus 로고    scopus 로고
    • A bayesian MRP framework for labeling terrain using hyperspectral imaging
    • DOI 10.1109/TGRS.2005.846865
    • R. Neher and A. Srivastava, A Bayesian MRF framework for labeling terrain using hyperspectral imaging, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1363-1374, Jun. 2005 (Pubitemid 40811945)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1363-1374
    • Neher, R.1    Srivastava, A.2
  • 16
    • 78049282844 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Nov. 2010
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085- 4098, Nov. 2010
    • IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 17
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles, IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 18
    • 77958017904 scopus 로고    scopus 로고
    • SVM and MRF-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, SVM and MRF-based method for accurate classification of hyperspectral images, IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010
    • (2010) IEEE Geosci. Remote Sens. Lett , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 19
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • Jul
    • J. Harsanyi and C.-I. Chang, Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach, IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785, Jul. 1994
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.1    Chang, C.-I.2
  • 20
    • 0006606953 scopus 로고    scopus 로고
    • Least squares subspace projection approach to mixed pixel classification for hyperspectral images
    • PII S0196289298028629
    • C.-I. Chang, X.-L. Zhao, M. L. G. Althouse, and J. J. Pan, Least squares subspace projection approach to mixed pixel classification for hyperspectral images, IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 898-912, May 1998 (Pubitemid 128748499)
    • (1998) IEEE Transactions on Geoscience and Remote Sensing , vol.36 , Issue.3 , pp. 898-912
    • Chang, C.-I.1    Zhao, X.-L.2    Althouse, M.L.G.3    Pan, J.J.4
  • 24
    • 0030328027 scopus 로고    scopus 로고
    • Physiological pharmacokinetic analysis using population modeling and informative prior distributions
    • Dec
    • A. Gelman, F. Bois, and J. Jiang, Physiological pharmacokinetic analysis using population modeling and informative prior distributions, J. Amer. Math. Soc., vol. 91, no. 436, pp. 1400-1412, Dec. 1996
    • (1996) J. Amer. Math. Soc , vol.91 , Issue.436 , pp. 1400-1412
    • Gelman, A.1    Bois, F.2    Jiang, J.3
  • 25
    • 84994449814 scopus 로고    scopus 로고
    • A soft constrained MAP estimator for supervised hyperspectral signal unmixing
    • Aug
    • K. Themelis and A. A. Rontogiannis, A soft constrained MAP estimator for supervised hyperspectral signal unmixing, in Proc. EUSIPCO, Lausanne, Switzerland, Aug. 2008
    • (2008) Proc. EUSIPCO, Lausanne, Switzerland
    • Themelis, K.1    Rontogiannis, A.A.2
  • 28
    • 0001974429 scopus 로고    scopus 로고
    • Markov chain concepts related to sampling algorithms
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds. London, U.K.: Chapman & Hall
    • G. O. Roberts, Markov chain concepts related to sampling algorithms, in Markov Chain Monte Carlo in Practice, W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds. London, U.K.: Chapman & Hall, 1996, pp. 259-273
    • (1996) Markov Chain Monte Carlo in Practice , pp. 259-273
    • Roberts, G.O.1
  • 29
    • 4544376688 scopus 로고    scopus 로고
    • Version 4 0, RSI, Boulder, CO
    • ENVI Users Guide Version 4.0, RSI, Boulder, CO, 2003
    • (2003) ENVI Users Guide
  • 31
    • 0000385570 scopus 로고    scopus 로고
    • Fast autonomous spectral endmember determination in hyperspectral data
    • Vancouver, BC, Canada, Apr
    • M. E. Winter, Fast autonomous spectral endmember determination in hyperspectral data, in Proc. 13th Int. Conf. Appl. Geol. Remote Sens., Vancouver, BC, Canada, Apr. 1999, vol. 2, pp. 337-344
    • (1999) Proc. 13th Int. Conf. Appl. Geol. Remote Sens. , vol.2 , pp. 337-344
    • Winter, M.E.1
  • 32
    • 10044269618 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain
    • Dec
    • P. Sajda, S. Du, T. R. Brown, R. Stoyanova, D. C. Shungu, X. Mao, and L. C. Parra, Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain, IEEE Trans. Med. Imag., vol. 23, no. 12, pp. 1453-1465, Dec. 2004
    • (2004) IEEE Trans. Med. Imag , vol.23 , Issue.12 , pp. 1453-1465
    • Sajda, P.1    Du, S.2    Brown, T.R.3    Stoyanova, R.4    Shungu, D.C.5    Mao, X.6    Parra, L.C.7
  • 33
    • 1542318143 scopus 로고    scopus 로고
    • Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems
    • Dec
    • R. N. Clark, G. A. Swayze, K. E. Livo, R. F. Kokaly, S. J. Sutley, J. B. Dalton, R. R. McDougal, and C. A. Gent, Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems, J. Geophys. Res., vol. 108, no. E12, pp. 5-1-5-44, Dec. 2003
    • (2003) J. Geophys. Res , vol.108 , Issue.E12 , pp. 51-544
    • Clark, R.N.1    Swayze, G.A.2    Livo, K.E.3    Kokaly, R.F.4    Sutley, S.J.5    Dalton, J.B.6    McDougal, R.R.7    Gent, C.A.8
  • 34
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. M. Nascimento and J.M. Bioucas-Dias, Vertex component analysis: A fast algorithm to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005 (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.