메뉴 건너뛰기




Volumn 7, Issue 6, 2014, Pages 2004-2015

Spatial-spectral information based abundance-constrained endmember extraction methods

Author keywords

Abundance constrained endmember extraction; endmember extraction; hyperspectral; spatial spectral analysis; spectral unmixing

Indexed keywords

SPECTROSCOPY; SPECTRUM ANALYSIS; STATISTICS;

EID: 84905903299     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2013.2268661     Document Type: Article
Times cited : (32)

References (62)
  • 1
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 2
    • 0001395470 scopus 로고
    • Spectralmixture modeling: A new analysis of rock and soil types at the
    • Viking Lander 1site
    • J. B. Adams, M. O. Smith, and P. E. Johnson, "Spectralmixture modeling: A new analysis of rock and soil types at the Viking Lander 1site," J. Geophys. Res., vol. 91, pp. 8098-8112, 1986.
    • (1986) J. Geophys. Res. , vol.91 , pp. 8098-8112
    • Adams, J.B.1    Smith, M.O.2    Johnson, P.E.3
  • 5
    • 0034818997 scopus 로고    scopus 로고
    • Linear constrained distance-based discriminant analysis for hyperspectral image classification
    • DOI 10.1016/S0031-3203(99)00215-0
    • Q. Du and C.-I. Chang, "A linear constrained distance-based discriminant analysis for hyperspectral image classification," Pattern Recogn., vol. 34, no. 2, pp. 361-373, 2001. (Pubitemid 32871882)
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 361-373
    • Du, Q.1    Chang, C.-I.2
  • 6
    • 64149126207 scopus 로고    scopus 로고
    • Hyperspectral band selection and endmember detection using sparsity promoting priors
    • A. Zare and P. Gader, "Hyperspectral band selection and endmember detection using sparsity promoting priors," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 256-260, 2008.
    • (2008) Geosci. Remote Sens. Lett. , vol.5 , Issue.2 , pp. 256-260
    • Zare, A.1    Gader, P.2
  • 7
    • 77952585265 scopus 로고    scopus 로고
    • Hybrid detectors based on selective endmembers
    • L. Zhang, B. Du, and Y. Zhong, "Hybrid detectors based on selective endmembers," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2633-2646, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.6 , pp. 2633-2646
    • Zhang, L.1    Du, B.2    Zhong, Y.3
  • 8
    • 79955590723 scopus 로고    scopus 로고
    • Random selection based anomaly detector for hyperspectral imagery
    • B. Du and L. Zhang, "Random selection based anomaly detector for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1578-1589, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.5 , pp. 1578-1589
    • Du, B.1    Zhang, L.2
  • 9
    • 57049104040 scopus 로고    scopus 로고
    • A weighted linear spectral mixture analysis approach to address endmember variability in agricultural production systems
    • B. Somers, S. Delalieux, J. Stuckens, W. W. Verstraeten, and P. Coppin, "A weighted linear spectral mixture analysis approach to address endmember variability in agricultural production systems," Int. J. Remote Sens., vol. 30, no. 1, pp. 139-147, 2009.
    • (2009) Int. J. Remote Sens. , vol.30 , Issue.1 , pp. 139-147
    • Somers, B.1    Delalieux, S.2    Stuckens, J.3    Verstraeten, W.W.4    Coppin, P.5
  • 10
    • 0027334540 scopus 로고
    • Linear mixing and the estimation of ground cover proportions
    • J. J. Settle and N. A. Drake, "Linear mixing and the estimation of ground cover proportions," Int. J. Remote Sens., vol. 14, no. 6, pp. 1159-1177, 1993. (Pubitemid 23384230)
    • (1993) International Journal of Remote Sensing , vol.14 , Issue.6 , pp. 1159-1177
    • Settle, J.J.1    Drake, N.A.2
  • 12
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE Imaging Spectrometry V, 1999, vol. 3753, pp. 266-277.
    • (1999) Proc. SPIE Imaging Spectrometry v , vol.3753 , pp. 266-277
    • Winter, M.E.1
  • 13
    • 84887415911 scopus 로고    scopus 로고
    • A growing method for simplex-based endmember extraction algorithms
    • C.-I. Chang, C. Wu,W. Liu, and Y. C. Ouyang, "A growing method for simplex-based endmember extraction algorithms," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2804-2819, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.-I.1    Wu, C.2    Liu, W.3    Ouyang, Y.C.4
  • 14
    • 67649830104 scopus 로고    scopus 로고
    • Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
    • J. Li and J. M. Bioucas-Dias, "Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data," in Proc. IEEE Int. Geoscience and Remote Sensing Symp., 2008, vol. 3, pp. III-250-III-253.
    • (2008) Proc. IEEE Int. Geoscience and Remote Sensing Symp. , vol.3
    • Li, J.1    Bioucas-Dias, J.M.2
  • 16
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • DOI 10.1109/TGRS.2002.802494
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "Spatial/spectral endmember extraction by multidimensional morphological operations," IEEE Trans. Geosci Remote Sens., vol. 40, no. 9, pp. 2025-2041, 2002. (Pubitemid 35458399)
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 17
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. Nascimento and J. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 18
    • 65049088007 scopus 로고    scopus 로고
    • Orthogonal bases approach for decomposition of mixed pixels for hyperspectral imagery
    • X. Tao, B. Wang, and L. Zhang, "Orthogonal bases approach for decomposition of mixed pixels for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 2, pp. 219-223, 2009.
    • (2009) Geosci. Remote Sens. Lett. , vol.6 , Issue.2 , pp. 219-223
    • Tao, X.1    Wang, B.2    Zhang, L.3
  • 19
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • M. Zortea and A. Plaza, "Spatial preprocessing for endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679-2693, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2
  • 20
    • 31344481519 scopus 로고    scopus 로고
    • A novel approach for spectral unmixing, classification, and concentration estimation of chemical and biological agents
    • C. Kwan, B. Ayhan, G. Chen, J. Wang, B. Ji, and C.-I. Chang, "A novel approach for spectral unmixing, classification, and concentration estimation of chemical and biological agents," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 2, pp. 409-419, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.2 , pp. 409-419
    • Kwan, C.1    Ayhan, B.2    Chen, G.3    Wang, J.4    Ji, B.5    Chang, C.-I.6
  • 23
    • 77958558106 scopus 로고    scopus 로고
    • Hyperspectral signal subspace identification in the presence of rare signal components
    • N. Acito, M. Diani, and G. Corsini, "Hyperspectral signal subspace identification in the presence of rare signal components," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 4, pp. 1940-1954, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.4 , pp. 1940-1954
    • Acito, N.1    Diani, M.2    Corsini, G.3
  • 26
    • 0023854011 scopus 로고
    • Transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • DOI 10.1109/36.3001
    • A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, 1988. (Pubitemid 18596008)
    • (1988) IEEE Transactions on Geoscience and Remote Sensing , vol.26 , Issue.1 , pp. 65-74
    • Green Andrew, A.1    Berman Mark2    Switzer Paul3    Craig Maurice, D.4
  • 27
    • 0025430387 scopus 로고
    • Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform
    • DOI 10.1109/36.54356
    • J. B. Lee, S. Woodyatt, and M. Berman, "Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform," IEEE Trans. Geosci. Remote Sens., vol. 28, no. 3, pp. 295-304, 1990. (Pubitemid 20702839)
    • (1990) IEEE Transactions on Geoscience and Remote Sensing , vol.28 , Issue.3 , pp. 295-304
    • Lee James, B.1    Woodyatt A.Stephen2    Berman Mark3
  • 28
    • 0030736375 scopus 로고    scopus 로고
    • Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets
    • PII S1045922797002300
    • P. Demartines and J. Hérault, "Curvilinear component analysis: A selforganizing neural network for nonlinear mapping of data sets," IEEE Trans. Neural Netw., vol. 8, no. 1, pp. 148-154, 1997. (Pubitemid 127767788)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.1 , pp. 148-154
    • Demartines, P.1    Herault, J.2
  • 30
    • 39049167499 scopus 로고    scopus 로고
    • Improved manifold coordinate representations of large-scale hyperspectral scenes
    • C. Bachmann, T. Ainsworth, and R. Fusina, "Improved manifold coordinate representations of large-scale hyperspectral scenes," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2786-2803, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2786-2803
    • Bachmann, C.1    Ainsworth, T.2    Fusina, R.3
  • 31
    • 33744719449 scopus 로고    scopus 로고
    • Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis
    • DOI 10.1109/TGRS.2005.863297
    • J. Wang and C.-I. Chang, "Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1586-1600, 2006. (Pubitemid 43824505)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.6 , pp. 1586-1600
    • Wang, J.1    Chang, C.-I.2
  • 32
    • 0034314457 scopus 로고    scopus 로고
    • Unsupervised hyperspectral image analysis with projection pursuit
    • A. Ifarraguerri and C.-I. Chang, "Unsupervised hyperspectral image analysis with projection pursuit," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 6, pp. 127-143, 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.6 , pp. 127-143
    • Ifarraguerri, A.1    Chang, C.-I.2
  • 33
    • 0037934716 scopus 로고    scopus 로고
    • Automatic reduction of hyperspectral imagery using wavelet spectral analysis
    • S. Kaewpijit, J. L. Moigne, and T. El-Ghazawi, "Automatic reduction of hyperspectral imagery using wavelet spectral analysis," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 4, pp. 863-871, 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.4 , pp. 863-871
    • Kaewpijit, S.1    Moigne, J.L.2    El-Ghazawi, T.3
  • 34
    • 84858079924 scopus 로고    scopus 로고
    • A low-computational-complexity algorithm for hyperspectral endmember extraction: Modified vertex component analysis
    • S. Lopez, P. Horstrand, G. M. Callico, J. F. Lopez, and R. Sarmiento, "A low-computational-complexity algorithm for hyperspectral endmember extraction: Modified vertex component analysis," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 502-206, 2012.
    • (2012) Geosci. Remote Sens. Lett. , vol.9 , Issue.3 , pp. 502-206
    • Lopez, S.1    Horstrand, P.2    Callico, G.M.3    Lopez, J.F.4    Sarmiento, R.5
  • 37
    • 70350488509 scopus 로고    scopus 로고
    • Convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • T. Chan, C. Chi, Y. Huang, and W. Ma, "Convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, 2009.
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.1    Chi, C.2    Huang, Y.3    Ma, W.4
  • 38
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, 2007. (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 40
    • 57649229726 scopus 로고    scopus 로고
    • Analyzing hyperspectral data with independent component analysis
    • J. Bayliss, J. A. Gualtieri, and R. Cromp, "Analyzing hyperspectral data with independent component analysis," in Proc. SPIE, 1997, vol. 3240, pp. 133-143.
    • (1997) Proc. SPIE , vol.3240 , pp. 133-143
    • Bayliss, J.1    Gualtieri, J.A.2    Cromp, R.3
  • 41
    • 67651111832 scopus 로고    scopus 로고
    • Bayesian separation of spectral sources under non-negativity and full additivity constraints
    • N. Dobigeon, S. Moussaoui, J.-Y. Tourneret, and C. Carteret, "Bayesian separation of spectral sources under non-negativity and full additivity constraints," Signal Process., vol. 89, no. 12, pp. 2657-2669, 2009.
    • (2009) Signal Process , vol.89 , Issue.12 , pp. 2657-2669
    • Dobigeon, N.1    Moussaoui, S.2    Tourneret, J.-Y.3    Carteret, C.4
  • 42
    • 70350493345 scopus 로고    scopus 로고
    • Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery
    • N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero, "Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355-4368, 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4355-4368
    • Dobigeon, N.1    Moussaoui, S.2    Coulon, M.3    Tourneret, J.-Y.4    Hero, A.O.5
  • 43
    • 81855194806 scopus 로고    scopus 로고
    • Unmixing of hyperspectral images using Bayesian nonnegative matrix factorization with volume prior
    • M. Arngren,M. N. Schmidt, and J. Larsen, "Unmixing of hyperspectral images using Bayesian nonnegative matrix factorization with volume prior," J. Signal Process. Syst., vol. 65, no. 3, pp. 479-496, 2011.
    • (2011) J. Signal Process. Syst. , vol.65 , Issue.3 , pp. 479-496
    • Arngren, M.1    Schmidt, M.N.2    Larsen, J.3
  • 44
    • 78651110110 scopus 로고    scopus 로고
    • A split Bregman method for non-negative sparsity penalized least squares with applications to hyperspectral demixing
    • A. Szlam, Z. Guo, and S. Osher, "A split Bregman method for non-negative sparsity penalized least squares with applications to hyperspectral demixing," in IEEE Proc. (ICIP), 2010.
    • (2010) IEEE Proc. (ICIP)
    • Szlam, A.1    Guo, Z.2    Osher, S.3
  • 46
    • 0033693391 scopus 로고    scopus 로고
    • Restricted total least squares solutions for hyperspectral imagery
    • B. Sirkeci, D. Brady, and J. Burman, "Restricted total least squares solutions for hyperspectral imagery," in Proc. IEEE ICASSP, 2000, vol. 1, pp. 624-627.
    • (2000) Proc. IEEE ICASSP , vol.1 , pp. 624-627
    • Sirkeci, B.1    Brady, D.2    Burman, J.3
  • 47
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. Heinz and C.-I. Chang, "Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 48
    • 84890497413 scopus 로고    scopus 로고
    • Hyperspectral data geometry based estimation of number of endmembers using p-norm based pure pixel identification
    • in press
    • A. Ambikapathi, T.-H. Chan, C.-Y. Chi, and K. Keizer, "Hyperspectral data geometry based estimation of number of endmembers using p-norm based pure pixel identification," IEEE Trans. Geosci. Remote Sens., 2012, in press.
    • (2012) IEEE Trans. Geosci. Remote Sens.
    • Ambikapathi, A.1    Chan, T.-H.2    Chi, C.-Y.3    Keizer, K.4
  • 49
    • 78651079830 scopus 로고    scopus 로고
    • Abundance guide endmember selection: An algorithm for unmixing hyperspectral data
    • S. Dowler and M. Andrews, "Abundance guide endmember selection: An algorithm for unmixing hyperspectral data," in Proc. IEEE 17th Int. Conf. Image Processing, 2010, pp. 2649-2652.
    • (2010) Proc. IEEE 17th Int. Conf. Image Processing , pp. 2649-2652
    • Dowler, S.1    Andrews, M.2
  • 50
    • 34548036670 scopus 로고    scopus 로고
    • Integration of spatial-spectral information for the improved extraction of endmembers
    • DOI 10.1016/j.rse.2007.02.019, PII S0034425707000934
    • D. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris, and J. Feng, "Integration of spatial-spectral information for the improved extraction of endmembers," Remote Sens. Environ., vol. 110, no. 3, pp. 287-303, 2007. (Pubitemid 47285207)
    • (2007) Remote Sensing of Environment , vol.110 , Issue.3 , pp. 287-303
    • Rogge, D.M.1    Rivard, B.2    Zhang, J.3    Sanchez, A.4    Harris, J.5    Feng, J.6
  • 51
    • 36348990884 scopus 로고    scopus 로고
    • Spectral and spatial complexity-based hyperspectral unmixing
    • DOI 10.1109/TGRS.2007.898443
    • S. Jia and Y. Qian, "Spectral and spatial complexity-based hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 45, pp. 3867-3879, 2007. (Pubitemid 350157825)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 3867-3879
    • Jia, S.1    Qian, Y.2
  • 52
    • 77956057087 scopus 로고    scopus 로고
    • Spatial purity based endmember extraction for spectral mixture analysis
    • S. Mei, M. He, Z. Wang, andD. Feng, "Spatial purity based endmember extraction for spectral mixture analysis," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 9, pp. 3434-3445, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.9 , pp. 3434-3445
    • Mei, S.1    He, M.2    Wang, Z.3    Feng, D.4
  • 55
    • 79959766442 scopus 로고    scopus 로고
    • Region-based spatial preprocessing for endmember extraction and spectral unmixing
    • G. Martin and A. Plaza, "Region-based spatial preprocessing for endmember extraction and spectral unmixing," IEEEGeosci. Remote Sens. Lett., vol. 8, pp. 745-749, 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , pp. 745-749
    • Martin, G.1    Plaza, A.2
  • 56
  • 57
    • 84905898549 scopus 로고    scopus 로고
    • A new volume formula for a simplex and its application to endmember extraction for hyperspectral image analysis
    • X. Geng, Y. Zhao, S. Liu, and F. Wang, "A new volume formula for a simplex and its application to endmember extraction for hyperspectral image analysis," China Science, Information Science, vol. 40, no. 4, pp. 646-652, 2010.
    • (2010) China Science, Information Science , vol.40 , Issue.4 , pp. 646-652
    • Geng, X.1    Zhao, Y.2    Liu, S.3    Wang, F.4
  • 60
    • 80455164631 scopus 로고    scopus 로고
    • A hybrid automatic endmember extraction algorithm based on a local window
    • H. Li and L. Zhang, "A hybrid automatic endmember extraction algorithm based on a local window," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4223-4238, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4223-4238
    • Li, H.1    Zhang, L.2
  • 62
    • 84877927996 scopus 로고    scopus 로고
    • An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing
    • N. Wang, B. Du, and L. Zhang, "An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing," IEEE J. Sel. Topics Appl. Earth Observ., vol. 6, no. 2, pp. 554-569, 2013.
    • (2013) J. Sel. Topics Appl. Earth Observ. , vol.6 , Issue.2 , pp. 554-569
    • Wang, N.1    Du, B.2    Zhang, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.