메뉴 건너뛰기




Volumn 78, Issue , 2013, Pages 129-147

Assessing reference dataset representativeness through confidence metrics based on information density

Author keywords

Classification; Quality; Reference data; Reliability; Representativeness; Training

Indexed keywords

DECISION TREES; IMAGE CLASSIFICATION; IMAGE QUALITY; NEURAL NETWORKS; PERSONNEL TRAINING; RELIABILITY; REMOTE SENSING; STATISTICAL TESTS;

EID: 84874802882     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2013.01.011     Document Type: Article
Times cited : (17)

References (50)
  • 4
    • 33845982223 scopus 로고    scopus 로고
    • Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability
    • Cano J.R., Herrera F., Lozano M. Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. Data & Knowledge Engineering 2007, 60:90-108.
    • (2007) Data & Knowledge Engineering , vol.60 , pp. 90-108
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 5
    • 0020108638 scopus 로고
    • Using known map category marginal frequencies to improve estimates of thematic map accuracy
    • Card D.H. Using known map category marginal frequencies to improve estimates of thematic map accuracy. Photogrammetric Engineering &Remote Sensing 1982, 48:431-439.
    • (1982) Photogrammetric Engineering &Remote Sensing , vol.48 , pp. 431-439
    • Card, D.H.1
  • 6
    • 0036827545 scopus 로고    scopus 로고
    • The effect of training strategies on supervised classification at different spatial resolutions
    • Chen D., Stow D. The effect of training strategies on supervised classification at different spatial resolutions. Photogrammetric Engineering & Remote Sensing 2002, 68(11):1155-1162.
    • (2002) Photogrammetric Engineering & Remote Sensing , vol.68 , Issue.11 , pp. 1155-1162
    • Chen, D.1    Stow, D.2
  • 7
    • 0001174666 scopus 로고    scopus 로고
    • Impervious surface mapping for the state of Connecticut
    • In: Proceedings of 1997 ASPRS/ACSM Annual Convention, April 7-10, 1997, Seattle, WA
    • Civco, D.L., Hurd, J.D., 1997. Impervious surface mapping for the state of Connecticut. In: Proceedings of 1997 ASPRS/ACSM Annual Convention, April 7-10, 1997, Seattle, WA, vol. 3, pp. 124-135.
    • (1997) , vol.3 , pp. 124-135
    • Civco, D.L.1    Hurd, J.D.2
  • 8
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 1991, 37:35-46.
    • (1991) Remote Sensing of Environment , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 10
    • 0026614562 scopus 로고
    • Calibration of remotely sensed proportion or area estimates for misclassification error
    • Czaplewski R.L., Catts G.P. Calibration of remotely sensed proportion or area estimates for misclassification error. Remote Sensing of Environment 1992, 39:29-43.
    • (1992) Remote Sensing of Environment , vol.39 , pp. 29-43
    • Czaplewski, R.L.1    Catts, G.P.2
  • 11
    • 33750012330 scopus 로고    scopus 로고
    • Effects of sample survey design on the accuracy of classification tree models in species distribution models
    • Edwards T.C., Cutler D.R., Zimmermann N.E., Geiser L., Moisen G.G. Effects of sample survey design on the accuracy of classification tree models in species distribution models. Ecological Modelling 2006, 199:132-141.
    • (2006) Ecological Modelling , vol.199 , pp. 132-141
    • Edwards, T.C.1    Cutler, D.R.2    Zimmermann, N.E.3    Geiser, L.4    Moisen, G.G.5
  • 12
    • 84874810539 scopus 로고    scopus 로고
    • ENVI ENVI Tutorials; version 3.2. Better Solutions Consulting, Lafayette, Colorado, USA.
    • ENVI, 1999. ENVI Tutorials; version 3.2. Better Solutions Consulting, Lafayette, Colorado, USA.
  • 13
    • 0030135691 scopus 로고    scopus 로고
    • Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data
    • Foody G.M. Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data. International Journal of Remote Sensing 1996, 17:1317-1340.
    • (1996) International Journal of Remote Sensing , vol.17 , pp. 1317-1340
    • Foody, G.M.1
  • 14
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • Foody G.M. Status of land cover classification accuracy assessment. Remote Sensing of Environment 2002, 80:185-201.
    • (2002) Remote Sensing of Environment , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 15
    • 70449338714 scopus 로고    scopus 로고
    • Sample size determination for image classification accuracy assessment and comparison
    • Foody G.M. Sample size determination for image classification accuracy assessment and comparison. International Journal of Remote Sensing 2009, 30:5273-5291.
    • (2009) International Journal of Remote Sensing , vol.30 , pp. 5273-5291
    • Foody, G.M.1
  • 16
    • 4544272407 scopus 로고    scopus 로고
    • Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification
    • Foody G.M., Mathur A. Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sensing of Environment 2004, 93:107-117.
    • (2004) Remote Sensing of Environment , vol.93 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 17
    • 33745756516 scopus 로고    scopus 로고
    • The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM
    • Foody G.M., Mathur A. The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM. Remote Sensing of Environment 2006, 103:179-189.
    • (2006) Remote Sensing of Environment , vol.103 , pp. 179-189
    • Foody, G.M.1    Mathur, A.2
  • 20
    • 43049121407 scopus 로고    scopus 로고
    • Land use land cover classification of Orissa using multi-temporal IRS-P6 awifs data: a decision tree approach
    • Kandrika S., Roy P.S. Land use land cover classification of Orissa using multi-temporal IRS-P6 awifs data: a decision tree approach. International Journal of Applied Earth Observation and Geoinformation 2008, 10:186-193.
    • (2008) International Journal of Applied Earth Observation and Geoinformation , vol.10 , pp. 186-193
    • Kandrika, S.1    Roy, P.S.2
  • 21
    • 62349132975 scopus 로고    scopus 로고
    • Increasing the accuracy of neural network classification using refined training data
    • Kavzoglu T. Increasing the accuracy of neural network classification using refined training data. Environmental Modelling & Software 2009, 24:850-858.
    • (2009) Environmental Modelling & Software , vol.24 , pp. 850-858
    • Kavzoglu, T.1
  • 22
    • 78650916085 scopus 로고    scopus 로고
    • Using mixed pixels for the training of a maximum likelihood classification
    • In: Proceedings of ISPRS Commission VII Mid-term Symposium
    • Lesparre, J., Gorte, B.G.H., 2006. Using mixed pixels for the training of a maximum likelihood classification. In: Proceedings of ISPRS Commission VII Mid-term Symposium, pp. 632-637.
    • (2006) , pp. 632-637
    • Lesparre, J.1    Gorte, B.G.H.2
  • 24
    • 4143125530 scopus 로고    scopus 로고
    • Uncertainty and confidence in land cover classification using a hybrid classifier approach
    • Liu W., Gopal S., Woodcock C. Uncertainty and confidence in land cover classification using a hybrid classifier approach. Photogrammetric Engineering and Remote Sensing 2004, 70:963-971.
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , pp. 963-971
    • Liu, W.1    Gopal, S.2    Woodcock, C.3
  • 26
    • 77949489187 scopus 로고    scopus 로고
    • Integrating intermediate inputs from partially classified images within a hybrid classification framework: an impervious surface estimation example
    • Luo L., Mountrakis G. Integrating intermediate inputs from partially classified images within a hybrid classification framework: an impervious surface estimation example. Remote Sensing of Environment 2010, 114(6):1220-1229.
    • (2010) Remote Sensing of Environment , vol.114 , Issue.6 , pp. 1220-1229
    • Luo, L.1    Mountrakis, G.2
  • 27
    • 0027789610 scopus 로고
    • Automated training site selection for large-area remote-sensing image analysis
    • McCaffrey T., Franklin S. Automated training site selection for large-area remote-sensing image analysis. Computers & Geosciences 1993, 19:1413-1428.
    • (1993) Computers & Geosciences , vol.19 , pp. 1413-1428
    • McCaffrey, T.1    Franklin, S.2
  • 30
    • 0343303373 scopus 로고    scopus 로고
    • Quantification error versus location error in comparison of categorical maps
    • Pontius R.G. Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering and Remote Sensing 2000, 66:1011-1016.
    • (2000) Photogrammetric Engineering and Remote Sensing , vol.66 , pp. 1011-1016
    • Pontius, R.G.1
  • 31
    • 79956324768 scopus 로고    scopus 로고
    • Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment
    • Pontius R.B., Millones M. Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing 2011, 32(15):4407-4429.
    • (2011) International Journal of Remote Sensing , vol.32 , Issue.15 , pp. 4407-4429
    • Pontius, R.B.1    Millones, M.2
  • 32
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Machine Learning 1986, 1:81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 33
  • 34
    • 67649776615 scopus 로고    scopus 로고
    • Generating high-quality training data for automated land-cover mapping
    • In: IEEE International Geoscience & Remote Sensing Symposium
    • Rebbapragada, U., Lomasky, R., Brodley, C.E., & Friedl, M.A., 2008. Generating high-quality training data for automated land-cover mapping. In: IEEE International Geoscience & Remote Sensing Symposium, vol. 4, pp. IV-546-IV-548.
    • (2008) , vol.4 , pp. 4546-4548
    • Rebbapragada, U.1    Lomasky, R.2    Brodley, C.E.3    Friedl, M.A.4
  • 37
    • 0000313850 scopus 로고
    • The second-order analysis of stationary point processes
    • Ripley B.D. The second-order analysis of stationary point processes. Journal of Applied Probability 1976, 13:255-266.
    • (1976) Journal of Applied Probability , vol.13 , pp. 255-266
    • Ripley, B.D.1
  • 38
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • MIT Press, Cambridge, MA, D.E. Rumelhart, J.L. McClelland (Eds.)
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representations by error propagation. Parallel Distributed Processing 1986, 318-362. MIT Press, Cambridge, MA. D.E. Rumelhart, J.L. McClelland (Eds.).
    • (1986) Parallel Distributed Processing , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 40
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Shahshahani B.M., Landgrebe D.A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Transactions on Geoscience and Remote Sensing 1994, 32:1087-1095.
    • (1994) IEEE Transactions on Geoscience and Remote Sensing , vol.32 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 41
    • 84874793609 scopus 로고    scopus 로고
    • A Comparison of Supervised Imagery Classification Using Analyst-chosen and Geostatistically-chosen Training Sets
    • Shine, J.A., Wakefiled, G.I., 1999. A Comparison of Supervised Imagery Classification Using Analyst-chosen and Geostatistically-chosen Training Sets. GeoComputation' 99. http://www.geovista.psu.edu/sites/geocomp99/Gc99/044/gc_044.htm.
    • (1999) GeoComputation' 99. .
    • Shine, J.A.1    Wakefiled, G.I.2
  • 42
    • 0344654801 scopus 로고    scopus 로고
    • Estimation and mapping of misclassification probabilities for thematic land cover maps
    • Steele B., Winne J.C., Redmond R. Estimation and mapping of misclassification probabilities for thematic land cover maps. Remote Sensing of Environment 1998, 66:192-202.
    • (1998) Remote Sensing of Environment , vol.66 , pp. 192-202
    • Steele, B.1    Winne, J.C.2    Redmond, R.3
  • 43
    • 0032866047 scopus 로고    scopus 로고
    • Basic probability sampling designs for thematic map accuracy assessment
    • Stehman S.V. Basic probability sampling designs for thematic map accuracy assessment. International Journal of Remote Sensing 1999, 20:2423-2441.
    • (1999) International Journal of Remote Sensing , vol.20 , pp. 2423-2441
    • Stehman, S.V.1
  • 44
    • 4143054730 scopus 로고    scopus 로고
    • A critical evaluation of the normalized error matrix in map accuracy assessment
    • Stehman S.V. A critical evaluation of the normalized error matrix in map accuracy assessment. Photogrammetric Engineering and Remote Sensing 2004, 70(6):743-751.
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , Issue.6 , pp. 743-751
    • Stehman, S.V.1
  • 45
    • 70249106481 scopus 로고    scopus 로고
    • Sampling designs for accuracy assessment of land cover
    • Stehman S.V. Sampling designs for accuracy assessment of land cover. International Journal of Remote Sensing 2009, 30(20):5243-5272.
    • (2009) International Journal of Remote Sensing , vol.30 , Issue.20 , pp. 5243-5272
    • Stehman, S.V.1
  • 46
    • 84949812908 scopus 로고    scopus 로고
    • Accuracy assessment
    • Sage Publications, New York, T.A. Warner, M.D. Nellis, G.M. Foody (Eds.)
    • Stehman S.V., Foody G.M. Accuracy assessment. The SAGE Handbook of Remote Sensing 2009, 297-309. Sage Publications, New York. T.A. Warner, M.D. Nellis, G.M. Foody (Eds.).
    • (2009) The SAGE Handbook of Remote Sensing , pp. 297-309
    • Stehman, S.V.1    Foody, G.M.2
  • 49
    • 26944473196 scopus 로고    scopus 로고
    • On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification
    • Van Niel T.G., McVicar T.R., Datt B. On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification. Remote Sensing of Environment 2005, 98:468-480.
    • (2005) Remote Sensing of Environment , vol.98 , pp. 468-480
    • Van Niel, T.G.1    McVicar, T.R.2    Datt, B.3
  • 50
    • 0021631153 scopus 로고
    • A binary tree feature selection technique for limited training sample size
    • Washer M.J., Landgrebe D.A. A binary tree feature selection technique for limited training sample size. Remote Sensing of Environment 1984, 16:183-194.
    • (1984) Remote Sensing of Environment , vol.16 , pp. 183-194
    • Washer, M.J.1    Landgrebe, D.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.