메뉴 건너뛰기




Volumn 18, Issue 8, 2016, Pages 823-832

Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing

Author keywords

[No Author keywords available]

Indexed keywords

REACTIVE OXYGEN METABOLITE; TRANSCRIPTION FACTOR FKHRL1; TRANSCRIPTION FACTOR FOXO;

EID: 84978758568     PISSN: 14657392     EISSN: 14764679     Source Type: Journal    
DOI: 10.1038/ncb3385     Document Type: Review
Times cited : (241)

References (147)
  • 2
    • 0034614576 scopus 로고    scopus 로고
    • Stem cells: Units of development, units of regeneration, and units in evolution
    • Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157-168 (2000).
    • (2000) Cell , vol.100 , pp. 157-168
    • Weissman, I.L.1
  • 3
    • 84875953755 scopus 로고    scopus 로고
    • Stem cell metabolism in tissue development and aging
    • Shyh-Chang, N., Daley, G. Q & Cantley, L. C. Stem cell metabolism in tissue development and aging. Development 140, 2535-4257 (2013).
    • (2013) Development , vol.140 , pp. 2535-4257
    • Shyh-Chang, N.1    Daley, G.Q.2    Cantley, L.C.3
  • 4
    • 84904739356 scopus 로고    scopus 로고
    • Surviving change: The metabolic journey of hematopoietic stem cells
    • Kohli, L. & Passegué, E. Surviving change: the metabolic journey of hematopoietic stem cells. Trends Cell Biol. 24, 479-487 (2014).
    • (2014) Trends Cell Biol. , vol.24 , pp. 479-487
    • Kohli, L.1    Passegué, E.2
  • 5
    • 84868347607 scopus 로고    scopus 로고
    • Metabolic plasticity in stem cell homeostasis and differentiation
    • Folmes, C. D., Dzeja, P. P., Nelson, T. J & Terzic, A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11, 596-606 (2012).
    • (2012) Cell Stem Cell , vol.11 , pp. 596-606
    • Folmes, C.D.1    Dzeja, P.P.2    Nelson, T.J.3    Terzic, A.4
  • 6
    • 84868351585 scopus 로고    scopus 로고
    • Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal
    • Zhang, J., Nuebel, E., Daley, G. Q., Koehler, C. M. & Teitell, M. A. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11, 589-595 (2012).
    • (2012) Cell Stem Cell , vol.11 , pp. 589-595
    • Zhang, J.1    Nuebel, E.2    Daley, G.Q.3    Koehler, C.M.4    Teitell, M.A.5
  • 7
    • 84883489939 scopus 로고    scopus 로고
    • Mitochondrial regulation in pluripotent stem cells
    • Xu, X. et al. Mitochondrial regulation in pluripotent stem cells. Cell Metab. 18, 325-332 (2013).
    • (2013) Cell Metab , vol.18 , pp. 325-332
    • Xu, X.1
  • 8
    • 84921260212 scopus 로고    scopus 로고
    • Pluripotent stem cell energy metabolism: An update
    • Teslaa, T. & Teitell, M. A. Pluripotent stem cell energy metabolism: an update. EMBO J. 34, 138-153 (2015).
    • (2015) EMBO J. , vol.34 , pp. 138-153
    • Teslaa, T.1    Teitell, M.A.2
  • 9
    • 33747875396 scopus 로고    scopus 로고
    • Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells
    • Cho, Y. M. et al. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem. Biophys. Res. Commun. 348, 1472-1478 (2006).
    • (2006) Biochem. Biophys. Res. Commun. , vol.348 , pp. 1472-1478
    • Cho, Y.M.1
  • 10
    • 80755129126 scopus 로고    scopus 로고
    • The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation
    • Hom, J. R. et al. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev. Cell 21, 469-478 (2011).
    • (2011) Dev. Cell , vol.21 , pp. 469-478
    • Hom, J.R.1
  • 11
    • 80053904684 scopus 로고    scopus 로고
    • Mitochondrial complex III ROS regulate adipocyte differentiation
    • Tormos, K. V. et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 14, 537-544 (2011).
    • (2011) Cell Metab , vol.14 , pp. 537-544
    • Tormos, K.V.1
  • 12
    • 79960945131 scopus 로고    scopus 로고
    • Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
    • Folmes, C. D. et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14, 264-271 (2011).
    • (2011) Cell Metab , vol.14 , pp. 264-271
    • Folmes, C.D.1
  • 13
    • 83455235489 scopus 로고    scopus 로고
    • UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
    • Zhang, J. et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 30, 4860-4873 (2011).
    • (2011) EMBO J , vol.30 , pp. 4860-4873
    • Zhang, J.1
  • 14
  • 15
    • 77950630969 scopus 로고    scopus 로고
    • Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells
    • Todd, L. R. et al. Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Mol. Biol. Cell 21, 1225-1236 (2010).
    • (2010) Mol. Biol. Cell , vol.21 , pp. 1225-1236
    • Todd, L.R.1
  • 16
    • 84865031202 scopus 로고    scopus 로고
    • Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: New insight into the role of mitophagy in cell stemness
    • Vazquez-Martin, A. et al. Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: new insight into the role of mitophagy in cell stemness. Aging 4, 393-401 (2012).
    • (2012) Aging , vol.4 , pp. 393-401
    • Vazquez-Martin, A.1
  • 17
    • 84947488862 scopus 로고    scopus 로고
    • Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency
    • Son, M. J. et al. Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency. Cell Death Differ. 22, 1957-1969 (2015).
    • (2015) Cell Death Differ , vol.22 , pp. 1957-1969
    • Son, M.J.1
  • 18
    • 84875755814 scopus 로고    scopus 로고
    • Influence of metabolism on epigenetics and disease
    • Kaelin, W. G. Jr & McKnight, S. L. Influence of metabolism on epigenetics and disease. Cell 153, 56-69 (2013).
    • (2013) Cell , vol.153 , pp. 56-69
    • Kaelin, W.G.1    McKnight, S.L.2
  • 19
    • 67749140110 scopus 로고    scopus 로고
    • Dependence of mouse embryonic stem cells on threonine catabolism
    • Wang, J. et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science 325, 435-439 (2009).
    • (2009) Science , vol.325 , pp. 435-439
    • Wang, J.1
  • 20
    • 84948669098 scopus 로고    scopus 로고
    • The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition
    • Sperber, H. et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat. Cell Biol. 17, 1523-1535 (2015).
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1523-1535
    • Sperber, H.1
  • 21
    • 84878240136 scopus 로고    scopus 로고
    • Molecular regulation of stem cell quiescence
    • Cheung, T. H. & Rando, T. A. Molecular regulation of stem cell quiescence. Nat. Rev. Mol. Cell Biol. 14, 329-340 (2013).
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 329-340
    • Cheung, T.H.1    Rando, T.A.2
  • 22
    • 33745614062 scopus 로고    scopus 로고
    • Stem cells, ageing and the quest for immortality
    • Rando, T. A. Stem cells, ageing and the quest for immortality. Nature 441, 1080-1086 (2006).
    • (2006) Nature , vol.441 , pp. 1080-1086
    • Rando, T.A.1
  • 23
    • 39149086121 scopus 로고    scopus 로고
    • Stems cells and the pathways to aging and cancer
    • Rossi, D. J., Jamieson, C. H. & Weissman, I. L. Stems cells and the pathways to aging and cancer. Cell 132, 681-696 (2008).
    • (2008) Cell , vol.132 , pp. 681-696
    • Rossi, D.J.1    Jamieson, C.H.2    Weissman, I.L.3
  • 25
    • 84952639987 scopus 로고    scopus 로고
    • Aging-induced stem cell mutations as drivers for disease and cancer
    • Adams, P. D., Jasper, H. & Rudolph, K. L. Aging-induced stem cell mutations as drivers for disease and cancer. Cell Stem Cell 16, 601-612 (2015).
    • (2015) Cell Stem Cell , vol.16 , pp. 601-612
    • Adams, P.D.1    Jasper, H.2    Rudolph, K.L.3
  • 26
    • 84855885803 scopus 로고    scopus 로고
    • Cell cycle regulation in hematopoietic stem cells
    • Pietras, E. M., Warr, M. & Passegué, E. Cell cycle regulation in hematopoietic stem cells. J. Cell Biol. 195, 709-720 (2011).
    • (2011) J. Cell Biol. , vol.195 , pp. 709-720
    • Pietras, E.M.1    Warr, M.2    Passegué, E.3
  • 27
    • 77956205122 scopus 로고    scopus 로고
    • The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
    • Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380-390 (2010).
    • (2010) Cell Stem Cell , vol.7 , pp. 380-390
    • Simsek, T.1
  • 28
    • 84872011926 scopus 로고    scopus 로고
    • Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
    • Takubo, K. et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12, 49-61 (2013).
    • (2013) Cell Stem Cell , vol.12 , pp. 49-61
    • Takubo, K.1
  • 29
    • 84872037830 scopus 로고    scopus 로고
    • Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation
    • Yu, W. M. et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12, 62-74 (2013).
    • (2013) Cell Stem Cell , vol.12 , pp. 62-74
    • Yu, W.M.1
  • 30
    • 84938267949 scopus 로고    scopus 로고
    • An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate
    • Maryanovich, M. et al. An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat. Commun. 6, 7901 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 7901
    • Maryanovich, M.1
  • 31
    • 77956217067 scopus 로고    scopus 로고
    • Regulation of the HIF-1alpha level is essential for hematopoietic stem cells
    • Takubo, K. et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7, 391-402 (2010).
    • (2010) Cell Stem Cell , vol.7 , pp. 391-402
    • Takubo, K.1
  • 32
    • 0030943461 scopus 로고    scopus 로고
    • Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT
    • Maltepe, E. et al. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403-407 (1997).
    • (1997) Nature , vol.386 , pp. 403-407
    • Maltepe, E.1
  • 33
    • 0034671706 scopus 로고    scopus 로고
    • Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses
    • Adelman, D. M. et al. Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev. 14, 3191-3203 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 3191-3203
    • Adelman, D.M.1
  • 34
    • 77957584397 scopus 로고    scopus 로고
    • O2 regulates stem cells through Wnt/-catenin signalling
    • Mazumdar J. et al. O2 regulates stem cells through Wnt/-catenin signalling. Nat. Cell Biol. 12, 1007-1013 (2010).
    • (2010) Nat. Cell Biol. , vol.12 , pp. 1007-1013
    • Mazumdar, J.1
  • 35
    • 80053926733 scopus 로고    scopus 로고
    • Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78
    • Miharada, K. et al. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell 9, 330-344 (2011).
    • (2011) Cell Stem Cell , vol.9 , pp. 330-344
    • Miharada, K.1
  • 36
    • 84871001227 scopus 로고    scopus 로고
    • Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells
    • Kocabas, F. et al. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 120, 4963-4972 (2012).
    • (2012) Blood , vol.120 , pp. 4963-4972
    • Kocabas, F.1
  • 37
    • 84925265469 scopus 로고    scopus 로고
    • Stem cell aging: A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging
    • Mohrin, M. et al. Stem cell aging: a mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374-1377 (2015).
    • (2015) Science , vol.347 , pp. 1374-1377
    • Mohrin, M.1
  • 38
    • 84931561759 scopus 로고    scopus 로고
    • Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock
    • Mantel, C. R. et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161, 1553-1565 (2015).
    • (2015) Cell , vol.161 , pp. 1553-1565
    • Mantel, C.R.1
  • 39
    • 78649811793 scopus 로고    scopus 로고
    • Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
    • Nakada, D., Saunders, T. L. & Morrison, S. J. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468, 653-658 (2010).
    • (2010) Nature , vol.468 , pp. 653-658
    • Nakada, D.1    Saunders, T.L.2    Morrison, S.J.3
  • 40
    • 84956657033 scopus 로고    scopus 로고
    • Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential
    • Luchsinger, L. L. et al. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature 529, 528-531 (2016).
    • (2016) Nature , vol.529 , pp. 528-531
    • Luchsinger, L.L.1
  • 41
    • 84868632060 scopus 로고    scopus 로고
    • A PML-PPAR-? Pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
    • Ito, K. et al. A PML-PPAR-? pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18, 1350-1358 (2012).
    • (2012) Nat.Med. , vol.18 , pp. 1350-1358
    • Ito, K.1
  • 42
    • 84927732079 scopus 로고    scopus 로고
    • Stem cells: Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness
    • Katajisto, P. et al. Stem cells: asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348, 340-343 (2015).
    • (2015) Science , vol.348 , pp. 340-343
    • Katajisto, P.1
  • 43
    • 80755174406 scopus 로고    scopus 로고
    • Maintaining tissue homeostasis: Dynamic control of somatic stem cell activity
    • Biteau, B., Hochmuth, C. E. & Jasper, H. Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. Cell Stem Cell 9, 402-411 (2011).
    • (2011) Cell Stem Cell , vol.9 , pp. 402-411
    • Biteau, B.1    Hochmuth, C.E.2    Jasper, H.3
  • 44
    • 80155123827 scopus 로고    scopus 로고
    • Altered modes of stem cell division drive adaptive intestinal growth
    • O'Brien, L. E., Soliman, S. S., Li, X. & Bilder, D. Altered modes of stem cell division drive adaptive intestinal growth. Cell 147, 603-614 (2011).
    • (2011) Cell , vol.147 , pp. 603-614
    • O'Brien, L.E.1    Soliman, S.S.2    Li, X.3    Bilder, D.4
  • 45
    • 58049218983 scopus 로고    scopus 로고
    • Tissue damage-induced intestinal stem cell division in Drosophila
    • Amcheslavsky, A., Jiang, J. & Ip, Y. T. Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4, 49-61 (2009).
    • (2009) Cell Stem Cell , vol.4 , pp. 49-61
    • Amcheslavsky, A.1    Jiang, J.2    Ip, Y.T.3
  • 46
    • 70349617469 scopus 로고    scopus 로고
    • Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila
    • Buchon, N., Broderick, N. A., Chakrabarti, S. & Lemaitre, B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev. 23, 2333-2344 (2009).
    • (2009) Genes Dev , vol.23 , pp. 2333-2344
    • Buchon, N.1    Broderick, N.A.2    Chakrabarti, S.3    Lemaitre, B.4
  • 47
    • 52949093944 scopus 로고    scopus 로고
    • JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut
    • Biteau, B., Hochmuth, C. E. & Jasper, H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3, 442-455 (2008).
    • (2008) Cell Stem Cell , vol.3 , pp. 442-455
    • Biteau, B.1    Hochmuth, C.E.2    Jasper, H.3
  • 48
    • 78449240115 scopus 로고    scopus 로고
    • Lifespan extension by preserving proliferative homeostasis in Drosophila
    • Biteau, B. et al. Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet. 6, 1001159 (2010).
    • (2010) PLoS Genet , vol.6 , pp. 1001159
    • Biteau, B.1
  • 49
    • 84871830937 scopus 로고    scopus 로고
    • Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila
    • Rera, M., Clark, R. I. & Walker, D. W. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc. Natl Acad. Sci. USA 109, 21528-21533 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 21528-21533
    • Rera, M.1    Clark, R.I.2    Walker, D.W.3
  • 50
    • 80455143200 scopus 로고    scopus 로고
    • Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog
    • Rera, M. et al. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab. 14, 623-634 (2011).
    • (2011) Cell Metab , vol.14 , pp. 623-634
    • Rera, M.1
  • 51
    • 79551610653 scopus 로고    scopus 로고
    • Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila
    • Hochmuth, C. E., Biteau, B., Bohmann, D. & Jasper, H. Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell 8, 1-12 (2011).
    • (2011) Cell Stem Cell , vol.8 , pp. 1-12
    • Hochmuth, C.E.1    Biteau, B.2    Bohmann, D.3    Jasper, H.4
  • 52
    • 84886769377 scopus 로고    scopus 로고
    • Increased longevity mediated by yeast NDI1 expression in Drosophila intestinal stem and progenitor cells
    • Hur, J. H. et al. Increased longevity mediated by yeast NDI1 expression in Drosophila intestinal stem and progenitor cells. Aging 5, 662-681 (2013).
    • (2013) Aging , vol.5 , pp. 662-681
    • Hur, J.H.1
  • 53
    • 49249086654 scopus 로고    scopus 로고
    • Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells
    • Chen, C. T., Shih, Y. R., Kuo, T. K., Lee, O. K. & Wei, Y. H. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26, 960-968 (2008).
    • (2008) Stem Cells , vol.26 , pp. 960-968
    • Chen, C.T.1    Shih, Y.R.2    Kuo, T.K.3    Lee, O.K.4    Wei, Y.H.5
  • 54
    • 84946054437 scopus 로고    scopus 로고
    • AMP-activated protein kinase stimulates Warburg-like glycolysis and activation of satellite cells during muscle regeneration
    • Fu, X., Zhu, M. J., Dodson, M. V. & Du, M. AMP-activated protein kinase stimulates Warburg-like glycolysis and activation of satellite cells during muscle regeneration. J. Biol. Chem. 290, 26445-26456 (2015).
    • (2015) J. Biol. Chem. , vol.290 , pp. 26445-26456
    • Fu, X.1    Zhu, M.J.2    Dodson, M.V.3    Du, M.4
  • 55
    • 84924857323 scopus 로고    scopus 로고
    • The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells
    • Ryall, J. G. et al. The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16, 171-183 (2015).
    • (2015) Cell Stem Cell , vol.16 , pp. 171-183
    • Ryall, J.G.1
  • 56
    • 84872169944 scopus 로고    scopus 로고
    • Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis
    • Knobloch, M. et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226-230 (2013).
    • (2013) Nature , vol.493 , pp. 226-230
    • Knobloch, M.1
  • 57
    • 77950200010 scopus 로고    scopus 로고
    • The genetics of ageing
    • Kenyon, C. J. The genetics of ageing. Nature 464, 504-512 (2010).
    • (2010) Nature , vol.464 , pp. 504-512
    • Kenyon, C.J.1
  • 58
    • 67650944993 scopus 로고    scopus 로고
    • Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
    • Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392-395 (2009).
    • (2009) Nature , vol.460 , pp. 392-395
    • Harrison, D.E.1
  • 59
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274-293 (2012).
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 60
    • 44449161481 scopus 로고    scopus 로고
    • The TSC1-TSC2 complex: A molecular switchboard controlling cell growth
    • Huang, J. & Manning, B. D. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179-190 (2008).
    • (2008) Biochem. J , vol.412 , pp. 179-190
    • Huang, J.1    Manning, B.D.2
  • 61
    • 77955747346 scopus 로고    scopus 로고
    • With TOR, less is more: A key role for the conserved nutrient-sensing TOR pathway in aging
    • Kapahi, P. et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11, 453-465 (2010).
    • (2010) Cell Metab , vol.11 , pp. 453-465
    • Kapahi, P.1
  • 62
    • 84864021710 scopus 로고    scopus 로고
    • Rapamycin slows aging in mice
    • Wilkinson, J. E. et al. Rapamycin slows aging in mice. Aging Cell 11, 675-682 (2012).
    • (2012) Aging Cell , vol.11 , pp. 675-682
    • Wilkinson, J.E.1
  • 63
    • 78649519914 scopus 로고    scopus 로고
    • Metabolic regulation of stem cell behavior and implications for aging
    • Jasper, H. & Jones, D. L. Metabolic regulation of stem cell behavior and implications for aging. Cell Metab. 12, 561-565 (2010).
    • (2010) Cell Metab , vol.12 , pp. 561-565
    • Jasper, H.1    Jones, D.L.2
  • 64
    • 79958207849 scopus 로고    scopus 로고
    • Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells
    • Amcheslavsky, A., Ito, N., Jiang, J. & Ip, Y. T. Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells. J. Cell Biol. 193, 695-710 (2011).
    • (2011) J. Cell Biol. , vol.193 , pp. 695-710
    • Amcheslavsky, A.1    Ito, N.2    Jiang, J.3    Ip, Y.T.4
  • 65
    • 84870700189 scopus 로고    scopus 로고
    • Notch-mediated suppression of TSC2 expression regulates cell differentiation in the Drosophila intestinal stem cell lineage
    • Kapuria, S., Karpac, J., Biteau, B., Hwangbo, D. & Jasper, H. Notch-mediated suppression of TSC2 expression regulates cell differentiation in the Drosophila intestinal stem cell lineage. PLoS Genet. 8, e1003045 (2012).
    • (2012) PLoS Genet , vol.8 , pp. e1003045
    • Kapuria, S.1    Karpac, J.2    Biteau, B.3    Hwangbo, D.4    Jasper, H.5
  • 66
    • 84883300053 scopus 로고    scopus 로고
    • TSC1/2 regulates intestinal stem cell maintenance and lineage differentiation via Rheb-TorC1-S6K but independent of nutrition status or Notch activation
    • Quan, Z., Sun, P., Lin, G. & Xi, R. TSC1/2 regulates intestinal stem cell maintenance and lineage differentiation via Rheb-TorC1-S6K but independent of nutrition status or Notch activation. J. Cell Sci. 126, 3884-3892 (2013).
    • (2013) J. Cell Sci , vol.126 , pp. 3884-3892
    • Quan, Z.1    Sun, P.2    Lin, G.3    Xi, R.4
  • 67
    • 84862994618 scopus 로고    scopus 로고
    • MTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake
    • Yilmaz, O. H. et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490-495 (2012).
    • (2012) Nature , vol.486 , pp. 490-495
    • Yilmaz, O.H.1
  • 68
    • 84960193503 scopus 로고    scopus 로고
    • High-fat diet enhances stemness and tumorigenicity of intestinal progenitors
    • Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53-58 (2016).
    • (2016) Nature , vol.531 , pp. 53-58
    • Beyaz, S.1
  • 69
    • 84963935986 scopus 로고    scopus 로고
    • MTOR disruption causes intestinal epithelial cell defects and intestinal atrophy postinjury in mice
    • Sampson, L. L., Davis, A. K., Grogg, M. W. & Zheng, Y. mTOR disruption causes intestinal epithelial cell defects and intestinal atrophy postinjury in mice. FASEB J. 30, 1263-1275 (2016).
    • (2016) FASEB J , vol.30 , pp. 1263-1275
    • Sampson, L.L.1    Davis, A.K.2    Grogg, M.W.3    Zheng, Y.4
  • 70
    • 80755141303 scopus 로고    scopus 로고
    • Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of Tuberous Sclerosis Complex-associated lesions
    • Magri, L. et al. Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of Tuberous Sclerosis Complex-associated lesions. Cell Stem Cell 9, 447-462 (2011).
    • (2011) Cell Stem Cell , vol.9 , pp. 447-462
    • Magri, L.1
  • 71
    • 77954945936 scopus 로고    scopus 로고
    • MTOR-mediated activation of p70 S6K induces differentiation of pluripotent human embryonic stem cells
    • Easley, C. A. et al. mTOR-mediated activation of p70 S6K induces differentiation of pluripotent human embryonic stem cells. Cell Reprogram. 12, 263-273 (2010).
    • (2010) Cell Reprogram , vol.12 , pp. 263-273
    • Easley, C.A.1
  • 72
    • 80052819789 scopus 로고    scopus 로고
    • Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells
    • Chen, T. et al. Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10, 908-911 (2011).
    • (2011) Aging Cell , vol.10 , pp. 908-911
    • Chen, T.1
  • 73
    • 84903149534 scopus 로고    scopus 로고
    • MTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert
    • Rodgers, J. T. et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert. Nature 510, 393-396 (2014).
    • (2014) Nature , vol.510 , pp. 393-396
    • Rodgers, J.T.1
  • 74
    • 53349091768 scopus 로고    scopus 로고
    • TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
    • Chen, C. et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 205, 2397-2408 (2008).
    • (2008) J. Exp. Med. , vol.205 , pp. 2397-2408
    • Chen, C.1
  • 75
    • 84887321199 scopus 로고    scopus 로고
    • Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and notch signaling
    • Kasahara, A., Cipolat, S., Chen, Y., Dorn, G. W. II & Scorrano, L. Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science 342, 734-737 (2013).
    • (2013) Science , vol.342 , pp. 734-737
    • Kasahara, A.1    Cipolat, S.2    Chen, Y.3    Dorn, G.W.4    Scorrano, L.5
  • 76
    • 33646376411 scopus 로고    scopus 로고
    • Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells
    • Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475-482 (2006).
    • (2006) Nature , vol.441 , pp. 475-482
    • Yilmaz, O.H.1
  • 77
    • 77949900650 scopus 로고    scopus 로고
    • Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice
    • Kharas, M. G. et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 115, 1406-1415 (2010).
    • (2010) Blood , vol.115 , pp. 1406-1415
    • Kharas, M.G.1
  • 78
    • 84957839266 scopus 로고    scopus 로고
    • The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism
    • Qian, P. et al. The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism. Cell Stem Cell 18, 214-228 (2015).
    • (2015) Cell Stem Cell , vol.18 , pp. 214-228
    • Qian, P.1
  • 79
    • 77953283847 scopus 로고    scopus 로고
    • AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species
    • Juntilla, M. M. et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115, 4030-4038 (2010).
    • (2010) Blood , vol.115 , pp. 4030-4038
    • Juntilla, M.M.1
  • 80
    • 71849114718 scopus 로고    scopus 로고
    • Balancing dormant and self-renewing hematopoietic stem cells
    • Wilson, A., Laurenti, E. & Trumpp, A. Balancing dormant and self-renewing hematopoietic stem cells. Curr. Opin. Genet. Dev. 19, 461-468 (2009).
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , pp. 461-468
    • Wilson, A.1    Laurenti, E.2    Trumpp, A.3
  • 81
    • 79952728102 scopus 로고    scopus 로고
    • The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance
    • Mortensen, M. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 208, 455-467 (2011).
    • (2011) J. Exp. Med. , vol.208 , pp. 455-467
    • Mortensen, M.1
  • 82
    • 84874192375 scopus 로고    scopus 로고
    • FOXO3A directs a protective autophagy program in haematopoietic stem cells
    • Warr, M. R. et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494, 323-327 (2013).
    • (2013) Nature , vol.494 , pp. 323-327
    • Warr, M.R.1
  • 83
    • 84856544112 scopus 로고    scopus 로고
    • Changes in mitochondrial reactive oxygen species synthesis during differentiation of skeletal muscle cells
    • Malinska, D., Kudin, A. P., Bejtka, M. & Kunz, W. S. Changes in mitochondrial reactive oxygen species synthesis during differentiation of skeletal muscle cells. Mitochondrion 12, 144-148 (2012).
    • (2012) Mitochondrion , vol.12 , pp. 144-148
    • Malinska, D.1    Kudin, A.P.2    Bejtka, M.3    Kunz, W.S.4
  • 84
    • 79955133184 scopus 로고    scopus 로고
    • EGF signaling regulates the proliferation of intestinal stem cells in Drosophila
    • Biteau, B. & Jasper, H. EGF signaling regulates the proliferation of intestinal stem cells in Drosophila. Development 138, 1045-1055 (2011).
    • (2011) Development , vol.138 , pp. 1045-1055
    • Biteau, B.1    Jasper, H.2
  • 85
    • 84874229027 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development
    • Hamanaka, R. B. et al. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci. Signal. 6, ra8 (2013).
    • (2013) Sci. Signal , vol.6 , Issue.8
    • Hamanaka, R.B.1
  • 86
    • 84878846051 scopus 로고    scopus 로고
    • ROS are required for mouse spermatogonial stem cell self-renewal
    • Morimoto, H. et al. ROS are required for mouse spermatogonial stem cell self-renewal. Cell Stem Cell 12, 774-786 (2013).
    • (2013) Cell Stem Cell , vol.12 , pp. 774-786
    • Morimoto, H.1
  • 87
    • 78650968492 scopus 로고    scopus 로고
    • Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/AKT-dependant manner
    • Le Belle, J. E. et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/AKT-dependant manner. Cell Stem Cell 8, 59-71 (2011).
    • (2011) Cell Stem Cell , vol.8 , pp. 59-71
    • Le Belle, J.E.1
  • 88
    • 84905905334 scopus 로고    scopus 로고
    • Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent notch signaling
    • Paul, M. K. et al. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent notch signaling. Cell Stem Cell 15, 199-214 (2014).
    • (2014) Cell Stem Cell , vol.15 , pp. 199-214
    • Paul, M.K.1
  • 89
    • 84887527463 scopus 로고    scopus 로고
    • Resilient and resourceful: Genome maintenance strategies in hematopoietic stem cells
    • Bakker, S. T. & Passegué, E. Resilient and resourceful: genome maintenance strategies in hematopoietic stem cells. Exp. Hematol. 41, 915-923 (2013).
    • (2013) Exp. Hematol , vol.41 , pp. 915-923
    • Bakker, S.T.1    Passegué, E.2
  • 90
    • 70349446465 scopus 로고    scopus 로고
    • Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
    • Owusu-Ansah, E. & Banerjee, U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537-541 (2009).
    • (2009) Nature , vol.461 , pp. 537-541
    • Owusu-Ansah, E.1    Banerjee, U.2
  • 91
    • 33645730667 scopus 로고    scopus 로고
    • Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells
    • Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446-451 (2006).
    • (2006) Nat. Med. , vol.12 , pp. 446-451
    • Ito, K.1
  • 92
    • 84940797231 scopus 로고    scopus 로고
    • Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3
    • Rimmelé, P. et al. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep. 16, 1164-1176 (2015).
    • (2015) EMBO Rep , vol.16 , pp. 1164-1176
    • Rimmelé, P.1
  • 93
    • 77449094614 scopus 로고    scopus 로고
    • Vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution
    • Lewandowski, D. et al. In vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution. Blood 115, 443-452 (2010).
    • (2010) Blood , vol.115 , pp. 443-452
    • Lewandowski, D.1
  • 94
    • 84907474354 scopus 로고    scopus 로고
    • Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment
    • Ludin, A. et al. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid. Redox Signal. 21, 1605-1619 (2014).
    • (2014) Antioxid. Redox Signal , vol.21 , pp. 1605-1619
    • Ludin, A.1
  • 95
    • 35548936968 scopus 로고    scopus 로고
    • A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche
    • Jang, Y. Y. & Sharkis, S. J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110, 3056-3063 (2007).
    • (2007) Blood , vol.110 , pp. 3056-3063
    • Jang, Y.Y.1    Sharkis, S.J.2
  • 96
    • 84865786049 scopus 로고    scopus 로고
    • FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation
    • Itkin, T. et al. FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation. Blood 120, 1843-1855 (2012).
    • (2012) Blood , vol.120 , pp. 1843-1855
    • Itkin, T.1
  • 97
    • 84867747480 scopus 로고    scopus 로고
    • Monocytes-macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow
    • Ludin, A. et al. Monocytes-macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat. Immunol. 13, 1072-1082 (2012).
    • (2012) Nat. Immunol , vol.13 , pp. 1072-1082
    • Ludin, A.1
  • 98
    • 84863338623 scopus 로고    scopus 로고
    • S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release
    • Golan, K. et al. S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 119, 2478-2488 (2012).
    • (2012) Blood , vol.119 , pp. 2478-2488
    • Golan, K.1
  • 99
    • 84861872402 scopus 로고    scopus 로고
    • Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells
    • Ishikawa, E. T. et al. Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc. Natl Acad. Sci. USA 109, 9071-9076 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 9071-9076
    • Ishikawa, E.T.1
  • 100
    • 84900342698 scopus 로고    scopus 로고
    • Direct measurement of local oxygen concentration in the bone marrow of live animals
    • Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269-273 (2014).
    • (2014) Nature , vol.508 , pp. 269-273
    • Spencer, J.A.1
  • 101
    • 84964533485 scopus 로고    scopus 로고
    • Distinct bone marrow blood vessels differentially regulate haematopoiesis
    • Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323-328 (2016).
    • (2016) Nature , vol.532 , pp. 323-328
    • Itkin, T.1
  • 102
    • 84857439440 scopus 로고    scopus 로고
    • NAD-dependent histone deacetylase, SIRT1, plays essential roles in the maintenance of hematopoietic stem cells
    • Matsui, K. et al. NAD-dependent histone deacetylase, SIRT1, plays essential roles in the maintenance of hematopoietic stem cells. Biochem. Biophys. Res. Commun. 418, 811-817 (2012).
    • (2012) Biochem. Biophys. Res. Commun. , vol.418 , pp. 811-817
    • Matsui, K.1
  • 103
    • 84904206273 scopus 로고    scopus 로고
    • Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells
    • Rimmelé, P. et al. Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells. Stem Cell Rep. 3, 44-59 (2014).
    • (2014) Stem Cell Rep. , vol.3 , pp. 44-59
    • Rimmelé, P.1
  • 104
    • 84874238886 scopus 로고    scopus 로고
    • SIRT3 reverses aging-associated degeneration
    • Brown, K. et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 3, 319-327 (2013).
    • (2013) Cell Rep. , vol.3 , pp. 319-327
    • Brown, K.1
  • 105
    • 58149398745 scopus 로고    scopus 로고
    • FoxO3a regulates hematopoietic homeostasis through a negative feedback pathway in conditions of stress or aging
    • Miyamoto, K. et al. FoxO3a regulates hematopoietic homeostasis through a negative feedback pathway in conditions of stress or aging. Blood 112, 4485-4493 (2008).
    • (2008) Blood , vol.112 , pp. 4485-4493
    • Miyamoto, K.1
  • 106
    • 84937597623 scopus 로고    scopus 로고
    • The microRNA-132 and microRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression
    • Mehta, A. et al. The microRNA-132 and microRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression. Immunity 42, 1021-1032 (2015).
    • (2015) Immunity , vol.42 , pp. 1021-1032
    • Mehta, A.1
  • 107
    • 33846419112 scopus 로고    scopus 로고
    • FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
    • Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325-339 (2007).
    • (2007) Cell , vol.128 , pp. 325-339
    • Tothova, Z.1
  • 108
    • 34249882777 scopus 로고    scopus 로고
    • Foxo3a is essential for maintenance of the hematopoietic stem cell pool
    • Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1, 101-112 (2007).
    • (2007) Cell Stem Cell , vol.1 , pp. 101-112
    • Miyamoto, K.1
  • 109
    • 84970951874 scopus 로고    scopus 로고
    • Roles of Nrf2 in cell proliferation and differentiation
    • Murakami, S. & Motohashi, H. Roles of Nrf2 in cell proliferation and differentiation. Free Radic. Biol. Med. 88, 168-178 (2015).
    • (2015) Free Radic. Biol. Med. , vol.88 , pp. 168-178
    • Murakami, S.1    Motohashi, H.2
  • 110
    • 37749024370 scopus 로고    scopus 로고
    • Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila
    • Sykiotis, G. P. & Bohmann, D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev. Cell. 14, 76-85 (2008).
    • (2008) Dev. Cell. , vol.14 , pp. 76-85
    • Sykiotis, G.P.1    Bohmann, D.2
  • 111
    • 0142213542 scopus 로고    scopus 로고
    • The free radical theory of aging
    • Harman, D. The free radical theory of aging. Antioxid. Redox Signal. 5, 557-561 (2003).
    • (2003) Antioxid. Redox Signal , vol.5 , pp. 557-561
    • Harman, D.1
  • 112
    • 79959450877 scopus 로고    scopus 로고
    • Mitochondrial DNA mutations in disease and aging
    • Park, C. B. & Larsson, N. G. Mitochondrial DNA mutations in disease and aging. J. Cell Biol. 193, 809-818 (2011).
    • (2011) J. Cell Biol. , vol.193 , pp. 809-818
    • Park, C.B.1    Larsson, N.G.2
  • 113
    • 2642580016 scopus 로고    scopus 로고
    • Premature ageing in mice expressing defective mitochondrial DNA polymerase
    • Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417-423 (2004).
    • (2004) Nature , vol.429 , pp. 417-423
    • Trifunovic, A.1
  • 114
    • 22344456832 scopus 로고    scopus 로고
    • Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging
    • Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481-484 (2005).
    • (2005) Science , vol.309 , pp. 481-484
    • Kujoth, G.C.1
  • 115
    • 77950236668 scopus 로고    scopus 로고
    • Erythroid dysplasia, megaloblastic anemia, and impaired lymphopoiesis arising from mitochondrial dysfunction
    • Chen, M. L. et al. Erythroid dysplasia, megaloblastic anemia, and impaired lymphopoiesis arising from mitochondrial dysfunction. Blood 114, 4045-4053 (2009).
    • (2009) Blood , vol.114 , pp. 4045-4053
    • Chen, M.L.1
  • 116
    • 84855417557 scopus 로고    scopus 로고
    • Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice
    • Ahlqvist, K. J. et al. Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice. Cell Metab. 15, 100-109 (2011).
    • (2011) Cell Metab , vol.15 , pp. 100-109
    • Ahlqvist, K.J.1
  • 117
    • 84937642681 scopus 로고    scopus 로고
    • MtDNA mutagenesis disrupts pluripotent stem cell function by altering redox signaling
    • Hämäläinen, R. H. et al. mtDNA mutagenesis disrupts pluripotent stem cell function by altering redox signaling. Cell Rep. 11, 1614-1624 (2015).
    • (2015) Cell Rep. , vol.11 , pp. 1614-1624
    • Hämäläinen, R.H.1
  • 118
    • 79955698235 scopus 로고    scopus 로고
    • Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging
    • Norddahl, G. L. et al. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell 8, 499-510 (2011).
    • (2011) Cell Stem Cell , vol.8 , pp. 499-510
    • Norddahl, G.L.1
  • 119
    • 84876688113 scopus 로고    scopus 로고
    • Metabolism, longevity and epigenetics
    • Cosentino, C. & Mostoslavsky, R. Metabolism, longevity and epigenetics. Cell Mol. Life Sci. 70, 1525-1541 (2013).
    • (2013) Cell Mol. Life Sci. , vol.70 , pp. 1525-1541
    • Cosentino, C.1    Mostoslavsky, R.2
  • 120
    • 84863534997 scopus 로고    scopus 로고
    • Metabolic regulation of epigenetics
    • Lu, C. & Thompson, C. B. Metabolic regulation of epigenetics. Cell Metab. 16, 9-17 (2012).
    • (2012) Cell Metab , vol.16 , pp. 9-17
    • Lu, C.1    Thompson, C.B.2
  • 121
    • 84924181684 scopus 로고    scopus 로고
    • Epigenetics and metabolism
    • Keating, S. T. & El-Osta, A. Epigenetics and metabolism. Circ. Res. 116, 715-736 (2015).
    • (2015) Circ. Res. , vol.116 , pp. 715-736
    • Keating, S.T.1    El-Osta, A.2
  • 122
    • 81555214034 scopus 로고    scopus 로고
    • Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans
    • Greer, E. L. et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365-371 (2011).
    • (2011) Nature , vol.479 , pp. 365-371
    • Greer, E.L.1
  • 123
    • 84943796922 scopus 로고    scopus 로고
    • Epigenetic control of stem cell potential during homeostasis, aging, and disease
    • Beerman, I. & Rossi, D. J. Epigenetic control of stem cell potential during homeostasis, aging, and disease. Cell Stem Cell 16, 613-625 (2015).
    • (2015) Cell Stem Cell , vol.16 , pp. 613-625
    • Beerman, I.1    Rossi, D.J.2
  • 124
    • 84879605512 scopus 로고    scopus 로고
    • Which way does the citric acid cycle turn during hypoxia? the critical role of -ketoglutarate dehydrogenase complex
    • Chinopoulos, C. Which way does the citric acid cycle turn during hypoxia? The critical role of -ketoglutarate dehydrogenase complex. J. Neurosci Res. 91, 1030-1043 (2013).
    • (2013) J. Neurosci Res. , vol.91 , pp. 1030-1043
    • Chinopoulos, C.1
  • 125
    • 33947520506 scopus 로고    scopus 로고
    • Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: Possible links between cell metabolism and stabilization of HIF
    • Koivunen, P. et al. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J. Biol. Chem. 282, 4524-4532 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 4524-4532
    • Koivunen, P.1
  • 126
    • 84875965163 scopus 로고    scopus 로고
    • Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging
    • Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413-425 (2013).
    • (2013) Cell Stem Cell , vol.12 , pp. 413-425
    • Beerman, I.1
  • 127
    • 84902685602 scopus 로고    scopus 로고
    • Krebs cycle intermediates regulate DNA and histone methylation: Epigenetic impact on the aging process
    • Salminen, A., Kauppinen, A., Hiltunen, M. & Kaarniranta, K. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res Rev. 16, 45-65 (2014).
    • (2014) Ageing Res Rev. , vol.16 , pp. 45-65
    • Salminen, A.1    Kauppinen, A.2    Hiltunen, M.3    Kaarniranta, K.4
  • 128
    • 34548208677 scopus 로고    scopus 로고
    • Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation
    • Chambers, S. M. et al. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol. 5, 201 (2007).
    • (2007) PLoS Biol. , vol.5 , pp. 201
    • Chambers, S.M.1
  • 129
    • 84899768899 scopus 로고    scopus 로고
    • Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal
    • Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673-688 (2014).
    • (2014) Cell Stem Cell , vol.14 , pp. 673-688
    • Sun, D.1
  • 130
    • 84555207349 scopus 로고    scopus 로고
    • Dnmt3a is essential for hematopoietic stem cell differentiation
    • Challen, G. A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23-31 (2011).
    • (2011) Nat. Genet , vol.44 , pp. 23-31
    • Challen, G.A.1
  • 131
    • 84904751060 scopus 로고    scopus 로고
    • NAD+ and sirtuins in aging and disease
    • Imai, S. & Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464-471 (2014).
    • (2014) Trends Cell Biol. , vol.24 , pp. 464-471
    • Imai, S.1    Guarente, L.2
  • 132
    • 79955591489 scopus 로고    scopus 로고
    • Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats
    • Braidy, N. et al. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One 6, 19194 (2011).
    • (2011) PLoS One , vol.6 , pp. 19194
    • Braidy, N.1
  • 133
    • 84860634046 scopus 로고    scopus 로고
    • Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation
    • Florian, M. C. et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10, 520-530 (2012).
    • (2012) Cell Stem Cell , vol.10 , pp. 520-530
    • Florian, M.C.1
  • 134
    • 84881549542 scopus 로고    scopus 로고
    • Oxidized low-density lipoprotein induces hematopoietic stem cell senescence
    • Zhang, X. P. et al. Oxidized low-density lipoprotein induces hematopoietic stem cell senescence. Cell Biol Int. 37, 940-948 (2013).
    • (2013) Cell Biol Int. , vol.37 , pp. 940-948
    • Zhang, X.P.1
  • 135
    • 84898640122 scopus 로고    scopus 로고
    • Hypercholesterolemia induces oxidant stress that accelerates the ageing of hematopoietic stem cells
    • Tie, G., Messina, K. E., Yan, J., Messina, J.A. & Messina, L. M. Hypercholesterolemia induces oxidant stress that accelerates the ageing of hematopoietic stem cells. J. Am. Heart Assoc. 3, 000241 (2014).
    • (2014) J. Am. Heart Assoc. , vol.3 , pp. 000241
    • Tie, G.1    Messina, K.E.2    Yan, J.3    Messina, J.A.4    Messina, L.M.5
  • 136
    • 0142195931 scopus 로고    scopus 로고
    • Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction
    • Chen, J., Astle, C. M. & Harrison, D. E. Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction. Exp. Hematol. 31, 1097-1103 (2003).
    • (2003) Exp. Hematol. , vol.31 , pp. 1097-1103
    • Chen, J.1    Astle, C.M.2    Harrison, D.E.3
  • 137
    • 84902185782 scopus 로고    scopus 로고
    • Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression
    • Cheng, C. W. et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 14, 810-823 (2014).
    • (2014) Cell Stem Cell , vol.14 , pp. 810-823
    • Cheng, C.W.1
  • 138
    • 28544436371 scopus 로고    scopus 로고
    • Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates
    • Passegué, E, Wagers, A. J., Giuriato, S., Anderson, W. C. & Weissman, I. L. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202, 1599-1611 (2005).
    • (2005) J. Exp. Med. , vol.202 , pp. 1599-1611
    • Passegué, A.J.1    Wagers, E.2    Giuriato, S.3    Anderson, W.C.4    Weissman, I.L.5
  • 139
    • 85017286447 scopus 로고    scopus 로고
    • Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging
    • Tang, D. et al. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging. J. Exp. Med. 213, 535-553 (2016).
    • (2016) J. Exp. Med. , vol.213 , pp. 535-553
    • Tang, D.1
  • 140
    • 84879516992 scopus 로고    scopus 로고
    • Mitochondrial metabolic reprogramming induced by calorie restriction
    • Martin-Montalvo, A. & de Cabo, R. Mitochondrial metabolic reprogramming induced by calorie restriction. Antioxid. Redox Signal. 19, 310-320 (2013).
    • (2013) Antioxid. Redox Signal , vol.19 , pp. 310-320
    • Martin-Montalvo, A.1    De Cabo, R.2
  • 141
    • 32444437067 scopus 로고    scopus 로고
    • Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency
    • López-Lluch, G. et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl Acad. Sci. USA 103, 1768-1773 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 1768-1773
    • López-Lluch, G.1
  • 142
    • 84860614281 scopus 로고    scopus 로고
    • Short-term calorie restriction enhances skeletal muscle stem cell function
    • Cerletti, M., Jang, Y. C., Finley, L. W., Haigis, M. C. & Wagers, A. J. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10, 515-519 (2012).
    • (2012) Cell Stem Cell , vol.10 , pp. 515-519
    • Cerletti, M.1    Jang, Y.C.2    Finley, L.W.3    Haigis, M.C.4    Wagers, A.J.5
  • 143
    • 80053124673 scopus 로고    scopus 로고
    • Taking a "good" look at free radicals in the aging process
    • Hekimi, S., Lapointe, J. & Wen, Y. Taking a "good" look at free radicals in the aging process. Trends Cell Biol. 21, 569-576 (2011).
    • (2011) Trends Cell Biol. , vol.21 , pp. 569-576
    • Hekimi, S.1    Lapointe, J.2    Wen, Y.3
  • 144
    • 77951976595 scopus 로고    scopus 로고
    • JmjC enzyme KDM2A is a regulator of rRNA transcription in response to starvation
    • Tanaka, Y. et al. JmjC enzyme KDM2A is a regulator of rRNA transcription in response to starvation. EMBO J. 29, 1510-1522 (2010).
    • (2010) EMBO J , vol.29 , pp. 1510-1522
    • Tanaka, Y.1
  • 145
    • 84872166360 scopus 로고    scopus 로고
    • Suppression of oxidative stress by -hydroxybutyrate, an endogenous histone deacetylase inhibitor
    • Shimazu, T. et al. Suppression of oxidative stress by -hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211-214 (2013).
    • (2013) Science , vol.339 , pp. 211-214
    • Shimazu, T.1
  • 146
    • 84925969707 scopus 로고    scopus 로고
    • Metabolic pathways promoting cancer cell survival and growth
    • Boroughs, L. K. & DeBerardinis, R. J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351-359 (2015).
    • (2015) Nat. Cell Biol. , vol.17 , pp. 351-359
    • Boroughs, L.K.1    DeBerardinis, R.J.2
  • 147
    • 84881177291 scopus 로고    scopus 로고
    • Serine, glycine and one-carbon units: Cancer metabolism in full circle
    • Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572-583 (2013).
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 572-583
    • Locasale, J.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.