메뉴 건너뛰기




Volumn 14, Issue 6, 2013, Pages 329-340

Molecular regulation of stem cell quiescence

Author keywords

[No Author keywords available]

Indexed keywords

AGING; CELL CYCLE G0 PHASE; EPIGENETICS; HUMAN; MOLECULAR MECHANICS; NONHUMAN; PRIORITY JOURNAL; REVIEW; STEM CELL; TISSUE REGENERATION;

EID: 84878240136     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm3591     Document Type: Review
Times cited : (835)

References (164)
  • 1
    • 0034614576 scopus 로고    scopus 로고
    • Stem cells: Units of development, units of regeneration, and units in evolution
    • Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157-168 (2000).
    • (2000) Cell , vol.100 , pp. 157-168
    • Weissman, I.L.1
  • 2
    • 75749146169 scopus 로고    scopus 로고
    • Coexistence of quiescent and active adult stem cells in mammals
    • Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542-545 (2010).
    • (2010) Science , vol.327 , pp. 542-545
    • Li, L.1    Clevers, H.2
  • 3
    • 38349132624 scopus 로고    scopus 로고
    • Deconstructing stem cell self-renewal: Genetic insights into cell-cycle regulation
    • Orford, K. W. & Scadden, D. T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nature Rev. Genet. 9, 115-128 (2008).
    • (2008) Nature Rev. Genet. , vol.9 , pp. 115-128
    • Orford, K.W.1    Scadden, D.T.2
  • 4
    • 0000607018 scopus 로고
    • Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage
    • Howard, A. & Pelc, S. R. Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Hered. (Lond.) [Suppl.] 6, 261-273 (1953).
    • (1953) Hered. (Lond.) [Suppl.] , vol.6 , pp. 261-273
    • Howard, A.1    Pelc, S.R.2
  • 5
    • 84981755696 scopus 로고
    • Biochemistry of the cell cycle: A review
    • Baserga, R. Biochemistry of the cell cycle: a review. Cell Prolifer. 1, 167-191 (1968).
    • (1968) Cell Prolifer. , vol.1 , pp. 167-191
    • Baserga, R.1
  • 6
    • 0001428312 scopus 로고
    • Radiation effects on cell renewal and related systems
    • Patt, H. M. & Quastler, H. Radiation effects on cell renewal and related systems. Physiol. Rev. 43, 357-396 (1963).
    • (1963) Physiol. Rev. , vol.43 , pp. 357-396
    • Patt, H.M.1    Quastler, H.2
  • 7
    • 0015514709 scopus 로고
    • The Leeuwenhoek Lecture, 1971: Tumour viruses and the sociology of fibroblasts
    • Stoker, M. G. P. The Leeuwenhoek Lecture, 1971: tumour viruses and the sociology of fibroblasts. Proc. R. Soc. Series B, Biol. Sci. 181, 1-17 (1972).
    • (1972) Proc. R. Soc. Series B, Biol. Sci. , vol.181 , pp. 1-17
    • Stoker, M.G.P.1
  • 8
    • 0015136814 scopus 로고
    • Stimulation by serum of multiplication of stationary chicken cells
    • Temin, H. M. Stimulation by serum of multiplication of stationary chicken cells. J. Cell. Physiol. 78, 161-170 (1971).
    • (1971) J. Cell. Physiol. , vol.78 , pp. 161-170
    • Temin, H.M.1
  • 9
    • 0003418645 scopus 로고
    • A restriction point for control of normal animal cell proliferation
    • Pardee, A. B. A restriction point for control of normal animal cell proliferation. Proc. Natl Acad. Sci. USA 71, 1286-1290 (1974).
    • (1974) Proc. Natl Acad. Sci. USA , vol.71 , pp. 1286-1290
    • Pardee, A.B.1
  • 10
    • 0021855166 scopus 로고
    • Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells
    • Zetterberg, A. & Larsson, O. Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc. Natl Acad. Sci. USA 82, 5365-5369 (1985).
    • (1985) Proc. Natl Acad. Sci. USA , vol.82 , pp. 5365-5369
    • Zetterberg, A.1    Larsson, O.2
  • 11
    • 2942584864 scopus 로고    scopus 로고
    • 'Sleeping beauty': Quiescence in Saccharomyces cerevisiae
    • Gray, J. V. et al. 'Sleeping beauty': quiescence in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 68, 187-206 (2004).
    • (2004) Microbiol. Mol. Biol. Rev. , vol.68 , pp. 187-206
    • Gray, J.V.1
  • 12
    • 0005680712 scopus 로고
    • A model of seed dormancy
    • Amen, R. D. A model of seed dormancy. Bot. Rev. 34, 1-31 (1968).
    • (1968) Bot. Rev. , vol.34 , pp. 1-31
    • Amen, R.D.1
  • 13
    • 2542601615 scopus 로고    scopus 로고
    • Liver regeneration and repair: Hepatocytes, progenitor cells, and stem cells
    • Fausto, N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 39, 1477-1487 (2004).
    • (2004) Hepatology , vol.39 , pp. 1477-1487
    • Fausto, N.1
  • 15
    • 35348875982 scopus 로고    scopus 로고
    • Molecular signature of quiescent satellite cells in adult skeletal muscle
    • Fukada, S. et al. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25, 2448-2459 (2007).
    • (2007) Stem Cells , vol.25 , pp. 2448-2459
    • Fukada, S.1
  • 16
    • 0020694123 scopus 로고
    • Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation
    • Gerdes, J., Schwab, U., Lemke, H. & Stein, H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int. J. Cancer 31, 13-20 (1983).
    • (1983) Int. J. Cancer , vol.31 , pp. 13-20
    • Gerdes, J.1    Schwab, U.2    Lemke, H.3    Stein, H.4
  • 17
    • 34249056493 scopus 로고    scopus 로고
    • High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny
    • Conboy, M. J., Karasov, A. O. & Rando, T. A. High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLoS Biol. 5, e102 (2007).
    • (2007) PLoS Biol. , vol.5
    • Conboy, M.J.1    Karasov, A.O.2    Rando, T.A.3
  • 18
    • 33745762804 scopus 로고    scopus 로고
    • Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells
    • Shinin, V., Gayraud-Morel, B., Gomès, D. & Tajbakhsh, S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nature Cell Biol. 8, 677-687 (2006).
    • (2006) Nature Cell Biol. , vol.8 , pp. 677-687
    • Shinin, V.1    Gayraud-Morel, B.2    Gomès, D.3    Tajbakhsh, S.4
  • 19
    • 0025313294 scopus 로고
    • Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis
    • Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329-1337 (1990).
    • (1990) Cell , vol.61 , pp. 1329-1337
    • Cotsarelis, G.1    Sun, T.T.2    Lavker, R.M.3
  • 20
    • 0018034237 scopus 로고
    • The segregation of DNA in epithelial stem cells
    • Potten, C. S., Hume, W. J., Reid, P. & Cairns, J. The segregation of DNA in epithelial stem cells. Cell 15, 899-906 (1978).
    • (1978) Cell , vol.15 , pp. 899-906
    • Potten, C.S.1    Hume, W.J.2    Reid, P.3    Cairns, J.4
  • 21
    • 0347634454 scopus 로고    scopus 로고
    • Defining the epithelial stem cell niche in skin
    • Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359-363 (2004).
    • (2004) Science , vol.303 , pp. 359-363
    • Tumbar, T.1
  • 22
    • 56549128268 scopus 로고    scopus 로고
    • Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair
    • Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118-1129 (2008).
    • (2008) Cell , vol.135 , pp. 1118-1129
    • Wilson, A.1
  • 23
    • 60149104597 scopus 로고    scopus 로고
    • Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells
    • Foudi, A. et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nature Biotechnol. 27, 84-90 (2008).
    • (2008) Nature Biotechnol. , vol.27 , pp. 84-90
    • Foudi, A.1
  • 24
    • 84867676626 scopus 로고    scopus 로고
    • The aged niche disrupts muscle stem cell quiescence
    • Chakkalakal, J. V., Jones, K. M., Basson, M. A. & Brack, A. S. The aged niche disrupts muscle stem cell quiescence. Nature 490, 355-360 (2012).
    • (2012) Nature , vol.490 , pp. 355-360
    • Chakkalakal, J.V.1    Jones, K.M.2    Basson, M.A.3    Brack, A.S.4
  • 25
    • 84874730918 scopus 로고    scopus 로고
    • Intestinal label-retaining cells are secretory precursors expressing Lgr5
    • Buczacki, S. J. A. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65-69 (2013).
    • (2013) Nature , vol.495 , pp. 65-69
    • Buczacki, S.J.A.1
  • 26
    • 0019599627 scopus 로고
    • Identification and behavior of label-retaining cells in oral mucosa and skin
    • Bickenbach, J. R. Identification and behavior of label-retaining cells in oral mucosa and skin. J. Dent. Res. 60, 1611-1620 (1981).
    • (1981) J. Dent. Res. , vol.60 , pp. 1611-1620
    • Bickenbach, J.R.1
  • 27
    • 84862527941 scopus 로고    scopus 로고
    • Tissue stem cells: New tools and functional diversity
    • Grompe, M. Tissue stem cells: new tools and functional diversity. Cell Stem Cell 10, 685-689 (2012).
    • (2012) Cell Stem Cell , vol.10 , pp. 685-689
    • Grompe, M.1
  • 28
    • 83255193921 scopus 로고    scopus 로고
    • Interconversion between intestinal stem cell populations in distinct niches
    • Takeda, N. et al. Interconversion between intestinal stem cell populations in distinct niches. Science 334, 1420-1424 (2011).
    • (2011) Science , vol.334 , pp. 1420-1424
    • Takeda, N.1
  • 29
    • 35548974423 scopus 로고    scopus 로고
    • Identification of stem cells in small intestine and colon by marker gene Lgr5
    • Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007 (2007).
    • (2007) Nature , vol.449 , pp. 1003-1007
    • Barker, N.1
  • 30
    • 73049116186 scopus 로고    scopus 로고
    • +ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro
    • +ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25-36 (2010).
    • (2010) Cell Stem Cell , vol.6 , pp. 25-36
    • Barker, N.1
  • 31
    • 1842529559 scopus 로고    scopus 로고
    • Capturing and profiling adult hair follicle stem cells
    • Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotechol. 22, 411-417 (2004).
    • (2004) Nature Biotechol. , vol.22 , pp. 411-417
    • Morris, R.J.1
  • 32
    • 55049112939 scopus 로고    scopus 로고
    • Lgr5 marks cycling, yet long-lived, hair follicle stem cells
    • Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genet. 40, 1291-1299 (2008).
    • (2008) Nature Genet. , vol.40 , pp. 1291-1299
    • Jaks, V.1
  • 33
    • 84864280567 scopus 로고    scopus 로고
    • Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration
    • Rompolas, P. et al. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487, 496-499 (2012).
    • (2012) Nature , vol.487 , pp. 496-499
    • Rompolas, P.1
  • 34
    • 33947104197 scopus 로고    scopus 로고
    • A single type of progenitor cell maintains normal epidermis
    • Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185-189 (2007).
    • (2007) Nature , vol.446 , pp. 185-189
    • Clayton, E.1
  • 35
    • 28644451449 scopus 로고    scopus 로고
    • Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis
    • Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med. 11, 1351-1354 (2005).
    • (2005) Nature Med. , vol.11 , pp. 1351-1354
    • Ito, M.1
  • 36
    • 80855130470 scopus 로고    scopus 로고
    • Distinct stem cells contribute to mammary gland development and maintenance
    • Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479, 189-193 (2011).
    • (2011) Nature , vol.479 , pp. 189-193
    • Van Keymeulen, A.1
  • 37
    • 30144433093 scopus 로고    scopus 로고
    • Generation of a functional mammary gland from a single stem cell
    • Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84-88 (2006).
    • (2006) Nature , vol.439 , pp. 84-88
    • Shackleton, M.1
  • 38
    • 84869084046 scopus 로고    scopus 로고
    • Multipotent and unipotent progenitors contribute to prostate postnatal development
    • Ousset, M. et al. Multipotent and unipotent progenitors contribute to prostate postnatal development. Nature Cell Biol. 14, 1131-1138 (2012).
    • (2012) Nature Cell Biol. , vol.14 , pp. 1131-1138
    • Ousset, M.1
  • 39
    • 75949096894 scopus 로고    scopus 로고
    • Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis
    • Joe, A. W. B. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nature Cell Biol. 12, 153-163 (2010).
    • (2010) Nature Cell Biol. , vol.12 , pp. 153-163
    • Joe, A.W.B.1
  • 40
    • 75949130333 scopus 로고    scopus 로고
    • Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle
    • Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S. & Tsuchida, K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nature Cell Biol. 12, 143-152 (2010).
    • (2010) Nature Cell Biol. , vol.12 , pp. 143-152
    • Uezumi, A.1    Fukada, S.2    Yamamoto, N.3    Takeda, S.4    Tsuchida, K.5
  • 41
    • 0023922373 scopus 로고
    • Purification and characterization of mouse hematopoietic stem cells
    • Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58-62 (1988).
    • (1988) Science , vol.241 , pp. 58-62
    • Spangrude, G.J.1    Heimfeld, S.2    Weissman, I.L.3
  • 42
    • 84864131103 scopus 로고    scopus 로고
    • The Lgr5 intestinal stem cell signature: Robust expression of proposed quiescent '+4' cell markers
    • Muñoz, J. et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers. EMBO J. 31, 3079-3091 (2012).
    • (2012) EMBO J. , vol.31 , pp. 3079-3091
    • Muñoz, J.1
  • 43
    • 4444290010 scopus 로고    scopus 로고
    • Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche
    • Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635-648 (2004).
    • (2004) Cell , vol.118 , pp. 635-648
    • Blanpain, C.1    Lowry, W.E.2    Geoghegan, A.3    Polak, L.4    Fuchs, E.5
  • 44
    • 65549112127 scopus 로고    scopus 로고
    • Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny
    • Pastrana, E., Cheng, L.-C. & Doetsch, F. Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc. Natl Acad. Sci. USA 106, 6387-6392 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 6387-6392
    • Pastrana, E.1    Cheng, L.-C.2    Doetsch, F.3
  • 45
    • 77649335651 scopus 로고    scopus 로고
    • Molecular signatures of quiescent, mobilized and leukemia-initiating hematopoietic stem cells
    • Forsberg, E. C. et al. Molecular signatures of quiescent, mobilized and leukemia-initiating hematopoietic stem cells. PLoS ONE 5, e8785 (2010).
    • (2010) PLoS ONE , vol.5
    • Forsberg, E.C.1
  • 46
    • 0026583746 scopus 로고
    • Cyclin A is required at two points in the human cell cycle
    • Pagano, M., Pepperkok, R., Verde, F., Ansorge, W. & Draetta, G. Cyclin A is required at two points in the human cell cycle. EMBO J. 11, 961-971 (1992).
    • (1992) EMBO J. , vol.11 , pp. 961-971
    • Pagano, M.1    Pepperkok, R.2    Verde, F.3    Ansorge, W.4    Draetta, G.5
  • 47
    • 0032547954 scopus 로고    scopus 로고
    • Cyclin E2: A novel CDK2 partner in the late G1 and S phases of the mammalian cell cycle
    • Lauper, N. et al. Cyclin E2: a novel CDK2 partner in the late G1 and S phases of the mammalian cell cycle. Oncogene 17, 2637-2643 (1998).
    • (1998) Oncogene , vol.17 , pp. 2637-2643
    • Lauper, N.1
  • 48
    • 67650638697 scopus 로고    scopus 로고
    • Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells
    • Kalaszczynska, I. et al. Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell 138, 352-365 (2009).
    • (2009) Cell , vol.138 , pp. 352-365
    • Kalaszczynska, I.1
  • 50
    • 0032506524 scopus 로고    scopus 로고
    • Control of apoptosis and mitotic spindle checkpoint by survivin
    • Li, F. et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580-584 (1998).
    • (1998) Nature , vol.396 , pp. 580-584
    • Li, F.1
  • 51
    • 84863115641 scopus 로고    scopus 로고
    • Maintenance of muscle stem-cell quiescence by microRNA-489
    • Cheung, T. H. et al. Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482, 524-528 (2012).
    • (2012) Nature , vol.482 , pp. 524-528
    • Cheung, T.H.1
  • 52
    • 79955570371 scopus 로고    scopus 로고
    • MicroRNA programs in normal and aberrant stem and progenitor cells
    • Arnold, C. P. et al. microRNA programs in normal and aberrant stem and progenitor cells. Genome Res. 21, 798-810 (2011).
    • (2011) Genome Res. , vol.21 , pp. 798-810
    • Arnold, C.P.1
  • 53
    • 79952126479 scopus 로고    scopus 로고
    • Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment
    • Zhang, L., Stokes, N., Polak, L. & Fuchs, E. Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell 8, 294-308 (2011).
    • (2011) Cell Stem Cell , vol.8 , pp. 294-308
    • Zhang, L.1    Stokes, N.2    Polak, L.3    Fuchs, E.4
  • 55
    • 76749083433 scopus 로고    scopus 로고
    • Jarid2 and PRC2, partners in regulating gene expression
    • Li, G. et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368-380 (2010).
    • (2010) Genes Dev. , vol.24 , pp. 368-380
    • Li, G.1
  • 56
    • 33646070846 scopus 로고    scopus 로고
    • A bivalent chromatin structure marks key developmental genes in embryonic stem cells
    • Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326 (2006).
    • (2006) Cell , vol.125 , pp. 315-326
    • Bernstein, B.E.1
  • 57
    • 79952220410 scopus 로고    scopus 로고
    • EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair
    • Ezhkova, E. et al. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 25, 485-498 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 485-498
    • Ezhkova, E.1
  • 58
    • 79955459714 scopus 로고    scopus 로고
    • Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells
    • Juan, A. H. et al. Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. Genes Dev. 25, 789-794 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 789-794
    • Juan, A.H.1
  • 59
    • 33344469959 scopus 로고    scopus 로고
    • The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion
    • Kamminga, L. M. et al. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 107, 2170-2179 (2006).
    • (2006) Blood , vol.107 , pp. 2170-2179
    • Kamminga, L.M.1
  • 60
    • 84868340057 scopus 로고    scopus 로고
    • Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence-like cell cycle arrest
    • Hidalgo, I. et al. Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence-like cell cycle arrest. Cell Stem Cell 11, 649-662 (2012).
    • (2012) Cell Stem Cell , vol.11 , pp. 649-662
    • Hidalgo, I.1
  • 61
    • 80052298366 scopus 로고    scopus 로고
    • Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage
    • Lien, W.-H. et al. Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage. Cell Stem Cell 9, 219-232 (2011).
    • (2011) Cell Stem Cell , vol.9 , pp. 219-232
    • Lien, W.-H.1
  • 62
    • 84876076090 scopus 로고    scopus 로고
    • Ezh2 maintains a key phase of muscle satellite cell expansion but does not regulate terminal differentiation
    • Woodhouse, S., Pugazhendhi, D., Brien, P. & Pell, J. M. Ezh2 maintains a key phase of muscle satellite cell expansion but does not regulate terminal differentiation. J. Cell. Sci. 126, 565-579 (2013).
    • (2013) J. Cell. Sci. , vol.126 , pp. 565-579
    • Woodhouse, S.1    Pugazhendhi, D.2    Brien, P.3    Pell, J.M.4
  • 63
    • 34447098370 scopus 로고    scopus 로고
    • A chromatin landmark and transcription initiation at most promoters in human cells
    • Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77-88 (2007).
    • (2007) Cell , vol.130 , pp. 77-88
    • Guenther, M.G.1    Levine, S.S.2    Boyer, L.A.3    Jaenisch, R.4    Young, R.A.5
  • 64
    • 58049216794 scopus 로고    scopus 로고
    • P53 regulates hematopoietic stem cell quiescence
    • Liu, Y. et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4, 37-48 (2009).
    • (2009) Cell Stem Cell , vol.4 , pp. 37-48
    • Liu, Y.1
  • 65
    • 0034629129 scopus 로고    scopus 로고
    • cip1/waf1
    • cip1/waf1. Science 287, 1804-1808 (2000).
    • (2000) Science , vol.287 , pp. 1804-1808
    • Cheng, T.1
  • 66
    • 0029033861 scopus 로고
    • The retinoblastoma protein and cell cycle control
    • Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323-330 (1995).
    • (1995) Cell , vol.81 , pp. 323-330
    • Weinberg, R.A.1
  • 67
    • 0034306996 scopus 로고    scopus 로고
    • The Rb/E2F pathway: Expanding roles and emerging paradigms
    • Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393-2409 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 2393-2409
    • Harbour, J.W.1    Dean, D.C.2
  • 68
    • 75649109727 scopus 로고    scopus 로고
    • Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes
    • Jacques, T. S. et al. Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. EMBO J. 29, 222-235 (2010).
    • (2010) EMBO J. , vol.29 , pp. 222-235
    • Jacques, T.S.1
  • 69
    • 0033635597 scopus 로고    scopus 로고
    • 1 control causing immortalization and increased cell turnover under growth-restricting conditions
    • 1 control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev. 14, 3051-3064 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 3051-3064
    • Dannenberg, J.H.1    Van Rossum, A.2    Schuijff, L.3    Te Riele, H.4
  • 70
    • 79957608573 scopus 로고    scopus 로고
    • Rb1 gene inactivation expands satellite cell and postnatal myoblast pools
    • Hosoyama, T., Nishijo, K., Prajapati, S. I., Li, G. & Keller, C. Rb1 gene inactivation expands satellite cell and postnatal myoblast pools. J. Biol. Chem. 286, 19556-19564 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 19556-19564
    • Hosoyama, T.1    Nishijo, K.2    Prajapati, S.I.3    Li, G.4    Keller, C.5
  • 71
    • 52949114971 scopus 로고    scopus 로고
    • Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family
    • Viatour, P. et al. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell 3, 416-428 (2008).
    • (2008) Cell Stem Cell , vol.3 , pp. 416-428
    • Viatour, P.1
  • 72
    • 15444377643 scopus 로고    scopus 로고
    • P21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity
    • Kippin, T. E. & Martens, D. J. & van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 19, 756-767 (2005).
    • (2005) Genes Dev. , vol.19 , pp. 756-767
    • Kippin, T.E.1    Martens, D.J.2    Van Der Kooy, D.3
  • 74
    • 80052289298 scopus 로고    scopus 로고
    • P57 is required for quiescence and maintenance of adult hematopoietic stem cells
    • Matsumoto, A. et al. p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell 9, 262-271 (2011).
    • (2011) Cell Stem Cell , vol.9 , pp. 262-271
    • Matsumoto, A.1
  • 75
    • 80052281899 scopus 로고    scopus 로고
    • Kip1 cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70
    • Kip1 cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell 9, 247-261 (2011).
    • (2011) Cell Stem Cell , vol.9 , pp. 247-261
    • Zou, P.1
  • 76
    • 24344443668 scopus 로고    scopus 로고
    • The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis
    • Luo, D., Renault, V. M. & Rando, T. A. The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin. Cell Dev. Biol. 16, 612-622 (2005).
    • (2005) Semin. Cell Dev. Biol. , vol.16 , pp. 612-622
    • Luo, D.1    Renault, V.M.2    Rando, T.A.3
  • 77
    • 0033617522 scopus 로고    scopus 로고
    • Notch signaling: Cell fate control and signal integration in development
    • Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770-776 (1999).
    • (1999) Science , vol.284 , pp. 770-776
    • Artavanis-Tsakonas, S.1    Rand, M.D.2    Lake, R.J.3
  • 78
    • 84862942273 scopus 로고    scopus 로고
    • Notch signaling is necessary to maintain quiescence in adult muscle stem cells
    • Bjornson, C. R. R. et al. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30, 232-242 (2012).
    • (2012) Stem Cells , vol.30 , pp. 232-242
    • Bjornson, C.R.R.1
  • 79
    • 84856118451 scopus 로고    scopus 로고
    • A critical requirement for Notch signaling in maintenance of the quiescent skeletal muscle stem cell state
    • Mourikis, P. et al. A critical requirement for Notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30, 243-252 (2012).
    • (2012) Stem Cells , vol.30 , pp. 243-252
    • Mourikis, P.1
  • 80
    • 77953511847 scopus 로고    scopus 로고
    • Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells
    • Chapouton, P. et al. Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells. J. Neurosci. 30, 7961-7974 (2010).
    • (2010) J. Neurosci. , vol.30 , pp. 7961-7974
    • Chapouton, P.1
  • 81
    • 41449089457 scopus 로고    scopus 로고
    • Canonical Notch signaling is dispensable for the maintenance of adult hematopoietic stem cells
    • Maillard, I. et al. Canonical Notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2, 356-366 (2008).
    • (2008) Cell Stem Cell , vol.2 , pp. 356-366
    • Maillard, I.1
  • 82
    • 40649107714 scopus 로고    scopus 로고
    • Role of the Notch ligand Delta1 in embryonic and adult mouse epidermis
    • Estrach, S., Cordes, R., Hozumi, K., Gossler, A. & Watt, F. M. Role of the Notch ligand Delta1 in embryonic and adult mouse epidermis. J. Invest. Dermatol. 128, 825-832 (2007).
    • (2007) J. Invest. Dermatol. , vol.128 , pp. 825-832
    • Estrach, S.1    Cordes, R.2    Hozumi, K.3    Gossler, A.4    Watt, F.M.5
  • 83
    • 79951784680 scopus 로고    scopus 로고
    • Asymmetric cell divisions promote Notch-dependent epidermal differentiation
    • Williams, S. E., Beronja, S., Pasolli, H. A. & Fuchs, E. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470, 353-358 (2011).
    • (2011) Nature , vol.470 , pp. 353-358
    • Williams, S.E.1    Beronja, S.2    Pasolli, H.A.3    Fuchs, E.4
  • 84
    • 0036744815 scopus 로고    scopus 로고
    • The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis
    • Conboy, I. M. & Rando, T. A. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 3, 397-409 (2002).
    • (2002) Dev. Cell , vol.3 , pp. 397-409
    • Conboy, I.M.1    Rando, T.A.2
  • 85
    • 0027751663 scopus 로고
    • The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
    • Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854 (1993).
    • (1993) Cell , vol.75 , pp. 843-854
    • Lee, R.C.1    Feinbaum, R.L.2    Ambros, V.3
  • 87
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: Genomics, biogenesis, mechanism, and function
    • Bartel, D. P. microRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 (2004).
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 88
    • 84870894496 scopus 로고    scopus 로고
    • Attenuation of miR-126 activity expands HSC in vivo without exhaustion
    • Lechman, E. R. et al. Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell 11, 799-811 (2012).
    • (2012) Cell Stem Cell , vol.11 , pp. 799-811
    • Lechman, E.R.1
  • 89
    • 77956270732 scopus 로고    scopus 로고
    • MicroRNA miR-125a controls hematopoietic stem cell number
    • Guo, S. et al. microRNA miR-125a controls hematopoietic stem cell number. Proc. Natl Acad. Sci. USA 107, 14229-14234 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 14229-14234
    • Guo, S.1
  • 90
    • 33644525948 scopus 로고    scopus 로고
    • The involvement of cellular proliferation status in the expression of the human proto-oncogene DEK
    • Ageberg, M., Gullberg, U. & Lindmark, A. The involvement of cellular proliferation status in the expression of the human proto-oncogene DEK. Haematologica 91, 268-269 (2006).
    • (2006) Haematologica , vol.91 , pp. 268-269
    • Ageberg, M.1    Gullberg, U.2    Lindmark, A.3
  • 91
    • 84863623509 scopus 로고    scopus 로고
    • Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules
    • Crist, C. G., Montarras, D. & Buckingham, M. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 11, 118-126 (2012).
    • (2012) Cell Stem Cell , vol.11 , pp. 118-126
    • Crist, C.G.1    Montarras, D.2    Buckingham, M.3
  • 92
    • 84863230221 scopus 로고    scopus 로고
    • Alternative polyadenylation mediates microRNA regulation of muscle stem cell function
    • Boutet, S. C. et al. Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell 10, 327-336 (2012).
    • (2012) Cell Stem Cell , vol.10 , pp. 327-336
    • Boutet, S.C.1
  • 93
    • 84155163076 scopus 로고    scopus 로고
    • Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206
    • Miura, P., Amirouche, A., Clow, C., Bélanger, G. & Jasmin, B. J. Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206. J. Neurochem. 120, 230-238 (2012).
    • (2012) J. Neurochem. , vol.120 , pp. 230-238
    • Miura, P.1    Amirouche, A.2    Clow, C.3    Bélanger, G.4    Jasmin, B.J.5
  • 94
    • 46249092601 scopus 로고    scopus 로고
    • Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites
    • Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. & Burge, C. B. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643-1647 (2008).
    • (2008) Science , vol.320 , pp. 1643-1647
    • Sandberg, R.1    Neilson, J.R.2    Sarma, A.3    Sharp, P.A.4    Burge, C.B.5
  • 95
    • 68749113985 scopus 로고    scopus 로고
    • Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells
    • Mayr, C. & Bartel, D. P. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673-684 (2009).
    • (2009) Cell , vol.138 , pp. 673-684
    • Mayr, C.1    Bartel, D.P.2
  • 96
    • 70350569286 scopus 로고    scopus 로고
    • Mechanisms of alternative splicing regulation: Insights from molecular and genomics approaches
    • Chen, M. & Manley, J. L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nature Rev. Mol. Cell. Biol. 10, 741-754 (2009).
    • (2009) Nature Rev. Mol. Cell. Biol. , vol.10 , pp. 741-754
    • Chen, M.1    Manley, J.L.2
  • 97
    • 80052979140 scopus 로고    scopus 로고
    • Mechanisms and consequences of alternative polyadenylation
    • Di Giammartino, D. C., Nishida, K. & Manley, J. L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853-866 (2011).
    • (2011) Mol. Cell , vol.43 , pp. 853-866
    • Di Giammartino, D.C.1    Nishida, K.2    Manley, J.L.3
  • 98
    • 84877929784 scopus 로고    scopus 로고
    • All's well that ends well: Alternative polyadenylation and its implications for stem cell biology
    • Mueller, A. A., Cheung, T. H. & Rando, T. A. All's well that ends well: alternative polyadenylation and its implications for stem cell biology. Curr. Opin. Cell Biol. 25, 22-32 (2013).
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 22-32
    • Mueller, A.A.1    Cheung, T.H.2    Rando, T.A.3
  • 99
    • 77949538391 scopus 로고    scopus 로고
    • Reprogramming of 3' untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types
    • Ji, Z. & Tian, B. Reprogramming of 3' untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS ONE 4, e8419 (2009).
    • (2009) PLoS ONE , vol.4
    • Ji, Z.1    Tian, B.2
  • 100
    • 80052266532 scopus 로고    scopus 로고
    • MicroRNAs can generate thresholds in target gene expression
    • Mukherji, S. et al. microRNAs can generate thresholds in target gene expression. Nature Genet. 43, 854-859 (2011).
    • (2011) Nature Genet. , vol.43 , pp. 854-859
    • Mukherji, S.1
  • 101
    • 28944439309 scopus 로고    scopus 로고
    • Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution
    • Stark, A., Brennecke, J., Bushati, N., Russell, R. B. & Cohen, S. M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 123, 1133-1146 (2005).
    • (2005) Cell , vol.123 , pp. 1133-1146
    • Stark, A.1    Brennecke, J.2    Bushati, N.3    Russell, R.B.4    Cohen, S.M.5
  • 102
    • 29144505309 scopus 로고    scopus 로고
    • The widespread impact of mammalian microRNAs on mRNA repression and evolution
    • Farh, K. K.-H. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817-1821 (2005).
    • (2005) Science , vol.310 , pp. 1817-1821
    • Farh, K.K.-H.1
  • 103
    • 33745614062 scopus 로고    scopus 로고
    • Stem cells, ageing and the quest for immortality
    • Rando, T. A. Stem cells, ageing and the quest for immortality. Nature 441, 1080-1086 (2006).
    • (2006) Nature , vol.441 , pp. 1080-1086
    • Rando, T.A.1
  • 104
    • 33846243745 scopus 로고    scopus 로고
    • An integrated view of oxidative stress in aging: Basic mechanisms, functional effects, and pathological considerations
    • Kregel, K. C. & Zhang, H. J. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R18-R36 (2007).
    • (2007) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.292
    • Kregel, K.C.1    Zhang, H.J.2
  • 105
    • 39149086121 scopus 로고    scopus 로고
    • Stems cells and the pathways to aging and cancer
    • Rossi, D. J., Jamieson, C. H. M. & Weissman, I. L. Stems cells and the pathways to aging and cancer. Cell 132, 681-696 (2008).
    • (2008) Cell , vol.132 , pp. 681-696
    • Rossi, D.J.1    Jamieson, C.H.M.2    Weissman, I.L.3
  • 106
    • 34547660196 scopus 로고    scopus 로고
    • FoxO transcription factors and stem cell homeostasis: Insights from the hematopoietic system
    • Tothova, Z. & Gilliland, D. G. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1, 140-152 (2007).
    • (2007) Cell Stem Cell , vol.1 , pp. 140-152
    • Tothova, Z.1    Gilliland, D.G.2
  • 107
    • 33846419112 scopus 로고    scopus 로고
    • FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
    • Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325-339 (2007).
    • (2007) Cell , vol.128 , pp. 325-339
    • Tothova, Z.1
  • 108
    • 70350506802 scopus 로고    scopus 로고
    • FoxO3 regulates neural stem cell homeostasis
    • Renault, V. M. et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5, 527-539 (2009).
    • (2009) Cell Stem Cell , vol.5 , pp. 527-539
    • Renault, V.M.1
  • 109
    • 84863316388 scopus 로고    scopus 로고
    • Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity
    • Latil, M. et al. Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity. Nature Commun. 3, 903 (2012).
    • (2012) Nature Commun. , vol.3 , pp. 903
    • Latil, M.1
  • 111
    • 77956205122 scopus 로고    scopus 로고
    • The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
    • Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380-390 (2010).
    • (2010) Cell Stem Cell , vol.7 , pp. 380-390
    • Simsek, T.1
  • 112
    • 34248359065 scopus 로고    scopus 로고
    • Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia
    • Parmar, K., Mauch, P., Vergilio, J.-A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA 104, 5431-5436 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 5431-5436
    • Parmar, K.1    Mauch, P.2    Vergilio, J.-A.3    Sackstein, R.4    Down, J.D.5
  • 113
    • 78549254160 scopus 로고    scopus 로고
    • 0 state by CD34-positive cord blood cells after bone marrow transplantation
    • 0 state by CD34-positive cord blood cells after bone marrow transplantation. Exp. Hematol. 38, 1231-1240 (2010).
    • (2010) Exp. Hematol. , vol.38 , pp. 1231-1240
    • Shima, H.1
  • 115
    • 80053916176 scopus 로고    scopus 로고
    • Metabolic regulation of hematopoietic stem cells in the hypoxic niche
    • Suda, T., Takubo, K. & Semenza, G. L. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9, 298-310 (2011).
    • (2011) Cell Stem Cell , vol.9 , pp. 298-310
    • Suda, T.1    Takubo, K.2    Semenza, G.L.3
  • 116
    • 77956217067 scopus 로고    scopus 로고
    • Regulation of the HIF-1α level is essential for hematopoietic stem cells
    • Takubo, K. et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell 7, 391-402 (2010).
    • (2010) Cell Stem Cell , vol.7 , pp. 391-402
    • Takubo, K.1
  • 117
    • 84865289879 scopus 로고    scopus 로고
    • LKB1 and AMPK: Central regulators of lymphocyte metabolism and function
    • Blagih, J., Krawczyk, C. M. & Jones, R. G. LKB1 and AMPK: central regulators of lymphocyte metabolism and function. Immunol. Rev. 249, 59-71 (2012).
    • (2012) Immunol. Rev. , vol.249 , pp. 59-71
    • Blagih, J.1    Krawczyk, C.M.2    Jones, R.G.3
  • 118
    • 78649851511 scopus 로고    scopus 로고
    • The Lkb1 metabolic sensor maintains haematopoietic stem cell survival
    • Gurumurthy, S. et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468, 659-663 (2010).
    • (2010) Nature , vol.468 , pp. 659-663
    • Gurumurthy, S.1
  • 119
    • 78649874959 scopus 로고    scopus 로고
    • Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells
    • Gan, B. et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468, 701-704 (2010).
    • (2010) Nature , vol.468 , pp. 701-704
    • Gan, B.1
  • 120
    • 78649811793 scopus 로고    scopus 로고
    • Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
    • Nakada, D., Saunders, T. L. & Morrison, S. J. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468, 653-658 (2010).
    • (2010) Nature , vol.468 , pp. 653-658
    • Nakada, D.1    Saunders, T.L.2    Morrison, S.J.3
  • 121
    • 0034537290 scopus 로고    scopus 로고
    • Autophagy as a regulated pathway of cellular degradation
    • Klionsky, D. J. & Emr, S. D. Autophagy as a regulated pathway of cellular degradation. Science 290, 1717-1721 (2000).
    • (2000) Science , vol.290 , pp. 1717-1721
    • Klionsky, D.J.1    Emr, S.D.2
  • 122
    • 79952728102 scopus 로고    scopus 로고
    • The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance
    • Mortensen, M. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 208, 455-467 (2011).
    • (2011) J. Exp. Med. , vol.208 , pp. 455-467
    • Mortensen, M.1
  • 123
    • 13944249618 scopus 로고    scopus 로고
    • DNA repair, genome stability, and aging
    • Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497-512 (2005).
    • (2005) Cell , vol.120 , pp. 497-512
    • Lombard, D.B.1
  • 124
  • 125
    • 38049155945 scopus 로고    scopus 로고
    • Regulation of DNA double-strand break repair pathway choice
    • Shrivastav, M., Haro, L. P. D. & Nickoloff, J. A. Regulation of DNA double-strand break repair pathway choice. Cell Res. 18, 134-147 (2008).
    • (2008) Cell Res. , vol.18 , pp. 134-147
    • Shrivastav, M.1    Haro, L.P.D.2    Nickoloff, J.A.3
  • 126
    • 77956251480 scopus 로고    scopus 로고
    • Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis
    • Mohrin, M. et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7, 174-185 (2010).
    • (2010) Cell Stem Cell , vol.7 , pp. 174-185
    • Mohrin, M.1
  • 127
    • 0016692602 scopus 로고
    • Mutation selection and the natural history of cancer
    • Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197-200 (1975).
    • (1975) Nature , vol.255 , pp. 197-200
    • Cairns, J.1
  • 129
    • 84856096903 scopus 로고    scopus 로고
    • A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division
    • Rocheteau, P., Gayraud-Morel, B., Siegl-Cachedenier, I., Blasco, M. A. & Tajbakhsh, S. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 148, 112-125 (2012).
    • (2012) Cell , vol.148 , pp. 112-125
    • Rocheteau, P.1    Gayraud-Morel, B.2    Siegl-Cachedenier, I.3    Blasco, M.A.4    Tajbakhsh, S.5
  • 130
    • 73849129204 scopus 로고    scopus 로고
    • Identification of sister chromatids by DNA template strand sequences
    • Falconer, E. et al. Identification of sister chromatids by DNA template strand sequences. Nature 463, 93-97 (2009).
    • (2009) Nature , vol.463 , pp. 93-97
    • Falconer, E.1
  • 131
    • 0036591968 scopus 로고    scopus 로고
    • Intestinal stem cells protect their genome by selective segregation of template DNA strands
    • Potten, C. S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell. Sci. 115, 2381-2388 (2002).
    • (2002) J. Cell. Sci. , vol.115 , pp. 2381-2388
    • Potten, C.S.1    Owen, G.2    Booth, D.3
  • 132
    • 24144490682 scopus 로고    scopus 로고
    • Support for the immortal strand hypothesis: Neural stem cells partition DNA asymmetrically in vitro
    • Karpowicz, P. et al. Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. J. Cell Biol. 170, 721-732 (2005).
    • (2005) J. Cell Biol. , vol.170 , pp. 721-732
    • Karpowicz, P.1
  • 133
    • 34250740943 scopus 로고    scopus 로고
    • The immortal strand hypothesis: Segregation and reconstruction
    • Rando, T. A. The immortal strand hypothesis: segregation and reconstruction. Cell 129, 1239-1243 (2007).
    • (2007) Cell , vol.129 , pp. 1239-1243
    • Rando, T.A.1
  • 134
    • 34250728609 scopus 로고    scopus 로고
    • Immortal strands? Give me a break
    • Lansdorp, P. M. Immortal strands? Give me a break. Cell 129, 1244-1247 (2007).
    • (2007) Cell , vol.129 , pp. 1244-1247
    • Lansdorp, P.M.1
  • 135
    • 34548601610 scopus 로고    scopus 로고
    • Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU
    • Kiel, M. J. et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449, 238-242 (2007).
    • (2007) Nature , vol.449 , pp. 238-242
    • Kiel, M.J.1
  • 136
    • 56249107718 scopus 로고    scopus 로고
    • The majority of multipotent epidermal stem cells do not protect their genome by asymmetrical chromosome segregation
    • Sotiropoulou, P. A., Candi, A. & Blanpain, C. The majority of multipotent epidermal stem cells do not protect their genome by asymmetrical chromosome segregation. Stem Cells 26, 2964-2973 (2008).
    • (2008) Stem Cells , vol.26 , pp. 2964-2973
    • Sotiropoulou, P.A.1    Candi, A.2    Blanpain, C.3
  • 137
    • 0024797066 scopus 로고
    • Random segregation of DNA strands in epidermal basal cells
    • Kuroki, T. & Murakami, Y. Random segregation of DNA strands in epidermal basal cells. Jpn J. Cancer Res. 80, 637-642 (1989).
    • (1989) Jpn J. Cancer Res. , vol.80 , pp. 637-642
    • Kuroki, T.1    Murakami, Y.2
  • 138
    • 79952751557 scopus 로고    scopus 로고
    • Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes
    • Schepers, A. G., Vries, R., van den Born, M., van de Wetering, M. & Clevers, H. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J. 30, 1104-1109 (2011).
    • (2011) EMBO J. , vol.30 , pp. 1104-1109
    • Schepers, A.G.1    Vries, R.2    Van Den Born, M.3    Van De Wetering, M.4    Clevers, H.5
  • 139
    • 33947224690 scopus 로고    scopus 로고
    • Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression
    • Linsley, P. S. et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol. Cell. Biol. 27, 2240-2252 (2007).
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 2240-2252
    • Linsley, P.S.1
  • 140
    • 70249104647 scopus 로고    scopus 로고
    • Defining mechanisms that regulate RNA polymerase II transcription in vivo
    • Fuda, N. J., Ardehali, M. B. & Lis, J. T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186-192 (2009).
    • (2009) Nature , vol.461 , pp. 186-192
    • Fuda, N.J.1    Ardehali, M.B.2    Lis, J.T.3
  • 141
    • 14444275279 scopus 로고    scopus 로고
    • DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs
    • Wada, T. et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343-356 (1998).
    • (1998) Genes Dev. , vol.12 , pp. 343-356
    • Wada, T.1
  • 142
    • 0033515521 scopus 로고    scopus 로고
    • NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation
    • Yamaguchi, Y. et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41-51 (1999).
    • (1999) Cell , vol.97 , pp. 41-51
    • Yamaguchi, Y.1
  • 143
    • 0029959881 scopus 로고    scopus 로고
    • Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase
    • Marshall, N. F., Peng, J., Xie, Z. & Price, D. H. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J. Biol. Chem. 271, 27176-27183 (1996).
    • (1996) J. Biol. Chem. , vol.271 , pp. 27176-27183
    • Marshall, N.F.1    Peng, J.2    Xie, Z.3    Price, D.H.4
  • 144
    • 77951920690 scopus 로고    scopus 로고
    • C-Myc regulates transcriptional pause release
    • Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432-445 (2010).
    • (2010) Cell , vol.141 , pp. 432-445
    • Rahl, P.B.1
  • 145
    • 44349116852 scopus 로고    scopus 로고
    • The transition from transcriptional initiation to elongation
    • Wade, J. T. & Struhl, K. The transition from transcriptional initiation to elongation. Curr. Opin. Genet. Dev. 18, 130-136 (2008).
    • (2008) Curr. Opin. Genet. Dev. , vol.18 , pp. 130-136
    • Wade, J.T.1    Struhl, K.2
  • 146
    • 79955795581 scopus 로고    scopus 로고
    • Paused RNA polymerase II as a developmental checkpoint
    • Levine, M. Paused RNA polymerase II as a developmental checkpoint. Cell 145, 502-511 (2011).
    • (2011) Cell , vol.145 , pp. 502-511
    • Levine, M.1
  • 147
    • 77956309058 scopus 로고    scopus 로고
    • Adult stem cells exhibit global suppression of RNA polymerase II serine-2 phosphorylation
    • Freter, R., Osawa, M. & Nishikawa, S. Adult stem cells exhibit global suppression of RNA polymerase II serine-2 phosphorylation. Stem cells 28, 1571-1580 (2010).
    • (2010) Stem Cells , vol.28 , pp. 1571-1580
    • Freter, R.1    Osawa, M.2    Nishikawa, S.3
  • 148
    • 79551683487 scopus 로고    scopus 로고
    • Cellular senescence: Putting the paradoxes in perspective
    • Campisi, J. Cellular senescence: putting the paradoxes in perspective. Curr. Opin. Genet. Dev. 21, 107-112 (2011).
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 107-112
    • Campisi, J.1
  • 149
    • 84891713034 scopus 로고    scopus 로고
    • Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor
    • Coppé, J.-P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, e301 (2008).
    • (2008) PLoS Biol. , vol.6
    • Coppé, J.-P.1
  • 150
    • 80855138775 scopus 로고    scopus 로고
    • Ink4a-positive senescent cells delays ageing-associated disorders
    • Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232-236 (2011).
    • (2011) Nature , vol.479 , pp. 232-236
    • Baker, D.J.1
  • 151
    • 0036346608 scopus 로고    scopus 로고
    • Plasticity and reprogramming of differentiated cells in amphibian regeneration
    • Brockes, J. P. & Kumar, A. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nature Rev. Mol. Cell Biol. 3, 566-574 (2002).
    • (2002) Nature Rev. Mol. Cell Biol. , vol.3 , pp. 566-574
    • Brockes, J.P.1    Kumar, A.2
  • 152
    • 0034651994 scopus 로고    scopus 로고
    • Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema
    • Kumar, A., Velloso, C. P., Imokawa, Y. & Brockes, J. P. Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev. Biol. 218, 125-136 (2000).
    • (2000) Dev. Biol. , vol.218 , pp. 125-136
    • Kumar, A.1    Velloso, C.P.2    Imokawa, Y.3    Brockes, J.P.4
  • 153
    • 0035923683 scopus 로고    scopus 로고
    • Mammalian myotube dedifferentiation induced by newt regeneration extract
    • McGann, C. J., Odelberg, S. J. & Keating, M. T. Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc. Natl Acad. Sci. USA 98, 13699-13704 (2001).
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 13699-13704
    • McGann, C.J.1    Odelberg, S.J.2    Keating, M.T.3
  • 154
    • 0028819587 scopus 로고
    • Differential expression of myogenic regulatory genes and Msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs
    • Simon, H.-G. et al. Differential expression of myogenic regulatory genes and Msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs. Dev. Dynam. 202, 1-12 (1995).
    • (1995) Dev. Dynam. , vol.202 , pp. 1-12
    • Simon, H.-G.1
  • 155
    • 0034703978 scopus 로고    scopus 로고
    • Dedifferentiation of mammalian myotubes induced by msx1
    • Odelberg, S. J., Kollhoff, A. & Keating, M. T. Dedifferentiation of mammalian myotubes induced by msx1. Cell 103, 1099-1109 (2000).
    • (2000) Cell , vol.103 , pp. 1099-1109
    • Odelberg, S.J.1    Kollhoff, A.2    Keating, M.T.3
  • 156
    • 0041966056 scopus 로고    scopus 로고
    • Reversal of human cellular senescence: Roles of the p53 and p16 pathways
    • Beauséjour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212-4222 (2003).
    • (2003) EMBO J. , vol.22 , pp. 4212-4222
    • Beauséjour, C.M.1
  • 157
    • 77956247987 scopus 로고    scopus 로고
    • Transient Inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle
    • Pajcini, K. V., Corbel, S. Y., Sage, J., Pomerantz, J. H. & Blau, H. M. Transient Inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell 7, 198-213 (2010).
    • (2010) Cell Stem Cell , vol.7 , pp. 198-213
    • Pajcini, K.V.1    Corbel, S.Y.2    Sage, J.3    Pomerantz, J.H.4    Blau, H.M.5
  • 158
    • 84856078085 scopus 로고    scopus 로고
    • A family business: Stem cell progeny join the niche to regulate homeostasis
    • Hsu, Y.-C. & Fuchs, E. A family business: stem cell progeny join the niche to regulate homeostasis. Nature Rev. Mol. Cell Biol. 13, 103-114 (2012).
    • (2012) Nature Rev. Mol. Cell Biol. , vol.13 , pp. 103-114
    • Hsu, Y.-C.1    Fuchs, E.2
  • 159
    • 0018102359 scopus 로고
    • The relationship between the spleen colony-forming cell and the haemopoietic stem cell
    • Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7-25 (1978).
    • (1978) Blood Cells , vol.4 , pp. 7-25
    • Schofield, R.1
  • 160
    • 84857985977 scopus 로고    scopus 로고
    • What does the concept of the stem cell niche really mean today?
    • Lander, A. D. et al. What does the concept of the stem cell niche really mean today? BMC Biol. 10, 19 (2012).
    • (2012) BMC Biol. , vol.10 , pp. 19
    • Lander, A.D.1
  • 161
    • 34547924424 scopus 로고    scopus 로고
    • Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis
    • Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807-810 (2007).
    • (2007) Science , vol.317 , pp. 807-810
    • Brack, A.S.1
  • 162
    • 13944261231 scopus 로고    scopus 로고
    • Rejuvenation of aged progenitor cells by exposure to a young systemic environment
    • Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760-764 (2005).
    • (2005) Nature , vol.433 , pp. 760-764
    • Conboy, I.M.1
  • 163
    • 84856147560 scopus 로고    scopus 로고
    • Endothelial and perivascular cells maintain haematopoietic stem cells
    • Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457-462 (2012).
    • (2012) Nature , vol.481 , pp. 457-462
    • Ding, L.1    Saunders, T.L.2    Enikolopov, G.3    Morrison, S.J.4
  • 164
    • 0344827208 scopus 로고    scopus 로고
    • Notch-mediated restoration of regenerative potential to aged muscle
    • Conboy, I. M., Conboy, M. J., Smythe, G. M. & Rando, T. A. Notch-mediated restoration of regenerative potential to aged muscle. Science 302, 1575-1577 (2003).
    • (2003) Science , vol.302 , pp. 1575-1577
    • Conboy, I.M.1    Conboy, M.J.2    Smythe, G.M.3    Rando, T.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.