메뉴 건너뛰기




Volumn 24, Issue 8, 2014, Pages 479-487

Surviving change: The metabolic journey of hematopoietic stem cells

Author keywords

Blood; Fatty acid oxidation; Glycolysis; Hematopoietic stem cells; Quiescence; Reactive oxygen species

Indexed keywords

ADENOSINE TRIPHOSPHATE; FATTY ACID; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; LIVER KINASE B1; MAMMALIAN TARGET OF RAPAMYCIN; PHOSPHATIDYLINOSITOL 3 KINASE; PHOSPHOTRANSFERASE; UNCLASSIFIED DRUG;

EID: 84904739356     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2014.04.001     Document Type: Review
Times cited : (107)

References (83)
  • 1
    • 39349096526 scopus 로고    scopus 로고
    • Hematopoiesis: an evolving paradigm for stem cell biology
    • Orkin S.H., Zon L.I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008, 132:631-644.
    • (2008) Cell , vol.132 , pp. 631-644
    • Orkin, S.H.1    Zon, L.I.2
  • 2
    • 84855885803 scopus 로고    scopus 로고
    • Cell cycle regulation in hematopoietic stem cells
    • Pietras E.M., et al. Cell cycle regulation in hematopoietic stem cells. J. Cell Biol. 2011, 195:709-720.
    • (2011) J. Cell Biol. , vol.195 , pp. 709-720
    • Pietras, E.M.1
  • 3
    • 28544436371 scopus 로고    scopus 로고
    • Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates
    • Passegué E., et al. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 2005, 202:1599-1611.
    • (2005) J. Exp. Med. , vol.202 , pp. 1599-1611
    • Passegué, E.1
  • 4
    • 56549128268 scopus 로고    scopus 로고
    • Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair
    • Wilson A., et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008, 135:1118-1129.
    • (2008) Cell , vol.135 , pp. 1118-1129
    • Wilson, A.1
  • 5
    • 60149104597 scopus 로고    scopus 로고
    • Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells
    • Foudi A., et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat. Biotechnol. 2009, 27:84-90.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 84-90
    • Foudi, A.1
  • 6
    • 84876909069 scopus 로고    scopus 로고
    • The ageing haematopoietic stem cell compartment
    • Geiger H., et al. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 2013, 13:376-389.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 376-389
    • Geiger, H.1
  • 7
    • 39149086121 scopus 로고    scopus 로고
    • Stems cells and the pathways to aging and cancer
    • Rossi D.J., et al. Stems cells and the pathways to aging and cancer. Cell 2008, 132:681-696.
    • (2008) Cell , vol.132 , pp. 681-696
    • Rossi, D.J.1
  • 8
    • 84875953755 scopus 로고    scopus 로고
    • Stem cell metabolism in tissue development and aging
    • Shyh-Chang N., et al. Stem cell metabolism in tissue development and aging. Development 2013, 140:2535-2547.
    • (2013) Development , vol.140 , pp. 2535-2547
    • Shyh-Chang, N.1
  • 9
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: the metabolic requirements of cell proliferation
    • Vander Heiden M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1
  • 10
    • 38349132624 scopus 로고    scopus 로고
    • Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation
    • Orford K.W., Scadden D.T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat. Rev. Genet. 2008, 9:115-128.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 115-128
    • Orford, K.W.1    Scadden, D.T.2
  • 11
    • 84887527463 scopus 로고    scopus 로고
    • Resilient and resourceful: genome maintenance strategies in hematopoietic stem cells
    • Bakker S.T., Passegué E. Resilient and resourceful: genome maintenance strategies in hematopoietic stem cells. Exp. Hematol. 2013, 41:915-923.
    • (2013) Exp. Hematol. , vol.41 , pp. 915-923
    • Bakker, S.T.1    Passegué, E.2
  • 12
    • 77956205122 scopus 로고    scopus 로고
    • The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
    • Simsek T., et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010, 7:380-390.
    • (2010) Cell Stem Cell , vol.7 , pp. 380-390
    • Simsek, T.1
  • 13
    • 79955698235 scopus 로고    scopus 로고
    • Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging
    • Norddahl G.L., et al. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell 2011, 8:499-510.
    • (2011) Cell Stem Cell , vol.8 , pp. 499-510
    • Norddahl, G.L.1
  • 14
    • 84872011926 scopus 로고    scopus 로고
    • Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
    • Takubo K., et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013, 12:49-61.
    • (2013) Cell Stem Cell , vol.12 , pp. 49-61
    • Takubo, K.1
  • 15
    • 84868347607 scopus 로고    scopus 로고
    • Metabolic plasticity in stem cell homeostasis and differentiation
    • Folmes C.D., et al. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2012, 11:596-606.
    • (2012) Cell Stem Cell , vol.11 , pp. 596-606
    • Folmes, C.D.1
  • 16
    • 34248359065 scopus 로고    scopus 로고
    • Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia
    • Parmar K., et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:5431-5436.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 5431-5436
    • Parmar, K.1
  • 17
    • 73949121249 scopus 로고    scopus 로고
    • The hematopoietic stem cell niche: low in oxygen but a nice place to be
    • Eliasson P., Jönsson J.I. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J. Cell. Physiol. 2010, 222:17-22.
    • (2010) J. Cell. Physiol. , vol.222 , pp. 17-22
    • Eliasson, P.1    Jönsson, J.I.2
  • 18
    • 80053916176 scopus 로고    scopus 로고
    • Metabolic regulation of hematopoietic stem cells in the hypoxic niche
    • Suda T., et al. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011, 9:298-310.
    • (2011) Cell Stem Cell , vol.9 , pp. 298-310
    • Suda, T.1
  • 19
    • 0034907875 scopus 로고    scopus 로고
    • 2 distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models
    • 2 distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys. J. 2001, 81:685-696.
    • (2001) Biophys. J. , vol.81 , pp. 685-696
    • Chow, D.C.1
  • 20
    • 77956217067 scopus 로고    scopus 로고
    • Regulation of the HIF-1alpha level is essential for hematopoietic stem cells
    • Takubo K., et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 2010, 7:391-402.
    • (2010) Cell Stem Cell , vol.7 , pp. 391-402
    • Takubo, K.1
  • 21
    • 84877575509 scopus 로고    scopus 로고
    • Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment
    • Nombela-Arrieta C., et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat. Cell Biol. 2013, 15:533-543.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 533-543
    • Nombela-Arrieta, C.1
  • 22
    • 0035955663 scopus 로고    scopus 로고
    • Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor necrosis factor-alpha in contrast to desferroxamine and phenylarsine oxide
    • Sandau K.B., et al. Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor necrosis factor-alpha in contrast to desferroxamine and phenylarsine oxide. J. Biol. Chem. 2001, 276:39805-39811.
    • (2001) J. Biol. Chem. , vol.276 , pp. 39805-39811
    • Sandau, K.B.1
  • 23
    • 54349118907 scopus 로고    scopus 로고
    • Oxygen-independent stabilization of hypoxia inducible factor (HIF)-1 during RSV infection
    • Haeberle H.A., et al. Oxygen-independent stabilization of hypoxia inducible factor (HIF)-1 during RSV infection. PLoS ONE 2008, 3:e3352.
    • (2008) PLoS ONE , vol.3
    • Haeberle, H.A.1
  • 24
    • 80053926733 scopus 로고    scopus 로고
    • Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78
    • Miharada K., et al. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell 2011, 9:330-344.
    • (2011) Cell Stem Cell , vol.9 , pp. 330-344
    • Miharada, K.1
  • 25
    • 84871001227 scopus 로고    scopus 로고
    • Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells
    • Kocabas F., et al. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 2012, 120:4963-4972.
    • (2012) Blood , vol.120 , pp. 4963-4972
    • Kocabas, F.1
  • 26
    • 35848948403 scopus 로고    scopus 로고
    • Imaging hematopoietic precursor division in real time
    • Wu M., et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell 2007, 1:541-554.
    • (2007) Cell Stem Cell , vol.1 , pp. 541-554
    • Wu, M.1
  • 27
    • 84875465199 scopus 로고    scopus 로고
    • Cancer metabolism: fatty acid oxidation in the limelight
    • Carracedo A., et al. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 2013, 13:227-232.
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 227-232
    • Carracedo, A.1
  • 28
    • 34547136480 scopus 로고    scopus 로고
    • New therapeutic target for metabolic syndrome: PPARdelta
    • Takahashi S., et al. New therapeutic target for metabolic syndrome: PPARdelta. Endocr. J. 2007, 54:347-357.
    • (2007) Endocr. J. , vol.54 , pp. 347-357
    • Takahashi, S.1
  • 29
    • 84868632060 scopus 로고    scopus 로고
    • A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
    • Ito K., et al. A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 2012, 18:1350-1358.
    • (2012) Nat. Med. , vol.18 , pp. 1350-1358
    • Ito, K.1
  • 30
    • 44349166602 scopus 로고    scopus 로고
    • PML targeting eradicates quiescent leukaemia-initiating cells
    • Ito K., et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008, 453:1072-1078.
    • (2008) Nature , vol.453 , pp. 1072-1078
    • Ito, K.1
  • 31
    • 84865959001 scopus 로고    scopus 로고
    • A metabolic prosurvival role for PML in breast cancer
    • Carracedo A., et al. A metabolic prosurvival role for PML in breast cancer. J. Clin. Invest. 2012, 122:3088-3100.
    • (2012) J. Clin. Invest. , vol.122 , pp. 3088-3100
    • Carracedo, A.1
  • 32
    • 78650906609 scopus 로고    scopus 로고
    • Regulation of E2Fs and senescence by PML nuclear bodies
    • Vernier M., et al. Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev. 2011, 25:41-50.
    • (2011) Genes Dev. , vol.25 , pp. 41-50
    • Vernier, M.1
  • 33
  • 34
    • 67349161638 scopus 로고    scopus 로고
    • Hematopoietic stem cell ageing is uncoupled from p16 INK4A-mediated senescence
    • Attema J.L., et al. Hematopoietic stem cell ageing is uncoupled from p16 INK4A-mediated senescence. Oncogene 2009, 28:2238-2243.
    • (2009) Oncogene , vol.28 , pp. 2238-2243
    • Attema, J.L.1
  • 35
    • 77949907107 scopus 로고    scopus 로고
    • P53-mediated hematopoietic stem and progenitor cell competition
    • Bondar T., Medzhitov R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 2010, 6:309-322.
    • (2010) Cell Stem Cell , vol.6 , pp. 309-322
    • Bondar, T.1    Medzhitov, R.2
  • 36
    • 33745600820 scopus 로고    scopus 로고
    • Asymmetric and symmetric stem-cell divisions in development and cancer
    • Morrison S.J., Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006, 441:1068-1074.
    • (2006) Nature , vol.441 , pp. 1068-1074
    • Morrison, S.J.1    Kimble, J.2
  • 37
    • 84883489939 scopus 로고    scopus 로고
    • Mitochondrial regulation in pluripotent stem cells
    • Xu X., et al. Mitochondrial regulation in pluripotent stem cells. Cell Metab. 2013, 18:325-332.
    • (2013) Cell Metab. , vol.18 , pp. 325-332
    • Xu, X.1
  • 38
    • 37249083079 scopus 로고    scopus 로고
    • Mitochondrial DNA replication during differentiation of murine embryonic stem cells
    • Facucho-Oliveira J.M., et al. Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J. Cell Sci. 2007, 120:4025-4034.
    • (2007) J. Cell Sci. , vol.120 , pp. 4025-4034
    • Facucho-Oliveira, J.M.1
  • 39
    • 79952209101 scopus 로고    scopus 로고
    • Mitochondrial rejuvenation after induced pluripotency
    • Suhr S.T., et al. Mitochondrial rejuvenation after induced pluripotency. PLoS ONE 2010, 5:e14095.
    • (2010) PLoS ONE , vol.5
    • Suhr, S.T.1
  • 40
    • 84872037830 scopus 로고    scopus 로고
    • Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation
    • Yu W.M., et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 2013, 12:62-74.
    • (2013) Cell Stem Cell , vol.12 , pp. 62-74
    • Yu, W.M.1
  • 41
    • 35548936968 scopus 로고    scopus 로고
    • A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche
    • Jang Y.Y., Sharkis S.J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007, 110:3056-3063.
    • (2007) Blood , vol.110 , pp. 3056-3063
    • Jang, Y.Y.1    Sharkis, S.J.2
  • 42
    • 70349446465 scopus 로고    scopus 로고
    • Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
    • Owusu-Ansah E., Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 2009, 461:537-541.
    • (2009) Nature , vol.461 , pp. 537-541
    • Owusu-Ansah, E.1    Banerjee, U.2
  • 43
    • 33645730667 scopus 로고    scopus 로고
    • Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells
    • Ito K., et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 2006, 12:446-451.
    • (2006) Nat. Med. , vol.12 , pp. 446-451
    • Ito, K.1
  • 44
    • 33846419112 scopus 로고    scopus 로고
    • FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
    • Tothova Z., et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007, 128:325-339.
    • (2007) Cell , vol.128 , pp. 325-339
    • Tothova, Z.1
  • 45
    • 78650968492 scopus 로고    scopus 로고
    • Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner
    • Le Belle J.E., et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 2011, 8:59-71.
    • (2011) Cell Stem Cell , vol.8 , pp. 59-71
    • Le Belle, J.E.1
  • 46
    • 78650968849 scopus 로고    scopus 로고
    • The p53 tumor suppressor protein regulates hematopoietic stem cell fate
    • Asai T., et al. The p53 tumor suppressor protein regulates hematopoietic stem cell fate. J. Cell. Physiol. 2011, 226:2215-2221.
    • (2011) J. Cell. Physiol. , vol.226 , pp. 2215-2221
    • Asai, T.1
  • 47
    • 84880869807 scopus 로고    scopus 로고
    • The complexity of NF-κB signaling in inflammation and cancer
    • Hoesel B., Schmid J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer 2013, 12:86.
    • (2013) Mol. Cancer , vol.12 , pp. 86
    • Hoesel, B.1    Schmid, J.A.2
  • 48
    • 77952936173 scopus 로고    scopus 로고
    • Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2 and 3 and antagonizes their transcriptional repressor function
    • Doyle K., Fitzpatrick F.A. Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2 and 3 and antagonizes their transcriptional repressor function. J. Biol. Chem. 2010, 285:17417-17424.
    • (2010) J. Biol. Chem. , vol.285 , pp. 17417-17424
    • Doyle, K.1    Fitzpatrick, F.A.2
  • 49
    • 84887456727 scopus 로고    scopus 로고
    • Mitophagy in hematopoietic stem cells: the case for exploration
    • Joshi A., Kundu M. Mitophagy in hematopoietic stem cells: the case for exploration. Autophagy 2013, 9:1737-1749.
    • (2013) Autophagy , vol.9 , pp. 1737-1749
    • Joshi, A.1    Kundu, M.2
  • 50
    • 79952728102 scopus 로고    scopus 로고
    • The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance
    • Mortensen M., et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 2011, 208:455-467.
    • (2011) J. Exp. Med. , vol.208 , pp. 455-467
    • Mortensen, M.1
  • 51
    • 84874192375 scopus 로고    scopus 로고
    • FOXO3A directs a protective autophagy program in haematopoietic stem cells
    • Warr M.R., et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 2013, 494:323-327.
    • (2013) Nature , vol.494 , pp. 323-327
    • Warr, M.R.1
  • 52
    • 84861872402 scopus 로고    scopus 로고
    • Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells
    • Taniguchi Ishikawa E., et al. Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:9071-9076.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 9071-9076
    • Taniguchi Ishikawa, E.1
  • 53
    • 84860528235 scopus 로고    scopus 로고
    • The ATM-BID pathway regulates quiescence and survival of hematopoietic stem cells
    • Maryanovich M., et al. The ATM-BID pathway regulates quiescence and survival of hematopoietic stem cells. Nat. Cell Biol. 2012, 14:535-541.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 535-541
    • Maryanovich, M.1
  • 54
    • 84874260968 scopus 로고    scopus 로고
    • A ROS rheostat for cell fate regulation
    • Maryanovich M., Gross A. A ROS rheostat for cell fate regulation. Trends Cell Biol. 2013, 23:129-134.
    • (2013) Trends Cell Biol. , vol.23 , pp. 129-134
    • Maryanovich, M.1    Gross, A.2
  • 55
    • 13844319184 scopus 로고    scopus 로고
    • Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells
    • Opferman J.T., et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 2005, 307:1101-1104.
    • (2005) Science , vol.307 , pp. 1101-1104
    • Opferman, J.T.1
  • 56
    • 80355146535 scopus 로고    scopus 로고
    • Bcl-xL regulates mitochondrial energetics by stabilizing the inner mitochondrial potential
    • Chen Y.B., et al. Bcl-xL regulates mitochondrial energetics by stabilizing the inner mitochondrial potential. J. Cell Biol. 2011, 195:263-276.
    • (2011) J. Cell Biol. , vol.195 , pp. 263-276
    • Chen, Y.B.1
  • 58
    • 84861627801 scopus 로고    scopus 로고
    • Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration
    • Perciavalle R.M., et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat. Cell Biol. 2012, 14:575-583.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 575-583
    • Perciavalle, R.M.1
  • 59
    • 70350418625 scopus 로고    scopus 로고
    • MTOR signaling at a glance
    • Laplante M., Sabatini D.M. mTOR signaling at a glance. J. Cell Sci. 2009, 122:3589-3594.
    • (2009) J. Cell Sci. , vol.122 , pp. 3589-3594
    • Laplante, M.1    Sabatini, D.M.2
  • 60
    • 84860217431 scopus 로고    scopus 로고
    • The functions and regulation of the PTEN tumour suppressor
    • Song M.S., et al. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 2012, 13:283-296.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 283-296
    • Song, M.S.1
  • 61
    • 33646376411 scopus 로고    scopus 로고
    • Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells
    • Yilmaz O.H., et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006, 441:475-482.
    • (2006) Nature , vol.441 , pp. 475-482
    • Yilmaz, O.H.1
  • 62
    • 33646351002 scopus 로고    scopus 로고
    • PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention
    • Zhang J., et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006, 441:518-522.
    • (2006) Nature , vol.441 , pp. 518-522
    • Zhang, J.1
  • 63
    • 53349091768 scopus 로고    scopus 로고
    • TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
    • Chen C., et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 2008, 205:2397-2408.
    • (2008) J. Exp. Med. , vol.205 , pp. 2397-2408
    • Chen, C.1
  • 64
    • 58049196780 scopus 로고    scopus 로고
    • MTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization
    • Gan B., et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:19384-19389.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 19384-19389
    • Gan, B.1
  • 65
    • 77949900650 scopus 로고    scopus 로고
    • Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice
    • Kharas M.G., et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 2010, 115:1406-1415.
    • (2010) Blood , vol.115 , pp. 1406-1415
    • Kharas, M.G.1
  • 66
    • 77953283847 scopus 로고    scopus 로고
    • AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species
    • Juntilla M.M., et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 2010, 115:4030-4038.
    • (2010) Blood , vol.115 , pp. 4030-4038
    • Juntilla, M.M.1
  • 67
    • 84866064701 scopus 로고    scopus 로고
    • Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression
    • Magee J.A., et al. Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 2012, 11:415-428.
    • (2012) Cell Stem Cell , vol.11 , pp. 415-428
    • Magee, J.A.1
  • 68
    • 35248816945 scopus 로고    scopus 로고
    • The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes
    • Brown N.F., et al. The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes. Metabolism 2007, 56:1500-1507.
    • (2007) Metabolism , vol.56 , pp. 1500-1507
    • Brown, N.F.1
  • 69
    • 78650848337 scopus 로고    scopus 로고
    • MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
    • Sengupta S., et al. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010, 468:1100-1104.
    • (2010) Nature , vol.468 , pp. 1100-1104
    • Sengupta, S.1
  • 70
    • 77949462458 scopus 로고    scopus 로고
    • AMPK as a metabolic tumor suppressor: control of metabolism and cell growth
    • Luo Z., et al. AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol. 2010, 6:457-470.
    • (2010) Future Oncol. , vol.6 , pp. 457-470
    • Luo, Z.1
  • 71
    • 78649874959 scopus 로고    scopus 로고
    • Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells
    • Gan B., et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010, 468:701-704.
    • (2010) Nature , vol.468 , pp. 701-704
    • Gan, B.1
  • 72
    • 78649851511 scopus 로고    scopus 로고
    • The Lkb1 metabolic sensor maintains haematopoietic stem cell survival
    • Gurumurthy S., et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 2010, 468:659-663.
    • (2010) Nature , vol.468 , pp. 659-663
    • Gurumurthy, S.1
  • 73
    • 78649811793 scopus 로고    scopus 로고
    • Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
    • Nakada D., et al. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010, 468:653-658.
    • (2010) Nature , vol.468 , pp. 653-658
    • Nakada, D.1
  • 74
    • 80053476420 scopus 로고    scopus 로고
    • The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR
    • Egan D., et al. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 2011, 7:643-644.
    • (2011) Autophagy , vol.7 , pp. 643-644
    • Egan, D.1
  • 75
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13:132-141.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 132-141
    • Kim, J.1
  • 76
    • 0141483064 scopus 로고    scopus 로고
    • Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics?
    • Passegue E., et al. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics?. Proc. Natl. Acad. Sci. U.S.A. 2003, 100(Suppl. 1):11842-11849.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , Issue.SUPPL. 1 , pp. 11842-11849
    • Passegue, E.1
  • 77
    • 33748891391 scopus 로고    scopus 로고
    • Cancer stem cells
    • Jordan C.T., et al. Cancer stem cells. N. Engl. J. Med. 2006, 355:1253-1261.
    • (2006) N. Engl. J. Med. , vol.355 , pp. 1253-1261
    • Jordan, C.T.1
  • 78
    • 84875143073 scopus 로고    scopus 로고
    • BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells
    • Lagadinou E.D., et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 2013, 12:329-341.
    • (2013) Cell Stem Cell , vol.12 , pp. 329-341
    • Lagadinou, E.D.1
  • 79
    • 74949089659 scopus 로고    scopus 로고
    • Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
    • Samudio I., et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J. Clin. Invest. 2010, 120:142-156.
    • (2010) J. Clin. Invest. , vol.120 , pp. 142-156
    • Samudio, I.1
  • 80
    • 77956251480 scopus 로고    scopus 로고
    • Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis
    • Mohrin M., et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 2010, 7:174-185.
    • (2010) Cell Stem Cell , vol.7 , pp. 174-185
    • Mohrin, M.1
  • 81
    • 77951046942 scopus 로고    scopus 로고
    • Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia
    • Callens C., et al. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. J. Exp. Med. 2010, 207:731-750.
    • (2010) J. Exp. Med. , vol.207 , pp. 731-750
    • Callens, C.1
  • 82
    • 84866082606 scopus 로고    scopus 로고
    • MTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis
    • Kalaitzidis D., et al. mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. Cell Stem Cell 2012, 11:429-439.
    • (2012) Cell Stem Cell , vol.11 , pp. 429-439
    • Kalaitzidis, D.1
  • 83
    • 44349088690 scopus 로고    scopus 로고
    • Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation
    • Guo W., et al. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 2008, 453:529-533.
    • (2008) Nature , vol.453 , pp. 529-533
    • Guo, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.