-
1
-
-
39349096526
-
Hematopoiesis: an evolving paradigm for stem cell biology
-
Orkin S.H., Zon L.I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008, 132:631-644.
-
(2008)
Cell
, vol.132
, pp. 631-644
-
-
Orkin, S.H.1
Zon, L.I.2
-
2
-
-
84855885803
-
Cell cycle regulation in hematopoietic stem cells
-
Pietras E.M., et al. Cell cycle regulation in hematopoietic stem cells. J. Cell Biol. 2011, 195:709-720.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 709-720
-
-
Pietras, E.M.1
-
3
-
-
28544436371
-
Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates
-
Passegué E., et al. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 2005, 202:1599-1611.
-
(2005)
J. Exp. Med.
, vol.202
, pp. 1599-1611
-
-
Passegué, E.1
-
4
-
-
56549128268
-
Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair
-
Wilson A., et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008, 135:1118-1129.
-
(2008)
Cell
, vol.135
, pp. 1118-1129
-
-
Wilson, A.1
-
5
-
-
60149104597
-
Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells
-
Foudi A., et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat. Biotechnol. 2009, 27:84-90.
-
(2009)
Nat. Biotechnol.
, vol.27
, pp. 84-90
-
-
Foudi, A.1
-
6
-
-
84876909069
-
The ageing haematopoietic stem cell compartment
-
Geiger H., et al. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 2013, 13:376-389.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 376-389
-
-
Geiger, H.1
-
7
-
-
39149086121
-
Stems cells and the pathways to aging and cancer
-
Rossi D.J., et al. Stems cells and the pathways to aging and cancer. Cell 2008, 132:681-696.
-
(2008)
Cell
, vol.132
, pp. 681-696
-
-
Rossi, D.J.1
-
8
-
-
84875953755
-
Stem cell metabolism in tissue development and aging
-
Shyh-Chang N., et al. Stem cell metabolism in tissue development and aging. Development 2013, 140:2535-2547.
-
(2013)
Development
, vol.140
, pp. 2535-2547
-
-
Shyh-Chang, N.1
-
9
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
-
10
-
-
38349132624
-
Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation
-
Orford K.W., Scadden D.T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat. Rev. Genet. 2008, 9:115-128.
-
(2008)
Nat. Rev. Genet.
, vol.9
, pp. 115-128
-
-
Orford, K.W.1
Scadden, D.T.2
-
11
-
-
84887527463
-
Resilient and resourceful: genome maintenance strategies in hematopoietic stem cells
-
Bakker S.T., Passegué E. Resilient and resourceful: genome maintenance strategies in hematopoietic stem cells. Exp. Hematol. 2013, 41:915-923.
-
(2013)
Exp. Hematol.
, vol.41
, pp. 915-923
-
-
Bakker, S.T.1
Passegué, E.2
-
12
-
-
77956205122
-
The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
-
Simsek T., et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010, 7:380-390.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 380-390
-
-
Simsek, T.1
-
13
-
-
79955698235
-
Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging
-
Norddahl G.L., et al. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell 2011, 8:499-510.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 499-510
-
-
Norddahl, G.L.1
-
14
-
-
84872011926
-
Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
-
Takubo K., et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013, 12:49-61.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 49-61
-
-
Takubo, K.1
-
15
-
-
84868347607
-
Metabolic plasticity in stem cell homeostasis and differentiation
-
Folmes C.D., et al. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2012, 11:596-606.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 596-606
-
-
Folmes, C.D.1
-
16
-
-
34248359065
-
Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia
-
Parmar K., et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:5431-5436.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 5431-5436
-
-
Parmar, K.1
-
17
-
-
73949121249
-
The hematopoietic stem cell niche: low in oxygen but a nice place to be
-
Eliasson P., Jönsson J.I. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J. Cell. Physiol. 2010, 222:17-22.
-
(2010)
J. Cell. Physiol.
, vol.222
, pp. 17-22
-
-
Eliasson, P.1
Jönsson, J.I.2
-
18
-
-
80053916176
-
Metabolic regulation of hematopoietic stem cells in the hypoxic niche
-
Suda T., et al. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011, 9:298-310.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 298-310
-
-
Suda, T.1
-
19
-
-
0034907875
-
2 distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models
-
2 distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys. J. 2001, 81:685-696.
-
(2001)
Biophys. J.
, vol.81
, pp. 685-696
-
-
Chow, D.C.1
-
20
-
-
77956217067
-
Regulation of the HIF-1alpha level is essential for hematopoietic stem cells
-
Takubo K., et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 2010, 7:391-402.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 391-402
-
-
Takubo, K.1
-
21
-
-
84877575509
-
Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment
-
Nombela-Arrieta C., et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat. Cell Biol. 2013, 15:533-543.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 533-543
-
-
Nombela-Arrieta, C.1
-
22
-
-
0035955663
-
Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor necrosis factor-alpha in contrast to desferroxamine and phenylarsine oxide
-
Sandau K.B., et al. Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor necrosis factor-alpha in contrast to desferroxamine and phenylarsine oxide. J. Biol. Chem. 2001, 276:39805-39811.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 39805-39811
-
-
Sandau, K.B.1
-
23
-
-
54349118907
-
Oxygen-independent stabilization of hypoxia inducible factor (HIF)-1 during RSV infection
-
Haeberle H.A., et al. Oxygen-independent stabilization of hypoxia inducible factor (HIF)-1 during RSV infection. PLoS ONE 2008, 3:e3352.
-
(2008)
PLoS ONE
, vol.3
-
-
Haeberle, H.A.1
-
24
-
-
80053926733
-
Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78
-
Miharada K., et al. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell 2011, 9:330-344.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 330-344
-
-
Miharada, K.1
-
25
-
-
84871001227
-
Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells
-
Kocabas F., et al. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 2012, 120:4963-4972.
-
(2012)
Blood
, vol.120
, pp. 4963-4972
-
-
Kocabas, F.1
-
26
-
-
35848948403
-
Imaging hematopoietic precursor division in real time
-
Wu M., et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell 2007, 1:541-554.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 541-554
-
-
Wu, M.1
-
27
-
-
84875465199
-
Cancer metabolism: fatty acid oxidation in the limelight
-
Carracedo A., et al. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 2013, 13:227-232.
-
(2013)
Nat. Rev. Cancer
, vol.13
, pp. 227-232
-
-
Carracedo, A.1
-
28
-
-
34547136480
-
New therapeutic target for metabolic syndrome: PPARdelta
-
Takahashi S., et al. New therapeutic target for metabolic syndrome: PPARdelta. Endocr. J. 2007, 54:347-357.
-
(2007)
Endocr. J.
, vol.54
, pp. 347-357
-
-
Takahashi, S.1
-
29
-
-
84868632060
-
A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
-
Ito K., et al. A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 2012, 18:1350-1358.
-
(2012)
Nat. Med.
, vol.18
, pp. 1350-1358
-
-
Ito, K.1
-
30
-
-
44349166602
-
PML targeting eradicates quiescent leukaemia-initiating cells
-
Ito K., et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008, 453:1072-1078.
-
(2008)
Nature
, vol.453
, pp. 1072-1078
-
-
Ito, K.1
-
31
-
-
84865959001
-
A metabolic prosurvival role for PML in breast cancer
-
Carracedo A., et al. A metabolic prosurvival role for PML in breast cancer. J. Clin. Invest. 2012, 122:3088-3100.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 3088-3100
-
-
Carracedo, A.1
-
32
-
-
78650906609
-
Regulation of E2Fs and senescence by PML nuclear bodies
-
Vernier M., et al. Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev. 2011, 25:41-50.
-
(2011)
Genes Dev.
, vol.25
, pp. 41-50
-
-
Vernier, M.1
-
34
-
-
67349161638
-
Hematopoietic stem cell ageing is uncoupled from p16 INK4A-mediated senescence
-
Attema J.L., et al. Hematopoietic stem cell ageing is uncoupled from p16 INK4A-mediated senescence. Oncogene 2009, 28:2238-2243.
-
(2009)
Oncogene
, vol.28
, pp. 2238-2243
-
-
Attema, J.L.1
-
35
-
-
77949907107
-
P53-mediated hematopoietic stem and progenitor cell competition
-
Bondar T., Medzhitov R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 2010, 6:309-322.
-
(2010)
Cell Stem Cell
, vol.6
, pp. 309-322
-
-
Bondar, T.1
Medzhitov, R.2
-
36
-
-
33745600820
-
Asymmetric and symmetric stem-cell divisions in development and cancer
-
Morrison S.J., Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006, 441:1068-1074.
-
(2006)
Nature
, vol.441
, pp. 1068-1074
-
-
Morrison, S.J.1
Kimble, J.2
-
37
-
-
84883489939
-
Mitochondrial regulation in pluripotent stem cells
-
Xu X., et al. Mitochondrial regulation in pluripotent stem cells. Cell Metab. 2013, 18:325-332.
-
(2013)
Cell Metab.
, vol.18
, pp. 325-332
-
-
Xu, X.1
-
38
-
-
37249083079
-
Mitochondrial DNA replication during differentiation of murine embryonic stem cells
-
Facucho-Oliveira J.M., et al. Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J. Cell Sci. 2007, 120:4025-4034.
-
(2007)
J. Cell Sci.
, vol.120
, pp. 4025-4034
-
-
Facucho-Oliveira, J.M.1
-
39
-
-
79952209101
-
Mitochondrial rejuvenation after induced pluripotency
-
Suhr S.T., et al. Mitochondrial rejuvenation after induced pluripotency. PLoS ONE 2010, 5:e14095.
-
(2010)
PLoS ONE
, vol.5
-
-
Suhr, S.T.1
-
40
-
-
84872037830
-
Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation
-
Yu W.M., et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 2013, 12:62-74.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 62-74
-
-
Yu, W.M.1
-
41
-
-
35548936968
-
A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche
-
Jang Y.Y., Sharkis S.J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007, 110:3056-3063.
-
(2007)
Blood
, vol.110
, pp. 3056-3063
-
-
Jang, Y.Y.1
Sharkis, S.J.2
-
42
-
-
70349446465
-
Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
-
Owusu-Ansah E., Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 2009, 461:537-541.
-
(2009)
Nature
, vol.461
, pp. 537-541
-
-
Owusu-Ansah, E.1
Banerjee, U.2
-
43
-
-
33645730667
-
Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells
-
Ito K., et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 2006, 12:446-451.
-
(2006)
Nat. Med.
, vol.12
, pp. 446-451
-
-
Ito, K.1
-
44
-
-
33846419112
-
FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
-
Tothova Z., et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007, 128:325-339.
-
(2007)
Cell
, vol.128
, pp. 325-339
-
-
Tothova, Z.1
-
45
-
-
78650968492
-
Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner
-
Le Belle J.E., et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 2011, 8:59-71.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 59-71
-
-
Le Belle, J.E.1
-
46
-
-
78650968849
-
The p53 tumor suppressor protein regulates hematopoietic stem cell fate
-
Asai T., et al. The p53 tumor suppressor protein regulates hematopoietic stem cell fate. J. Cell. Physiol. 2011, 226:2215-2221.
-
(2011)
J. Cell. Physiol.
, vol.226
, pp. 2215-2221
-
-
Asai, T.1
-
47
-
-
84880869807
-
The complexity of NF-κB signaling in inflammation and cancer
-
Hoesel B., Schmid J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer 2013, 12:86.
-
(2013)
Mol. Cancer
, vol.12
, pp. 86
-
-
Hoesel, B.1
Schmid, J.A.2
-
48
-
-
77952936173
-
Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2 and 3 and antagonizes their transcriptional repressor function
-
Doyle K., Fitzpatrick F.A. Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2 and 3 and antagonizes their transcriptional repressor function. J. Biol. Chem. 2010, 285:17417-17424.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 17417-17424
-
-
Doyle, K.1
Fitzpatrick, F.A.2
-
49
-
-
84887456727
-
Mitophagy in hematopoietic stem cells: the case for exploration
-
Joshi A., Kundu M. Mitophagy in hematopoietic stem cells: the case for exploration. Autophagy 2013, 9:1737-1749.
-
(2013)
Autophagy
, vol.9
, pp. 1737-1749
-
-
Joshi, A.1
Kundu, M.2
-
50
-
-
79952728102
-
The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance
-
Mortensen M., et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 2011, 208:455-467.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 455-467
-
-
Mortensen, M.1
-
51
-
-
84874192375
-
FOXO3A directs a protective autophagy program in haematopoietic stem cells
-
Warr M.R., et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 2013, 494:323-327.
-
(2013)
Nature
, vol.494
, pp. 323-327
-
-
Warr, M.R.1
-
52
-
-
84861872402
-
Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells
-
Taniguchi Ishikawa E., et al. Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:9071-9076.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 9071-9076
-
-
Taniguchi Ishikawa, E.1
-
53
-
-
84860528235
-
The ATM-BID pathway regulates quiescence and survival of hematopoietic stem cells
-
Maryanovich M., et al. The ATM-BID pathway regulates quiescence and survival of hematopoietic stem cells. Nat. Cell Biol. 2012, 14:535-541.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 535-541
-
-
Maryanovich, M.1
-
54
-
-
84874260968
-
A ROS rheostat for cell fate regulation
-
Maryanovich M., Gross A. A ROS rheostat for cell fate regulation. Trends Cell Biol. 2013, 23:129-134.
-
(2013)
Trends Cell Biol.
, vol.23
, pp. 129-134
-
-
Maryanovich, M.1
Gross, A.2
-
55
-
-
13844319184
-
Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells
-
Opferman J.T., et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 2005, 307:1101-1104.
-
(2005)
Science
, vol.307
, pp. 1101-1104
-
-
Opferman, J.T.1
-
56
-
-
80355146535
-
Bcl-xL regulates mitochondrial energetics by stabilizing the inner mitochondrial potential
-
Chen Y.B., et al. Bcl-xL regulates mitochondrial energetics by stabilizing the inner mitochondrial potential. J. Cell Biol. 2011, 195:263-276.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 263-276
-
-
Chen, Y.B.1
-
58
-
-
84861627801
-
Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration
-
Perciavalle R.M., et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat. Cell Biol. 2012, 14:575-583.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 575-583
-
-
Perciavalle, R.M.1
-
59
-
-
70350418625
-
MTOR signaling at a glance
-
Laplante M., Sabatini D.M. mTOR signaling at a glance. J. Cell Sci. 2009, 122:3589-3594.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 3589-3594
-
-
Laplante, M.1
Sabatini, D.M.2
-
60
-
-
84860217431
-
The functions and regulation of the PTEN tumour suppressor
-
Song M.S., et al. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 2012, 13:283-296.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 283-296
-
-
Song, M.S.1
-
61
-
-
33646376411
-
Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells
-
Yilmaz O.H., et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006, 441:475-482.
-
(2006)
Nature
, vol.441
, pp. 475-482
-
-
Yilmaz, O.H.1
-
62
-
-
33646351002
-
PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention
-
Zhang J., et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006, 441:518-522.
-
(2006)
Nature
, vol.441
, pp. 518-522
-
-
Zhang, J.1
-
63
-
-
53349091768
-
TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
-
Chen C., et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 2008, 205:2397-2408.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 2397-2408
-
-
Chen, C.1
-
64
-
-
58049196780
-
MTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization
-
Gan B., et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:19384-19389.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 19384-19389
-
-
Gan, B.1
-
65
-
-
77949900650
-
Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice
-
Kharas M.G., et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 2010, 115:1406-1415.
-
(2010)
Blood
, vol.115
, pp. 1406-1415
-
-
Kharas, M.G.1
-
66
-
-
77953283847
-
AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species
-
Juntilla M.M., et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 2010, 115:4030-4038.
-
(2010)
Blood
, vol.115
, pp. 4030-4038
-
-
Juntilla, M.M.1
-
67
-
-
84866064701
-
Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression
-
Magee J.A., et al. Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 2012, 11:415-428.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 415-428
-
-
Magee, J.A.1
-
68
-
-
35248816945
-
The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes
-
Brown N.F., et al. The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes. Metabolism 2007, 56:1500-1507.
-
(2007)
Metabolism
, vol.56
, pp. 1500-1507
-
-
Brown, N.F.1
-
69
-
-
78650848337
-
MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
-
Sengupta S., et al. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010, 468:1100-1104.
-
(2010)
Nature
, vol.468
, pp. 1100-1104
-
-
Sengupta, S.1
-
70
-
-
77949462458
-
AMPK as a metabolic tumor suppressor: control of metabolism and cell growth
-
Luo Z., et al. AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol. 2010, 6:457-470.
-
(2010)
Future Oncol.
, vol.6
, pp. 457-470
-
-
Luo, Z.1
-
71
-
-
78649874959
-
Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells
-
Gan B., et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010, 468:701-704.
-
(2010)
Nature
, vol.468
, pp. 701-704
-
-
Gan, B.1
-
72
-
-
78649851511
-
The Lkb1 metabolic sensor maintains haematopoietic stem cell survival
-
Gurumurthy S., et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 2010, 468:659-663.
-
(2010)
Nature
, vol.468
, pp. 659-663
-
-
Gurumurthy, S.1
-
73
-
-
78649811793
-
Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
-
Nakada D., et al. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010, 468:653-658.
-
(2010)
Nature
, vol.468
, pp. 653-658
-
-
Nakada, D.1
-
74
-
-
80053476420
-
The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR
-
Egan D., et al. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 2011, 7:643-644.
-
(2011)
Autophagy
, vol.7
, pp. 643-644
-
-
Egan, D.1
-
75
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13:132-141.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
-
76
-
-
0141483064
-
Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics?
-
Passegue E., et al. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics?. Proc. Natl. Acad. Sci. U.S.A. 2003, 100(Suppl. 1):11842-11849.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, Issue.SUPPL. 1
, pp. 11842-11849
-
-
Passegue, E.1
-
77
-
-
33748891391
-
Cancer stem cells
-
Jordan C.T., et al. Cancer stem cells. N. Engl. J. Med. 2006, 355:1253-1261.
-
(2006)
N. Engl. J. Med.
, vol.355
, pp. 1253-1261
-
-
Jordan, C.T.1
-
78
-
-
84875143073
-
BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells
-
Lagadinou E.D., et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 2013, 12:329-341.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 329-341
-
-
Lagadinou, E.D.1
-
79
-
-
74949089659
-
Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
-
Samudio I., et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J. Clin. Invest. 2010, 120:142-156.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 142-156
-
-
Samudio, I.1
-
80
-
-
77956251480
-
Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis
-
Mohrin M., et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 2010, 7:174-185.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 174-185
-
-
Mohrin, M.1
-
81
-
-
77951046942
-
Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia
-
Callens C., et al. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. J. Exp. Med. 2010, 207:731-750.
-
(2010)
J. Exp. Med.
, vol.207
, pp. 731-750
-
-
Callens, C.1
-
82
-
-
84866082606
-
MTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis
-
Kalaitzidis D., et al. mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. Cell Stem Cell 2012, 11:429-439.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 429-439
-
-
Kalaitzidis, D.1
-
83
-
-
44349088690
-
Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation
-
Guo W., et al. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 2008, 453:529-533.
-
(2008)
Nature
, vol.453
, pp. 529-533
-
-
Guo, W.1
|