-
1
-
-
39349083915
-
Adapting proteostasis for disease intervention
-
pmid: 18276881
-
W. E. Balch, R. I. Morimoto, A. Dillin, J. W. Kelly, Adapting proteostasis for disease intervention. Science 319, 916-919 (2008). doi: 10.1126/science.1141448; pmid: 18276881
-
(2008)
Science
, vol.319
, pp. 916-919
-
-
Balch, W.E.1
Morimoto, R.I.2
Dillin, A.3
Kelly, J.W.4
-
2
-
-
84924293849
-
Energy landscapes of functional proteins are inherently risky
-
pmid: 25325699
-
A. Gershenson, L. M. Gierasch, A. Pastore, S. E. Radford, Energy landscapes of functional proteins are inherently risky. Nat. Chem. Biol. 10, 884-891 (2014). doi: 10.1038/ nchembio.1670; pmid: 25325699
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 884-891
-
-
Gershenson, A.1
Gierasch, L.M.2
Pastore, A.3
Radford, S.E.4
-
3
-
-
57049095821
-
Function and structure of inherently disordered proteins
-
pmid: 18952168
-
A. K. Dunker, I. Silman, V. N. Uversky, J. L. Sussman, Function and structure of inherently disordered proteins. Curr. Opin. Struct. Biol. 18, 756-764 (2008). doi: 10.1016/ j.sbi.2008.10.002; pmid: 18952168
-
(2008)
Curr. Opin. Struct. Biol.
, vol.18
, pp. 756-764
-
-
Dunker, A.K.1
Silman, I.2
Uversky, V.N.3
Sussman, J.L.4
-
4
-
-
84930746830
-
The biology of proteostasis in aging and disease
-
pmid: 25784053
-
J. Labbadia, R. I. Morimoto, The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435-464 (2015). doi: 10.1146/annurev-biochem-060614-033955; pmid: 25784053
-
(2015)
Annu. Rev. Biochem.
, vol.84
, pp. 435-464
-
-
Labbadia, J.1
Morimoto, R.I.2
-
5
-
-
84870733168
-
Protein folding in the endoplasmic reticulum
-
pmid: 23637286
-
I. Braakman, D. N. Hebert, Protein folding in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 5, a013201 (2013). doi: 10.1101/cshperspect.a013201; pmid: 23637286
-
(2013)
Cold Spring Harb. Perspect. Biol.
, vol.5
, pp. a013201
-
-
Braakman, I.1
Hebert, D.N.2
-
6
-
-
0015859467
-
Principles that govern the folding of protein chains
-
pmid: 4124164
-
C. B. Anfinsen, Principles that govern the folding of protein chains. Science 181, 223-230 (1973). doi: 10.1126/ science.181.4096.223; pmid: 4124164
-
(1973)
Science
, vol.181
, pp. 223-230
-
-
Anfinsen, C.B.1
-
7
-
-
0029992278
-
Molecular chaperones in cellular protein folding
-
pmid: 8637592
-
F. U. Hartl, Molecular chaperones in cellular protein folding. Nature 381, 571-580 (1996). doi: 10.1038/381571a0; pmid: 8637592
-
(1996)
Nature
, vol.381
, pp. 571-580
-
-
Hartl, F.U.1
-
8
-
-
33846901901
-
Intermediates: Ubiquitous species on folding energy landscapes? Curr
-
pmid: 17239580
-
D. J. Brockwell, S. E. Radford, Intermediates: Ubiquitous species on folding energy landscapes? Curr. Opin. Struct. Biol. 17, 30-37 (2007). doi: 10.1016/j.sbi.2007.01.003; pmid: 17239580
-
(2007)
Opin. Struct. Biol.
, vol.17
, pp. 30-37
-
-
Brockwell, D.J.1
Radford, S.E.2
-
9
-
-
33746099650
-
Protein aggregation in crowded environments
-
pmid: 16740119
-
R. J. Ellis, A. P. Minton, Protein aggregation in crowded environments. Biol. Chem. 387, 485-497 (2006). doi: 10.1515/BC.2006.064; pmid: 16740119
-
(2006)
Biol. Chem.
, vol.387
, pp. 485-497
-
-
Ellis, R.J.1
Minton, A.P.2
-
10
-
-
0009586942
-
Understanding protein folding via free-energy surfaces from theory and experiment
-
pmid: 10871884
-
A. R. Dinner, A. Sali, L. J. Smith, C. M. Dobson, M. Karplus, Understanding protein folding via free-energy surfaces from theory and experiment. Trends Biochem. Sci. 25, 331-339 (2000). doi: 10.1016/S0968-0004(00)01610-8; pmid: 10871884
-
(2000)
Trends Biochem. Sci
, vol.25
, pp. 331-339
-
-
Dinner, A.R.1
Sali, A.2
Smith, L.J.3
Dobson, C.M.4
Karplus, M.5
-
11
-
-
84924226961
-
Prolyl isomerization and its catalysis in protein folding and protein function
-
pmid: 25676311
-
P. A. Schmidpeter, F. X. Schmid, Prolyl isomerization and its catalysis in protein folding and protein function. J. Mol. Biol. 427, 1609-1631 (2015). doi: 10.1016/j.jmb.2015.01.023; pmid: 25676311
-
(2015)
J. Mol. Biol.
, vol.427
, pp. 1609-1631
-
-
Schmidpeter, P.A.1
Schmid, F.X.2
-
12
-
-
33746377894
-
Protein misfolding, functional amyloid, and human disease
-
pmid: 16756495
-
F. Chiti, C. M. Dobson, Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333-366 (2006). doi: 10.1146/annurev.biochem.75.101304.123901; pmid: 16756495
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 333-366
-
-
Chiti, F.1
Dobson, C.M.2
-
13
-
-
84878948560
-
Molecular chaperone functions in protein folding and proteostasis
-
pmid: 23746257
-
Y. E. Kim, M. S. Hipp, A. Bracher, M. Hayer-Hartl, F. U. Hartl, Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82, 323-355 (2013). doi: 10.1146/annurev-biochem-060208-092442; pmid: 23746257
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 323-355
-
-
Kim, Y.E.1
Hipp, M.S.2
Bracher, A.3
Hayer-Hartl, M.4
Hartl, F.U.5
-
14
-
-
79953106751
-
The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling
-
pmid: 21316217
-
D. N. Wilson, R. Beckmann, The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr. Opin. Struct. Biol. 21, 274-282 (2011). doi: 10.1016/j.sbi.2011.01.007; pmid: 21316217
-
(2011)
Curr. Opin. Struct. Biol.
, vol.21
, pp. 274-282
-
-
Wilson, D.N.1
Beckmann, R.2
-
15
-
-
64049105717
-
Tertiary interactions within the ribosomal exit tunnel
-
pmid: 19270700
-
A. Kosolapov, C. Deutsch, Tertiary interactions within the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 16, 405-411 (2009). doi: 10.1038/nsmb.1571; pmid: 19270700
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 405-411
-
-
Kosolapov, A.1
Deutsch, C.2
-
16
-
-
79851500085
-
New scenarios of protein folding can occur on the ribosome
-
pmid: 21204555
-
E. P. O'Brien, J. Christodoulou, M. Vendruscolo, C. M. Dobson, New scenarios of protein folding can occur on the ribosome. J. Am. Chem. Soc. 133, 513-526 (2011). doi: 10.1021/ ja107863z; pmid: 21204555
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 513-526
-
-
O'Brien, E.P.1
Christodoulou, J.2
Vendruscolo, M.3
Dobson, C.M.4
-
17
-
-
84941169541
-
Cotranslational protein folding inside the ribosome exit tunnel
-
pmid: 26321634
-
O. B. Nilsson et al., Cotranslational protein folding inside the ribosome exit tunnel. Cell Reports 12, 1533-1540 (2015). doi: 10.1016/j.celrep.2015.07.065; pmid: 26321634
-
(2015)
Cell Reports
, vol.12
, pp. 1533-1540
-
-
Nilsson, O.B.1
-
18
-
-
84948470148
-
Cotranslational protein folding on the ribosome monitored in real time
-
pmid: 26612953
-
W. Holtkamp et al., Cotranslational protein folding on the ribosome monitored in real time. Science 350, 1104-1107 (2015). doi: 10.1126/science.aad0344; pmid: 26612953
-
(2015)
Science
, vol.350
, pp. 1104-1107
-
-
Holtkamp, W.1
-
19
-
-
84455194188
-
C Bustamante, The ribosome modulates nascent protein folding
-
pmid: 22194581
-
C. M. Kaiser, D. H. Goldman, J. D. Chodera, I. Tinoco Jr., C. Bustamante, The ribosome modulates nascent protein folding. Science 334, 1723-1727 (2011). doi: 10.1126/ science.1209740; pmid: 22194581
-
(2011)
Science
, vol.334
, pp. 1723-1727
-
-
Kaiser, C.M.1
Goldman, D.H.2
Chodera, J.D.3
Tinoco, I.4
-
20
-
-
84959202639
-
A structural ensemble of a ribosomenascent chain complex during cotranslational protein folding
-
pmid: 26926436
-
L. D. Cabrita et al., A structural ensemble of a ribosomenascent chain complex during cotranslational protein folding. Nat. Struct. Mol. Biol. 23, 278-285 (2016). doi: 10.1038/ nsmb.3182; pmid: 26926436
-
(2016)
Nat. Struct. Mol. Biol.
, vol.23
, pp. 278-285
-
-
Cabrita, L.D.1
-
21
-
-
77952694170
-
Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy
-
pmid: 20439768
-
C. Eichmann, S. Preissler, R. Riek, E. Deuerling, Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy. Proc. Natl. Acad. Sci. U.S.A.107, 9111-9116 (2010). doi: 10.1073/pnas.0914300107; pmid: 20439768
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 9111-9116
-
-
Eichmann, C.1
Preissler, S.2
Riek, R.3
Deuerling, E.4
-
22
-
-
84959287313
-
Trigger factor reduces the force exerted on the nascent chain by a cotranslationally folding protein
-
pmid: 26906929
-
O. B. Nilsson, A. Müller-Lucks, G. Kramer, B. Bukau, G. von Heijne, Trigger factor reduces the force exerted on the nascent chain by a cotranslationally folding protein. J. Mol. Biol. 428, 1356-1364 (2016). doi: 10.1016/j.jmb.2016.02.014; pmid: 26906929
-
(2016)
J. Mol. Biol
, vol.428
, pp. 1356-1364
-
-
Nilsson, O.B.1
Müller-Lucks, A.2
Kramer, G.3
Bukau, B.4
Von Heijne, G.5
-
23
-
-
0037040541
-
Molecular chaperones in the cytosol: From nascent chain to folded protein
-
pmid: 11884745
-
F. U. Hartl, M. Hayer-Hartl, Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295, 1852-1858 (2002). doi: 10.1126/science.1068408; pmid: 11884745
-
(2002)
Science
, vol.295
, pp. 1852-1858
-
-
Hartl, F.U.1
Hayer-Hartl, M.2
-
24
-
-
84907855228
-
Chaperones rescue luciferase folding by separating its domains
-
pmid: 25160632
-
Z. N. Scholl, W. Yang, P. E. Marszalek, Chaperones rescue luciferase folding by separating its domains. J. Biol. Chem. 289, 28607-28618 (2014). doi: 10.1074/jbc.M114.582049; pmid: 25160632
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 28607-28618
-
-
Scholl, Z.N.1
Yang, W.2
Marszalek, P.E.3
-
25
-
-
84947229753
-
Transient misfolding dominates multidomain protein folding
-
pmid: 26572969
-
A. Borgia et al., Transient misfolding dominates multidomain protein folding. Nat. Commun. 6, 8861 (2015). doi: 10.1038/ ncomms9861; pmid: 26572969
-
(2015)
Nat. Commun.
, vol.6
, pp. 8861
-
-
Borgia, A.1
-
26
-
-
84947221434
-
Operon structure and cotranslational subunit association direct protein assembly in bacteria
-
pmid: 26405228
-
Y.-W. Shieh et al., Operon structure and cotranslational subunit association direct protein assembly in bacteria. Science 350, 678-680 (2015). doi: 10.1126/science.aac8171; pmid: 26405228
-
(2015)
Science
, vol.350
, pp. 678-680
-
-
Shieh, Y.-W.1
-
27
-
-
58249090246
-
The native 3D organization of bacterial polysomes
-
pmid: 19167328
-
F. Brandt et al., The native 3D organization of bacterial polysomes. Cell 136, 261-271 (2009). doi: 10.1016/ j.cell.2008.11.016; pmid: 19167328
-
(2009)
Cell
, vol.136
, pp. 261-271
-
-
Brandt, F.1
-
28
-
-
77956006893
-
The three-dimensional organization of polyribosomes in intact human cells
-
pmid: 20797628
-
F. Brandt, L.-A. Carlson, F. U. Hartl, W. Baumeister, K. Grünewald, The three-dimensional organization of polyribosomes in intact human cells. Mol. Cell 39, 560-569 (2010). doi: 10.1016/j.molcel.2010.08.003; pmid: 20797628
-
(2010)
Mol. Cell
, vol.39
, pp. 560-569
-
-
Brandt, F.1
Carlson, L.A.2
Hartl, F.U.3
Baumeister, W.4
Grünewald, K.5
-
29
-
-
84860231100
-
The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria
-
pmid: 22456704
-
G. W. Li, E. Oh, J. S. Weissman, The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484, 538-541 (2012). doi: 10.1038/ nature10965; pmid: 22456704
-
(2012)
Nature
, vol.484
, pp. 538-541
-
-
Li, G.W.1
Oh, E.2
Weissman, J.S.3
-
30
-
-
84873570699
-
Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding
-
pmid: 23262490
-
S. Pechmann, J. Frydman, Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat. Struct. Mol. Biol. 20, 237-243 (2013). doi: 10.1038/nsmb.2466; pmid: 23262490
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 237-243
-
-
Pechmann, S.1
Frydman, J.2
-
31
-
-
84865098071
-
Silent substitutions predictably alter translation elongation rates and protein folding efficiencies
-
pmid: 22705285
-
P. S. Spencer, E. Siller, J. F. Anderson, J. M. Barral, Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J. Mol. Biol. 422, 328-335 (2012). doi: 10.1016/j.jmb.2012.06.010; pmid: 22705285
-
(2012)
J. Mol. Biol.
, vol.422
, pp. 328-335
-
-
Spencer, P.S.1
Siller, E.2
Anderson, J.F.3
Barral, J.M.4
-
32
-
-
84891871414
-
Kinetic modelling indicates that fast-translating codons can coordinate cotranslational protein folding by avoiding misfolded intermediates
-
pmid: 24394622
-
E. P. O'Brien, M. Vendruscolo, C. M. Dobson, Kinetic modelling indicates that fast-translating codons can coordinate cotranslational protein folding by avoiding misfolded intermediates. Nat. Commun. 5, 2988 (2014). pmid: 24394622
-
(2014)
Nat. Commun.
, vol.5
, pp. 2988
-
-
O'Brien, E.P.1
Vendruscolo, M.2
Dobson, C.M.3
-
33
-
-
84928385447
-
Protein folding. Translational tuning optimizes nascent protein folding in cells
-
pmid: 25908822
-
S. J. Kim et al., Protein folding. Translational tuning optimizes nascent protein folding in cells. Science 348, 444-448 (2015). doi: 10.1126/science.aaa3974; pmid: 25908822
-
(2015)
Science
, vol.348
, pp. 444-448
-
-
Kim, S.J.1
-
34
-
-
84958115189
-
Clarifying the translational pausing landscape in bacteria by ribosome profiling
-
pmid: 26776510
-
F. Mohammad, C. J. Woolstenhulme, R. Green, A. R. Buskirk, Clarifying the translational pausing landscape in bacteria by ribosome profiling. Cell Reports 14, 686-694 (2016). doi: 10.1016/j.celrep.2015.12.073; pmid: 26776510
-
(2016)
Cell Reports
, vol.14
, pp. 686-694
-
-
Mohammad, F.1
Woolstenhulme, C.J.2
Green, R.3
Buskirk, A.R.4
-
35
-
-
84874683740
-
Non-optimal codon usage affects expression, structure and function of clock protein FRQ
-
pmid: 23417067
-
M. Zhou et al., Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495, 111-115 (2013). doi: 10.1038/nature11833; pmid: 23417067
-
(2013)
Nature
, vol.495
, pp. 111-115
-
-
Zhou, M.1
-
36
-
-
33846504706
-
Silent polymorphism in the MDR1 gene changes substrate specificity
-
pmid: 17185560
-
C. Kimchi-Sarfaty et al., A silent polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525-528 (2007). doi: 10.1126/science.1135308; pmid: 17185560
-
(2007)
Science
, vol.315
, pp. 525-528
-
-
Kimchi-Sarfaty, C.1
-
37
-
-
29344464782
-
Protein synthesis upon acute nutrient restriction relies on proteasome function
-
pmid: 16373576
-
R. M. Vabulas, F. U. Hartl, Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310, 1960-1963 (2005). doi: 10.1126/science.1121925; pmid: 16373576
-
(2005)
Science
, vol.310
, pp. 1960-1963
-
-
Vabulas, R.M.1
Hartl, F.U.2
-
38
-
-
84883210213
-
Principles of cotranslational ubiquitination and quality control at the ribosome
-
pmid: 23583075
-
S. Duttler, S. Pechmann, J. Frydman, Principles of cotranslational ubiquitination and quality control at the ribosome. Mol. Cell 50, 379-393 (2013). doi: 10.1016/ j.molcel.2013.03.010; pmid: 23583075
-
(2013)
Mol. Cell
, vol.50
, pp. 379-393
-
-
Duttler, S.1
Pechmann, S.2
Frydman, J.3
-
39
-
-
84921340794
-
Small heatshock proteins: Important players in regulating cellular proteostasis
-
pmid: 25352169
-
T. M. Treweek, S. Meehan, H. Ecroyd, J. A. Carver, Small heatshock proteins: Important players in regulating cellular proteostasis. Cell. Mol. Life Sci. 72, 429-451 (2015). doi: 10.1007/s00018-014-1754-5; pmid: 25352169
-
(2015)
Cell. Mol. Life Sci.
, vol.72
, pp. 429-451
-
-
Treweek, T.M.1
Meehan, S.2
Ecroyd, H.3
Carver, J.A.4
-
40
-
-
78649324240
-
Cellular strategies for the assembly of molecular machines
-
pmid: 20727772
-
A. Chari, U. Fischer, Cellular strategies for the assembly of molecular machines. Trends Biochem. Sci. 35, 676-683 (2010). doi: 10.1016/j.tibs.2010.07.006; pmid: 20727772
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 676-683
-
-
Chari, A.1
Fischer, U.2
-
41
-
-
85042810842
-
Role of auxiliary proteins in Rubisco biogenesis and function
-
pmid: 27250005
-
T. Hauser, L. Popilka, F. U. Hartl, M. Hayer-Hartl, Role of auxiliary proteins in Rubisco biogenesis and function. Nature Plants 1, 15065 (2015). doi: 10.1038/nplants.2015.65; pmid: 27250005
-
(2015)
Nature Plants
, vol.1
, pp. 15065
-
-
Hauser, T.1
Popilka, L.2
Hartl, F.U.3
Hayer-Hartl, M.4
-
42
-
-
83255164895
-
Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo
-
pmid: 22153074
-
E. Oh et al., Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147, 1295-1308 (2011). doi: 10.1016/j.cell.2011.10.044; pmid: 22153074
-
(2011)
Cell
, vol.147
, pp. 1295-1308
-
-
Oh, E.1
-
43
-
-
84862848780
-
Ribosome-associated chaperones as key players in proteostasis
-
pmid: 22503700
-
S. Preissler, E. Deuerling, Ribosome-associated chaperones as key players in proteostasis. Trends Biochem. Sci. 37, 274-283 (2012). doi: 10.1016/j.tibs.2012.03.002; pmid: 22503700
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 274-283
-
-
Preissler, S.1
Deuerling, E.2
-
44
-
-
33751321592
-
Real-time observation of trigger factor function on translating ribosomes
-
pmid: 17051157
-
C. M. Kaiser et al., Real-time observation of trigger factor function on translating ribosomes. Nature 444, 455-460 (2006). doi: 10.1038/nature05225; pmid: 17051157
-
(2006)
Nature
, vol.444
, pp. 455-460
-
-
Kaiser, C.M.1
-
45
-
-
84867379923
-
Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding
-
pmid: 22921937
-
A. Hoffmann et al., Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol. Cell 48, 63-74 (2012). doi: 10.1016/ j.molcel.2012.07.018; pmid: 22921937
-
(2012)
Mol. Cell 48
, pp. 63-74
-
-
Hoffmann, A.1
-
46
-
-
84881480267
-
Reshaping of the conformational search of a protein by the chaperone trigger factor
-
pmid: 23831649
-
A. Mashaghi et al., Reshaping of the conformational search of a protein by the chaperone trigger factor. Nature 500, 98-101 (2013). doi: 10.1038/nature12293; pmid: 23831649
-
(2013)
Nature
, vol.500
, pp. 98-101
-
-
Mashaghi, A.1
-
47
-
-
84900336916
-
Structural basis for protein antiaggregation activity of the trigger factor chaperone
-
pmid: 24812405
-
T. Saio, X. Guan, P. Rossi, A. Economou, C. G. Kalodimos, Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344, 1250494 (2014). doi: 10.1126/science.1250494; pmid: 24812405
-
(2014)
Science
, vol.344
, pp. 1250494
-
-
Saio, T.1
Guan, X.2
Rossi, P.3
Economou, A.4
Kalodimos, C.G.5
-
48
-
-
1942421714
-
Function of trigger factor and DnaK in multidomain protein folding: Increase in yield at the expense of folding speed
-
pmid: 15084258
-
V. R. Agashe et al., Function of trigger factor and DnaK in multidomain protein folding: Increase in yield at the expense of folding speed. Cell 117, 199-209 (2004). doi: 10.1016/ S0092-8674(04)00299-5; pmid: 15084258
-
(2004)
Cell
, vol.117
, pp. 199-209
-
-
Agashe, V.R.1
-
49
-
-
84954405061
-
Substrate protein folds while it is bound to the ATP-independent chaperone Spy
-
pmid: 26619265
-
F. Stull, P. Koldewey, J. R. Humes, S. E. Radford, J. C. Bardwell, Substrate protein folds while it is bound to the ATP-independent chaperone Spy. Nat. Struct. Mol. Biol. 23, 53-58 (2016). doi: 10.1038/nsmb.3133; pmid: 26619265
-
(2016)
Nat. Struct. Mol. Biol.
, vol.23
, pp. 53-58
-
-
Stull, F.1
Koldewey, P.2
Humes, J.R.3
Radford, S.E.4
Bardwell, J.C.5
-
50
-
-
84872577837
-
The cotranslational function of ribosomeassociated Hsp70 in eukaryotic protein homeostasis
-
pmid: 23332755
-
F. Willmund et al., The cotranslational function of ribosomeassociated Hsp70 in eukaryotic protein homeostasis. Cell 152, 196-209 (2013). doi: 10.1016/j.cell.2012.12.001; pmid: 23332755
-
(2013)
Cell
, vol.152
, pp. 196-209
-
-
Willmund, F.1
-
51
-
-
84871865476
-
Ribosomeassociated complex and Ssb are required for translational repression induced by polylysine segments within nascent chains
-
pmid: 23007158
-
M. Chiabudini, C. Conz, F. Reckmann, S. Rospert, Ribosomeassociated complex and Ssb are required for translational repression induced by polylysine segments within nascent chains. Mol. Cell. Biol. 32, 4769-4779 (2012). doi: 10.1128/ MCB.00809-12; pmid: 23007158
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 4769-4779
-
-
Chiabudini, M.1
Conz, C.2
Reckmann, F.3
Rospert, S.4
-
52
-
-
84927056252
-
Structural basis for interaction of a cotranslational chaperone with the eukaryotic ribosome
-
pmid: 25362488
-
Y. Zhang et al., Structural basis for interaction of a cotranslational chaperone with the eukaryotic ribosome. Nat. Struct. Mol. Biol. 21, 1042-1046 (2014). doi: 10.1038/ nsmb.2908; pmid: 25362488
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 1042-1046
-
-
Zhang, Y.1
-
53
-
-
84878658572
-
The nascent polypeptide-associated complex is a key regulator of proteostasis
-
pmid: 23604074
-
J. Kirstein-Miles, A. Scior, E. Deuerling, R. I. Morimoto, The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J. 32, 1451-1468 (2013). doi: 10.1038/ emboj.2013.87; pmid: 23604074
-
(2013)
EMBO J
, vol.32
, pp. 1451-1468
-
-
Kirstein-Miles, J.1
Scior, A.2
Deuerling, E.3
Morimoto, R.I.4
-
54
-
-
79960923840
-
Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes
-
pmid: 21765803
-
M. del Alamo et al., Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes. PLOS Biol. 9, e1001100 (2011). doi: 10.1371/journal. pbio.1001100; pmid: 21765803
-
(2011)
PLOS Biol.
, vol.9
, pp. e1001100
-
-
Alamo, M.D.1
-
55
-
-
84865238560
-
NAC functions as a modulator of SRP during the early steps of protein targeting to the endoplasmic reticulum
-
pmid: 22740632
-
Y. Zhang et al., NAC functions as a modulator of SRP during the early steps of protein targeting to the endoplasmic reticulum. Mol. Biol. Cell 23, 3027-3040 (2012). doi: 10.1091/mbc.E12-02-0112; pmid: 22740632
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 3027-3040
-
-
Zhang, Y.1
-
56
-
-
84927511251
-
The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum
-
pmid: 25859040
-
M. Gamerdinger, M. A. Hanebuth, T. Frickey, E. Deuerling, The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum. Science 348, 201-207 (2015). doi: 10.1126/science.aaa5335; pmid: 25859040
-
(2015)
Science
, vol.348
, pp. 201-207
-
-
Gamerdinger, M.1
Hanebuth, M.A.2
Frickey, T.3
Deuerling, E.4
-
57
-
-
84861139210
-
DnaK functions as a central hub in the E coli chaperone network
-
pmid: 22832197
-
G. Calloni et al., DnaK functions as a central hub in the E. coli chaperone network. Cell Reports 1, 251-264 (2012). doi: 10.1016/j.celrep.2011.12.007; pmid: 22832197
-
(2012)
Cell Reports
, vol.1
, pp. 251-264
-
-
Calloni, G.1
-
58
-
-
84903149823
-
Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles
-
pmid: 24949977
-
E. Kirschke, D. Goswami, D. Southworth, P. R. Griffin, D. A. Agard, Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell 157, 1685-1697 (2014). doi: 10.1016/ j.cell.2014.04.038; pmid: 24949977
-
(2014)
Cell
, vol.157
, pp. 1685-1697
-
-
Kirschke, E.1
Goswami, D.2
Southworth, D.3
Griffin, P.R.4
Agard, D.A.5
-
59
-
-
84933675876
-
Hsp70 forms antiparallel dimers stabilized by post-translational modifications to position clients for transfer to Hsp90
-
pmid: 25921532
-
N. Morgner et al., Hsp70 forms antiparallel dimers stabilized by post-translational modifications to position clients for transfer to Hsp90. Cell Reports 11, 759-769 (2015). doi: 10.1016/j.celrep.2015.03.063; pmid: 25921532
-
(2015)
Cell Reports
, vol.11
, pp. 759-769
-
-
Morgner, N.1
-
60
-
-
49449105092
-
The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin
-
pmid: 18660820
-
J. Cuéllar et al., The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin. Nat. Struct. Mol. Biol. 15, 858-864 (2008). doi: 10.1038/nsmb.1464; pmid: 18660820
-
(2008)
Nat. Struct. Mol. Biol
, vol.15
, pp. 858-864
-
-
Cuéllar, J.1
-
61
-
-
84884589727
-
Hsp70 chaperone dynamics and molecular mechanism
-
pmid: 24012426
-
M. P. Mayer, Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem. Sci. 38, 507-514 (2013). doi: 10.1016/j.tibs.2013.08.001; pmid: 24012426
-
(2013)
Trends Biochem. Sci.
, vol.38
, pp. 507-514
-
-
Mayer, M.P.1
-
62
-
-
84924139172
-
How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions
-
pmid: 25683596
-
E. M. Clerico, J. M. Tilitsky, W. Meng, L. M. Gierasch, How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J. Mol. Biol. 427, 1575-1588 (2015). doi: 10.1016/j.jmb.2015.02.004; pmid: 25683596
-
(2015)
J. Mol. Biol.
, vol.427
, pp. 1575-1588
-
-
Clerico, E.M.1
Tilitsky, J.M.2
Meng, W.3
Gierasch, L.M.4
-
63
-
-
84871689599
-
Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones
-
pmid: 23123194
-
R. Kityk, J. Kopp, I. Sinning, M. P. Mayer, Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48, 863-874 (2012). doi: 10.1016/ j.molcel.2012.09.023; pmid: 23123194
-
(2012)
Mol. Cell
, vol.48
, pp. 863-874
-
-
Kityk, R.1
Kopp, J.2
Sinning, I.3
Mayer, M.P.4
-
64
-
-
84880167772
-
Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP
-
pmid: 23708608
-
R. Qi et al., Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nat. Struct. Mol. Biol. 20, 900-907 (2013). doi: 10.1038/nsmb.2583; pmid: 23708608
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 900-907
-
-
Qi, R.1
-
65
-
-
84930939681
-
Substrate-binding domain conformational dynamics mediate Hsp70 allostery
-
pmid:26038563
-
A. Zhuravleva, L. M. Gierasch, Substrate-binding domain conformational dynamics mediate Hsp70 allostery. Proc. Natl. Acad. Sci. U.S.A. 112, E2865-E2873 (2015). doi: 10.1073/pnas.1506692112; pmid:26038563
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. E2865-E2873
-
-
Zhuravleva, A.1
Gierasch, L.M.2
-
66
-
-
84878617377
-
Real-time observation of the conformational dynamics of mitochondrial Hsp70 by spFRET
-
pmid: 23624933
-
M. Sikor, K. Mapa, L. V. von Voithenberg, D. Mokranjac, D. C. Lamb, Real-time observation of the conformational dynamics of mitochondrial Hsp70 by spFRET. EMBO J. 32, 1639-1649 (2013). doi: 10.1038/emboj.2013.89; pmid: 23624933
-
(2013)
. EMBO J.
, vol.32
, pp. 1639-1649
-
-
Sikor, M.1
Mapa, K.2
Von Voithenberg, L.V.3
Mokranjac, D.4
Lamb, D.C.5
-
67
-
-
85184648216
-
Barducci, Hsp70 chaperones are nonequilibrium machines that achieve ultra-affinity by energy consumption
-
pmid: 24867638
-
P. De Los Rios, A. Barducci, Hsp70 chaperones are nonequilibrium machines that achieve ultra-affinity by energy consumption. eLife 3, e02218 (2014). doi: 10.7554/ eLife.02218; pmid: 24867638
-
(2014)
E-Life
, vol.3
, pp. e02218
-
-
De Los, P.1
Rios, A.2
-
68
-
-
78649309029
-
The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase
-
pmid: 20953191
-
S. K. Sharma, P. De los Rios, P. Christen, A. Lustig, P. Goloubinoff, The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat. Chem. Biol. 6, 914-920 (2010). doi: 10.1038/nchembio.455; pmid: 20953191
-
(2010)
Nat. Chem. Biol.
, vol.6
, pp. 914-920
-
-
Sharma, S.K.1
De los Rios, P.2
Christen, P.3
Lustig, A.4
Goloubinoff, P.5
-
69
-
-
84943453603
-
Action of the Hsp70 chaperone system observed with single proteins
-
pmid: 25686738
-
J. M. Nunes, M. Mayer-Hartl, F. U. Hartl, D. J. Müller, Action of the Hsp70 chaperone system observed with single proteins. Nat. Commun. 6, 6307 (2015). doi: 10.1038/ncomms7307; pmid: 25686738
-
(2015)
Nat. Commun.
, vol.6
, pp. 6307
-
-
Nunes, J.M.1
Mayer-Hartl, M.2
Hartl, F.U.3
Müller, D.J.4
-
70
-
-
84939838737
-
Mapping the conformation of a client protein through the Hsp70 functional cycle
-
pmid: 26240333
-
A. Sekhar, R. Rosenzweig, G. Bouvignies, L. E. Kay, Mapping the conformation of a client protein through the Hsp70 functional cycle. Proc. Natl. Acad. Sci. U.S.A. 112, 10395-10400 (2015). doi: 10.1073/pnas.1508504112; pmid: 26240333
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 10395-10400
-
-
Sekhar, A.1
Rosenzweig, R.2
Bouvignies, G.3
Kay, L.E.4
-
71
-
-
84969972739
-
Hsp70 biases the folding pathways of client proteins
-
pmid: 27140645
-
A. Sekhar, R. Rosenzweig, G. Bouvignies, L. E. Kay, Hsp70 biases the folding pathways of client proteins. Proc. Natl. Acad. Sci. U.S.A. 113, E2794-E2801 (2016). doi: 10.1073/ pnas.1601846113; pmid: 27140645
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. E2794-E2801
-
-
Sekhar, A.1
Rosenzweig, R.2
Bouvignies, G.3
Kay, L.E.4
-
72
-
-
84938717684
-
Heterogeneous binding of the SH3 client protein to the DnaK molecular chaperone
-
pmid: 26195753
-
J. H. Lee et al., Heterogeneous binding of the SH3 client protein to the DnaK molecular chaperone. Proc. Natl. Acad. Sci. U.S.A. 112, E4206-E4215 (2015). doi: 10.1073/ pnas.1505173112; pmid: 26195753
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. E4206-E4215
-
-
Lee, J.H.1
-
73
-
-
84881476057
-
Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle
-
pmid: 23812373
-
Z. Li, F. U. Hartl, A. Bracher, Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle. Nat. Struct. Mol. Biol. 20, 929-935 (2013). doi: 10.1038/nsmb.2608; pmid: 23812373
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 929-935
-
-
Li, Z.1
Hartl, F.U.2
Bracher, A.3
-
74
-
-
77954947810
-
The HSP70 chaperone machinery: J proteins as drivers of functional specificity
-
pmid: 20651708
-
H. H. Kampinga, E. A. Craig, The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11, 579-592 (2010). doi: 10.1038/ nrm2941; pmid: 20651708
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 579-592
-
-
Kampinga, H.H.1
Craig, E.A.2
-
75
-
-
84947922826
-
Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in flavivirus infection
-
pmid: 26582131
-
S. Taguwa et al., Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in flavivirus infection. Cell 163, 1108-1123 (2015). doi: 10.1016/j.cell.2015.10.046; pmid: 26582131
-
(2015)
Cell
, vol.163
, pp. 1108-1123
-
-
Taguwa, S.1
-
76
-
-
85021327461
-
The nucleotide exchange factors of Hsp70 molecular chaperones
-
pmid: 26913285
-
A. Bracher, J. Verghese, The nucleotide exchange factors of Hsp70 molecular chaperones. Front. Mol. Biosci. 2, 10 (2015). doi: 10.3389/fmolb.2015.00010; pmid: 26913285
-
(2015)
Front. Mol. Biosci.
, vol.2
, pp. 10
-
-
Bracher, A.1
Verghese, J.2
-
77
-
-
84868525116
-
Metazoan Hsp70 machines use Hsp110 to power protein disaggregation
-
pmid:22990239
-
H. Rampelt et al., Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J. 31, 4221-4235 (2012). doi: 10.1038/emboj.2012.264; pmid:22990239
-
(2012)
EMBO J.
, vol.31
, pp. 4221-4235
-
-
Rampelt, H.1
-
78
-
-
84939559331
-
Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation
-
pmid: 26245380
-
N. B. Nillegoda et al., Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 524, 247-251 (2015). doi: 10.1038/nature14884; pmid: 26245380
-
(2015)
Nature
, vol.524
, pp. 247-251
-
-
Nillegoda, N.B.1
-
79
-
-
84923919615
-
A bipartite interaction between Hsp70 and CHIP regulates ubiquitination of chaperoned client proteins
-
pmid: 25684577
-
H. Zhang et al., A bipartite interaction between Hsp70 and CHIP regulates ubiquitination of chaperoned client proteins. Structure 23, 472-482 (2015). doi: 10.1016/j.str.2015.01.003; pmid: 25684577
-
(2015)
Structure
, vol.23
, pp. 472-482
-
-
Zhang, H.1
-
80
-
-
84952637757
-
The GroEL-GroES chaperonin machine: A nano-cage for protein folding
-
pmid: 26422689
-
M. Hayer-Hartl, A. Bracher, F. U. Hartl, The GroEL-GroES chaperonin machine: A nano-cage for protein folding. Trends Biochem. Sci. 41, 62-76 (2016). doi: 10.1016/ j.tibs.2015.07.009; pmid: 26422689
-
(2016)
Trends Biochem. Sci.
, vol.41
, pp. 62-76
-
-
Hayer-Hartl, M.1
Bracher, A.2
Hartl, F.U.3
-
81
-
-
84941173009
-
The mechanism and function of Group II chaperonins
-
pmid: 25936650
-
T. Lopez, K. Dalton, J. Frydman, The mechanism and function of Group II chaperonins. J. Mol. Biol. 427, 2919-2930 (2015). doi: 10.1016/j.jmb.2015.04.013; pmid: 25936650
-
(2015)
J. Mol. Biol.
, vol.427
, pp. 2919-2930
-
-
Lopez, T.1
Dalton, K.2
Frydman, J.3
-
82
-
-
84876395977
-
Structure and allostery of the chaperonin GroEL
-
pmid: 23183375
-
H. R. Saibil, W. A. Fenton, D. K. Clare, A. L. Horwich, Structure and allostery of the chaperonin GroEL. J. Mol. Biol. 425, 1476-1487 (2013). doi: 10.1016/j.jmb.2012.11.028; pmid: 23183375
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 1476-1487
-
-
Saibil, H.R.1
Fenton, W.A.2
Clare, D.K.3
Horwich, A.L.4
-
83
-
-
84859211500
-
ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin
-
pmid: 22445172
-
D. K. Clare et al., ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell 149, 113-123 (2012). doi: 10.1016/ j.cell.2012.02.047; pmid: 22445172
-
(2012)
Cell
, vol.149
, pp. 113-123
-
-
Clare, D.K.1
-
84
-
-
84974555476
-
Allosteric mechanisms in chaperonin machines
-
pmid: 26726755
-
R. Gruber, A. Horovitz, Allosteric mechanisms in chaperonin machines. Chem. Rev. 116, 6588-6606 (2016). doi: 10.1021/ acs.chemrev.5b00556; pmid: 26726755
-
(2016)
Chem. Rev.
, vol.116
, pp. 6588-6606
-
-
Gruber, R.1
Horovitz, A.2
-
85
-
-
84904254570
-
Active cage mechanism of chaperonin-assisted protein folding demonstrated at single-molecule level
-
pmid: 24816391
-
A. J. Gupta, S. Haldar, G. Milièiæ, F. U. Hartl, M. Hayer-Hartl, Active cage mechanism of chaperonin-assisted protein folding demonstrated at single-molecule level. J. Mol. Biol. 426, 2739-2754 (2014). doi: 10.1016/j.jmb.2014.04.018; pmid: 24816391
-
(2014)
J. Mol. Biol.
, vol.426
, pp. 2739-2754
-
-
Gupta, A.J.1
Haldar, S.2
Milièiæ, G.3
Hartl, F.U.4
Hayer-Hartl, M.5
-
86
-
-
40949124274
-
GroEL stimulates protein folding through forced unfolding
-
pmid: 18311152
-
Z. Lin, D. Madan, H. S. Rye, GroEL stimulates protein folding through forced unfolding. Nat. Struct. Mol. Biol. 15, 303-311 (2008). doi: 10.1038/nsmb.1394; pmid: 18311152
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 303-311
-
-
Lin, Z.1
Madan, D.2
Rye, H.S.3
-
87
-
-
41149089882
-
Monitoring protein conformation along the pathway of chaperonin-assisted folding
-
pmid: 18394994
-
S. Sharma et al., Monitoring protein conformation along the pathway of chaperonin-assisted folding. Cell 133, 142-153 (2008). doi: 10.1016/j.cell.2008.01.048; pmid: 18394994
-
(2008)
Cell
, vol.133
, pp. 142-153
-
-
Sharma, S.1
-
88
-
-
84941259065
-
Reaction cycle of chaperonin GroEL via symmetric footballintermediate
-
pmid: 25900372
-
H. Taguchi, Reaction cycle of chaperonin GroEL via symmetric football intermediate. J. Mol. Biol. 427, 2912-2918 (2015). doi: 10.1016/j.jmb.2015.04.007; pmid: 25900372
-
(2015)
J. Mol. Biol.
, vol.427
, pp. 2912-2918
-
-
Taguchi, H.1
-
89
-
-
22744447508
-
Proteome-wide analysis of chaperonindependent protein folding in Escherichia coli
-
pmid: 16051146
-
M. J. Kerner et al., Proteome-wide analysis of chaperonindependent protein folding in Escherichia coli. Cell 122, 209-220 (2005). doi: 10.1016/j.cell.2005.05.028; pmid: 16051146
-
(2005)
Cell
, vol.122
, pp. 209-220
-
-
Kerner, M.J.1
-
90
-
-
77951974784
-
A systematic survey of in vivo obligate chaperonin-dependent substrates
-
pmid: 20360681
-
K. Fujiwara, Y. Ishihama, K. Nakahigashi, T. Soga, H. Taguchi, A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J. 29, 1552-1564 (2010). doi: 10.1038/ emboj.2010.52; pmid: 20360681
-
(2010)
EMBO J.
, vol.29
, pp. 1552-1564
-
-
Fujiwara, K.1
Ishihama, Y.2
Nakahigashi, K.3
Soga, T.4
Taguchi, H.5
-
91
-
-
68649123756
-
The GroEL/GroES cis cavity as a passive anti-aggregation device
-
pmid: 19577567
-
A. L. Horwich, A. C. Apetri, W. A. Fenton, The GroEL/GroES cis cavity as a passive anti-aggregation device. FEBS Lett. 583, 2654-2662 (2009). doi: 10.1016/j.febslet.2009.06.049; pmid: 19577567
-
(2009)
FEBS Lett.
, vol.583
, Issue.2654-2662
-
-
Horwich, A.L.1
Apetri, A.C.2
Fenton, W.A.3
-
92
-
-
33646897305
-
Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein
-
pmid: 16751100
-
Y.-C. Tang et al., Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125, 903-914 (2006). doi: 10.1016/j.cell.2006.04.027; pmid: 16751100
-
(2006)
Cell
, vol.125
, pp. 903-914
-
-
Tang, Y.-C.1
-
93
-
-
77954277524
-
Chaperonin-catalyzed rescue of kinetically trapped states in protein folding
-
pmid: 20603018
-
K. Chakraborty et al., Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell 142, 112-122 (2010). doi: 10.1016/j.cell.2010.05.027; pmid: 20603018
-
(2010)
Cell
, vol.142
, pp. 112-122
-
-
Chakraborty, K.1
-
94
-
-
84856113243
-
Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins
-
pmid: 22179065
-
A. L. Mallam, S. E. Jackson, Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins. Nat. Chem. Biol. 8, 147-153 (2011). doi: 10.1038/nchembio.742; pmid: 22179065
-
(2011)
Nat. Chem. Biol.
, vol.8
, pp. 147-153
-
-
Mallam, A.L.1
Jackson, S.E.2
-
95
-
-
84900341259
-
GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding
-
pmid: 24813614
-
F. Georgescauld et al., GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell 157, 922-934 (2014). doi: 10.1016/ j.cell.2014.03.038; pmid: 24813614
-
(2014)
Cell
, vol.157
, pp. 922-934
-
-
Georgescauld, F.1
-
96
-
-
84905982956
-
The C-terminal tails of the bacterial chaperonin GroEL stimulate protein folding by directly altering the conformation of a substrate protein
-
pmid: 24970895
-
J. Weaver, H. S. Rye, The C-terminal tails of the bacterial chaperonin GroEL stimulate protein folding by directly altering the conformation of a substrate protein. J. Biol. Chem. 289, 23219-23232 (2014). doi: 10.1074/jbc. M114.577205; pmid: 24970895
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 23219-23232
-
-
Weaver, J.1
Rye, H.S.2
-
97
-
-
78651499753
-
Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber
-
pmid: 21241893
-
N. R. Douglas et al., Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Cell 144, 240-252 (2011). doi: 10.1016/ j.cell.2010.12.017; pmid: 21241893
-
(2011)
Cell
, vol.144
, pp. 240-252
-
-
Douglas, N.R.1
-
98
-
-
84871831177
-
Folding of large multidomain proteins by partial encapsulation in the chaperonin TRiC/CCT
-
pmid: 23197838
-
F. Rüβmann et al., Folding of large multidomain proteins by partial encapsulation in the chaperonin TRiC/CCT. Proc. Natl. Acad. Sci. U.S.A. 109, 21208-21215 (2012). doi: 10.1073/ pnas.1218836109; pmid: 23197838
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 21208-21215
-
-
Rümann, F.1
-
99
-
-
84911887217
-
The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT
-
pmid: 25416944
-
L. A. Joachimiak, T. Walzthoeni, C. W. Liu, R. Aebersold, J. Frydman, The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT. Cell 159, 1042-1055 (2014). doi: 10.1016/j.cell.2014.10.042; pmid: 25416944
-
(2014)
Cell
, vol.159
, pp. 1042-1055
-
-
Joachimiak, L.A.1
Walzthoeni, T.2
Liu, C.W.3
Aebersold, R.4
Frydman, J.5
-
100
-
-
84868137417
-
A gradient of ATP affinities generates an asymmetric power stroke driving the chaperonin TRIC/CCT folding cycle
-
pmid: 23041314
-
S. Reissmann et al., A gradient of ATP affinities generates an asymmetric power stroke driving the chaperonin TRIC/CCT folding cycle. Cell Rep. 2, 866-877 (2012). pmid: 23041314
-
(2012)
Cell Rep.
, vol.2
, pp. 866-877
-
-
Reissmann, S.1
-
101
-
-
17844378217
-
Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis
-
pmid: 15696173
-
D. Rivenzon-Segal, S. G. Wolf, L. Shimon, K. R. Willison, A. Horovitz, Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis. Nat. Struct. Mol. Biol. 12, 233-237 (2005). doi: 10.1038/nsmb901; pmid: 15696173
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 233-237
-
-
Rivenzon-Segal, D.1
Wolf, S.G.2
Shimon, L.3
Willison, K.R.4
Horovitz, A.5
-
102
-
-
84857385799
-
Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling
-
pmid: 22308438
-
N. Kalisman, C. M. Adams, M. Levitt, Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proc. Natl. Acad. Sci. U.S.A. 109, 2884-2889 (2012). doi: 10.1073/ pnas.1119472109; pmid: 22308438
-
(2012)
Proc. Natl. Acad. Sci. U. S. A
, vol.109
, pp. 2884-2889
-
-
Kalisman, N.1
Adams, C.M.2
Levitt, M.3
-
103
-
-
84861102204
-
The molecular architecture of the eukaryotic chaperonin TRiC/CCT
-
pmid: 22503819
-
A. Leitner et al., The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure 20, 814-825 (2012). doi: 10.1016/j.str.2012.03.007; pmid: 22503819
-
(2012)
Structure
, vol.20
, pp. 814-825
-
-
Leitner, A.1
-
104
-
-
84875883590
-
The crystal structures of the eukaryotic chaperonin CCT reveal its functional partitioning
-
pmid: 23478063
-
N. Kalisman, G. F. Schröder, M. Levitt, The crystal structures of the eukaryotic chaperonin CCT reveal its functional partitioning. Structure 21, 540-549 (2013). doi: 10.1016/ j.str.2013.01.017; pmid: 23478063
-
(2013)
Structure
, vol.21
, pp. 540-549
-
-
Kalisman, N.1
Schröder, G.F.2
Levitt, M.3
-
105
-
-
84923657460
-
Structures of the Gb-CCT and PhLP1-Gb-CCT complexes reveal a mechanism for G-protein b-subunit folding and Gbg dimer assembly
-
pmid:25675501
-
R. L. Plimpton et al., Structures of the Gb-CCT and PhLP1-Gb-CCT complexes reveal a mechanism for G-protein b-subunit folding and Gbg dimer assembly. Proc. Natl. Acad. Sci. U.S.A. 112,2413-2418 (2015). doi: 10.1073/pnas.1419595112; pmid:25675501
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 2413-2418
-
-
Plimpton, R.L.1
-
106
-
-
77953916528
-
HSP90 at the hub of protein homeostasis: Emerging mechanistic insights
-
pmid: 20531426
-
M. Taipale, D. F. Jarosz, S. Lindquist, HSP90 at the hub of protein homeostasis: Emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11, 515-528 (2010). doi: 10.1038/ nrm2918; pmid: 20531426
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 515-528
-
-
Taipale, M.1
Jarosz, D.F.2
Lindquist, S.3
-
107
-
-
84857042271
-
The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones
-
pmid: 21951723
-
J. Li, J. Soroka, J. Buchner, The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones. Biochim. Biophys. Acta 1823, 624-635 (2012). doi: 10.1016/ j.bbamcr.2011.09.003; pmid: 21951723
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 624-635
-
-
Li, J.1
Soroka, J.2
Buchner, J.3
-
108
-
-
84857943078
-
Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response
-
pmid: 22167270
-
K. Sharma et al., Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response. Mol. Cell. Proteomics 11, 014654 (2012). doi: 10.1074/mcp.M111.014654; pmid: 22167270
-
(2012)
Mol. Cell. Proteomics
, vol.11
, pp. 014654
-
-
Sharma, K.1
-
109
-
-
84865695733
-
Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition
-
pmid: 22939624
-
M. Taipale et al., Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150, 987-1001 (2012). doi: 10.1016/j.cell.2012.06.047; pmid: 22939624
-
(2012)
Cell
, vol.150
, pp. 987-1001
-
-
Taipale, M.1
-
110
-
-
84910031803
-
Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases
-
pmid: 25292434
-
W. B. Pratt, J. E. Gestwicki, Y. Osawa, A. P. Lieberman, Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 55, 353-371 (2015). doi: 10.1146/ annurev-pharmtox-010814-124332; pmid: 25292434
-
(2015)
Annu. Rev. Pharmacol. Toxicol.
, vol.55
, pp. 353-371
-
-
Pratt, W.B.1
Gestwicki, J.E.2
Osawa, Y.3
Lieberman, A.P.4
-
111
-
-
77957740228
-
Protein folding sculpting evolutionary change
-
pmid: 20375316
-
S. Lindquist, Protein folding sculpting evolutionary change. Cold Spring Harb. Symp. Quant. Biol. 74, 103-108 (2009). doi: 10.1101/sqb.2009.74.043; pmid: 20375316
-
(2009)
Cold Spring Harb. Symp. Quant. Biol.
, vol.74
, pp. 103-108
-
-
Lindquist, S.1
-
112
-
-
84876707777
-
The chaperone Hsp90: Changing partners for demanding clients
-
pmid: 23507089
-
A. Röhl, J. Rohrberg, J. Buchner, The chaperone Hsp90: Changing partners for demanding clients. Trends Biochem. Sci. 38, 253-262 (2013). doi: 10.1016/j.tibs.2013.02.003; pmid: 23507089
-
(2013)
Trends Biochem. Sci.
, vol.38
, pp. 253-262
-
-
Röhl, A.1
Rohrberg, J.2
Buchner, J.3
-
113
-
-
84921610700
-
Hsp90 interaction with clients
-
pmid: 25579468
-
G. E. Karagöz, S. G. D. Rüdiger, Hsp90 interaction with clients. Trends Biochem. Sci. 40, 117-125 (2015). doi: 10.1016/j.tibs.2014.12.002; pmid: 25579468
-
(2015)
Trends Biochem. Sci.
, vol.40
, pp. 117-125
-
-
Karagöz, G.E.1
Rüdiger, S.G.D.2
-
114
-
-
61949212626
-
The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis
-
pmid: 19234469
-
M. Mickler, M. Hessling, C. Ratzke, J. Buchner, T. Hugel, The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat. Struct. Mol. Biol. 16, 281-286 (2009). doi: 10.1038/nsmb.1557; pmid: 19234469
-
(2009)
Nat. Struct. Mol. Biol
, vol.16
, pp. 281-286
-
-
Mickler, M.1
Hessling, M.2
Ratzke, C.3
Buchner, J.4
Hugel, T.5
-
115
-
-
79953308070
-
Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone
-
pmid: 21474071
-
T. O. Street, L. A. Lavery, D. A. Agard, Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone. Mol. Cell 42, 96-105 (2011). doi: 10.1016/j.molcel.2011.01.029; pmid: 21474071
-
(2011)
Mol. Cell
, vol.42
, pp. 96-105
-
-
Street, T.O.1
Lavery, L.A.2
Agard, D.A.3
-
116
-
-
61949349758
-
Dissection of the ATPinduced conformational cycle of the molecular chaperone Hsp90
-
pmid: 19234467
-
M. Hessling, K. Richter, J. Buchner, Dissection of the ATPinduced conformational cycle of the molecular chaperone Hsp90. Nat. Struct. Mol. Biol. 16, 287-293 (2009). doi: 10.1038/nsmb.1565; pmid: 19234467
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 287-293
-
-
Hessling, M.1
Richter, K.2
Buchner, J.3
-
117
-
-
84896837095
-
Hsp90-Tau complex reveals molecular basis for specificity in chaperone action
-
pmid: 24581495
-
G. E. Karagöz et al., Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell 156, 963-974 (2014). doi: 10.1016/j.cell.2014.01.037; pmid: 24581495
-
(2014)
Cell
, vol.156
, pp. 963-974
-
-
Karagöz, G.E.1
-
118
-
-
84901197636
-
Elucidating the mechanism of substrate recognition by the bacterial Hsp90 molecular chaperone
-
pmid: 24726919
-
T. O. Street et al., Elucidating the mechanism of substrate recognition by the bacterial Hsp90 molecular chaperone. J. Mol. Biol. 426, 2393-2404 (2014). doi: 10.1016/ j.jmb.2014.04.001; pmid: 24726919
-
(2014)
J. Mol. Biol.
, vol.426
, pp. 2393-2404
-
-
Street, T.O.1
-
119
-
-
84935009324
-
Conformational processing of oncogenic v-Src kinase by the molecular chaperone Hsp90
-
pmid: 26056257
-
E. E. Boczek et al., Conformational processing of oncogenic v-Src kinase by the molecular chaperone Hsp90. Proc. Natl. Acad. Sci. U.S.A. 112, E3189-E3198 (2015). doi: 10.1073/ pnas.1424342112; pmid: 26056257
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. E3189-E3198
-
-
Boczek, E.E.1
-
120
-
-
78650983812
-
Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle
-
pmid: 21170051
-
J. Li, K. Richter, J. Buchner, Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle. Nat. Struct. Mol. Biol. 18, 61-66 (2011). doi: 10.1038/ nsmb.1965; pmid: 21170051
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 61-66
-
-
Li, J.1
Richter, K.2
Buchner, J.3
-
121
-
-
77949438155
-
Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis
-
pmid: 20089831
-
A. V. Koulov et al., Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol. Biol. Cell 21, 871-884 (2010). doi: 10.1091/mbc.E09-12-1017; pmid: 20089831
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 871-884
-
-
Koulov, A.V.1
-
122
-
-
75949106173
-
Asymmetric activation of the hsp90 dimer by its cochaperone aha1
-
pmid: 20159554
-
M. Retzlaff et al., Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol. Cell 37, 344-354 (2010). doi: 10.1016/j.molcel.2010.01.006; pmid: 20159554
-
(2010)
Mol. Cell
, vol.37
, pp. 344-354
-
-
Retzlaff, M.1
-
123
-
-
84919764653
-
A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease
-
pmid: 25437566
-
M. Brehme et al., A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Reports 9, 1135-1150 (2014). doi: 10.1016/ j.celrep.2014.09.042; pmid: 25437566
-
(2014)
Cell Reports
, vol.9
, pp. 1135-1150
-
-
Brehme, M.1
-
124
-
-
84906794886
-
Proteostasis impairment in protein-misfolding and -aggregation diseases
-
pmid: 24946960
-
M. S. Hipp, S.-H. Park, F. U. Hartl, Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol. 24, 506-514 (2014). doi: 10.1016/j.tcb.2014.05.003; pmid: 24946960
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 506-514
-
-
Hipp, M.S.1
Park, S.H.2
Hartl, F.U.3
-
125
-
-
84904547311
-
A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways
-
pmid: 25036637
-
M. Taipale et al., A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158, 434-448 (2014). doi: 10.1016/j.cell.2014.05.039; pmid: 25036637
-
(2014)
Cell
, vol.158
, pp. 434-448
-
-
Taipale, M.1
-
126
-
-
84863651655
-
Aging as an event of proteostasis collapse
-
pmid: 21441594
-
R. C. Taylor, A. Dillin, Aging as an event of proteostasis collapse. Cold Spring Harb. Perspect. Biol. 3, a004440 (2011). doi: 10.1101/cshperspect.a004440; pmid: 21441594
-
(2011)
Cold Spring Harb. Perspect. Biol.
, vol.3
, pp. a004440
-
-
Taylor, R.C.1
Dillin, A.2
-
127
-
-
84947471999
-
Identification and characterization of essential genes in the human genome
-
pmid: 26472758
-
T. Wang et al., Identification and characterization of essential genes in the human genome. Science 350, 1096-1101 (2015). doi: 10.1126/science.aac7041; pmid: 26472758
-
(2015)
Science
, vol.350
, pp. 1096-1101
-
-
Wang, T.1
-
128
-
-
79959463520
-
Regulation of HSF1 function in the heat stress response: Implications in aging and disease
-
pmid: 21417720
-
J. Anckar, L. Sistonen, Regulation of HSF1 function in the heat stress response: Implications in aging and disease. Annu. Rev. Biochem. 80, 1089-1115 (2011). doi: 10.1146/annurevbiochem-060809-095203; pmid: 21417720
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 1089-1115
-
-
Anckar, J.1
Sistonen, L.2
-
129
-
-
82255173966
-
The unfolded protein response: From stress pathway to homeostatic regulation
-
pmid: 22116877
-
P. Walter, D. Ron, The unfolded protein response: From stress pathway to homeostatic regulation. Science 334, 1081-1086 (2011). doi: 10.1126/science.1209038; pmid: 22116877
-
(2011)
Science
, vol.334
, pp. 1081-1086
-
-
Walter, P.1
Ron, D.2
-
130
-
-
84941747116
-
UPR(mt)-mediated cytoprotection and organismal aging
-
pmid: 25857997
-
A. M. Schulz, C. M. Haynes, UPR(mt)-mediated cytoprotection and organismal aging. Biochim. Biophys. Acta 1847, 1448-1456 (2015). doi: 10.1016/j.bbabio.2015.03.008; pmid: 25857997
-
(2015)
Biochim. Biophys. Acta
, vol.1847
, pp. 1448-1456
-
-
Schulz, A.M.1
Haynes, C.M.2
-
131
-
-
84922459687
-
Endocrine aspects of organelle stress-cell non-autonomous signaling of mitochondria and the ER
-
pmid: 25677685
-
R. Schinzel, A. Dillin, Endocrine aspects of organelle stress-cell non-autonomous signaling of mitochondria and the ER. Curr. Opin. Cell Biol. 33, 102-110 (2015). doi: 10.1016/ j.ceb.2015.01.006; pmid: 25677685
-
(2015)
Curr. Opin. Cell Biol
, vol.33
, pp. 102-110
-
-
Schinzel, R.1
Dillin, A.2
-
132
-
-
84878195272
-
Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway
-
pmid: 23603116
-
A. Shemorry, C. S. Hwang, A. Varshavsky, Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50, 540-551 (2013). doi: 10.1016/j.molcel.2013.03.018; pmid: 23603116
-
(2013)
Mol. Cell
, vol.50
, pp. 540-551
-
-
Shemorry, A.1
Hwang, C.S.2
Varshavsky, A.3
-
133
-
-
84989284335
-
Degradation of misfolded proteins in neurodegenerative diseases: Therapeutic targets and strategies
-
pmid: 25766616
-
A. Ciechanover, Y. T. Kwon, Degradation of misfolded proteins in neurodegenerative diseases: Therapeutic targets and strategies. Exp. Mol. Med. 47, e147 (2015). doi: 10.1038/ emm.2014.117; pmid: 25766616
-
(2015)
Exp. Mol. Med
, vol.47
, pp. e147
-
-
Ciechanover, A.1
Kwon, Y.T.2
-
134
-
-
84866167976
-
Increased proteasome activity in human embryonic stem cells is regulated by PSMD11
-
pmid: 22972301
-
D. Vilchez et al., Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489, 304-308 (2012). doi: 10.1038/nature11468; pmid: 22972301
-
(2012)
Nature
, vol.489
, pp. 304-308
-
-
Vilchez, D.1
-
135
-
-
75749101057
-
Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1
-
pmid: 20080635
-
J. W. Heck, S. K. Cheung, R. Y. Hampton, Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc. Natl. Acad. Sci. U.S.A. 107, 1106-1111 (2010). doi: 10.1073/pnas.0910591107; pmid: 20080635
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 1106-1111
-
-
Heck, J.W.1
Cheung, S.K.2
Hampton, R.Y.3
-
136
-
-
77954178073
-
A nucleus-based quality control mechanism for cytosolic proteins
-
pmid: 20462951
-
R. Prasad, S. Kawaguchi, D. T. Ng, A nucleus-based quality control mechanism for cytosolic proteins. Mol. Biol. Cell 21, 2117-2127 (2010). doi: 10.1091/mbc.E10-02-0111; pmid: 20462951
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 2117-2127
-
-
Prasad, R.1
Kawaguchi, S.2
Ng, D.T.3
-
137
-
-
84879920420
-
PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone
-
pmid: 23791384
-
S.-H. Park et al., PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154, 134-145 (2013). doi: 10.1016/ j.cell.2013.06.003; pmid: 23791384
-
(2013)
Cell
, vol.154
, pp. 134-145
-
-
Park, S.-H.1
-
138
-
-
84950160369
-
Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation
-
pmid: 26042222
-
A. Mogk, E. Kummer, B. Bukau, Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Front. Mol. Biosci. 2, 22 (2015). doi: 10.3389/fmolb.2015.00022; pmid: 26042222
-
(2015)
Front. Mol. Biosci.
, vol.2
, pp. 22
-
-
Mogk, A.1
Kummer, E.2
Bukau, B.3
-
139
-
-
65449117176
-
Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3
-
pmid: 19229298
-
M. Gamerdinger et al., Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J. 28, 889-901 (2009). doi: 10.1038/ emboj.2009.29; pmid: 19229298
-
(2009)
EMBO J.
, vol.28
, pp. 889-901
-
-
Gamerdinger, M.1
-
140
-
-
77952851112
-
Chaperoneassisted degradation: Multiple paths to destruction
-
pmid: 20302520
-
N. Kettern, M. Dreiseidler, R. Tawo, J. Höhfeld, Chaperoneassisted degradation: Multiple paths to destruction. Biol. Chem. 391, 481-489 (2010). doi: 10.1515/bc.2010.058; pmid: 20302520
-
(2010)
Biol. Chem
, vol.391
, pp. 481-489
-
-
Kettern, N.1
Dreiseidler, M.2
Tawo, R.3
Höhfeld, J.4
-
141
-
-
84928389942
-
Widespread macromolecular interaction perturbations in human genetic disorders
-
pmid: 25910212
-
N. Sahni et al., Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161, 647-660 (2015). doi: 10.1016/j.cell.2015.04.013; pmid: 25910212
-
(2015)
Cell
, vol.161
, pp. 647-660
-
-
Sahni, N.1
-
142
-
-
70349266064
-
Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging
-
pmid: 19706382
-
A. Ben-Zvi, E. A. Miller, R. I. Morimoto, Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl. Acad. Sci. U.S.A. 106, 14914-14919 (2009). doi: 10.1073/pnas.0902882106; pmid: 19706382
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 14914-14919
-
-
Ben-Zvi, A.1
Miller, E.A.2
Morimoto, R.I.3
-
143
-
-
80053371954
-
Firefly luciferase mutants as sensors of proteome stress
-
pmid: 21892152
-
R. Gupta et al., Firefly luciferase mutants as sensors of proteome stress. Nat. Methods 8, 879-884 (2011). doi: 10.1038/nmeth.1697; pmid: 21892152
-
(2011)
Nat. Methods
, vol.8
, pp. 879-884
-
-
Gupta, R.1
-
144
-
-
72149118250
-
An analytical solution to the kinetics of breakable filament assembly
-
pmid:20007899
-
T. P. Knowles et al., An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533-1537 (2009). doi: 10.1126/science.1178250; pmid:20007899
-
(2009)
Science
, vol.326
, pp. 1533-1537
-
-
Knowles, T.P.1
-
145
-
-
3042717240
-
Cellular toxicity of polyglutamine expansion proteins: Mechanism of transcription factor deactivation
-
pmid: 15225551
-
G. Schaffar et al., Cellular toxicity of polyglutamine expansion proteins: Mechanism of transcription factor deactivation. Mol. Cell 15, 95-105 (2004). doi: 10.1016/j.molcel.2004.06.029; pmid: 15225551
-
(2004)
Mol. Cell
, vol.15
, pp. 95-105
-
-
Schaffar, G.1
-
146
-
-
84924196173
-
A molecular chaperone breaks the catalytic cycle that generates toxic Ab oligomers
-
pmid: 25686087
-
S. I. Cohen et al., A molecular chaperone breaks the catalytic cycle that generates toxic Ab oligomers. Nat.Struct.Mol.Biol.22, 207-213 (2015). doi: 10.1038/nsmb.2971; pmid: 25686087
-
(2015)
Nat.Struct.Mol.Biol.
, vol.22
, pp. 207-213
-
-
Cohen, S.I.1
-
147
-
-
84931576485
-
Optimization of codon translation rates via tRNA modifications maintains proteome integrity
-
pmid: 26052047
-
D. D. Nedialkova, S. A. Leidel, Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 161, 1606-1618 (2015). doi: 10.1016/ j.cell.2015.05.022; pmid: 26052047
-
(2015)
Cell
, vol.161
, pp. 1606-1618
-
-
Nedialkova, D.D.1
Leidel, S.A.2
-
148
-
-
84948573230
-
Not4-dependent translational repression is important for cellular protein homeostasis in yeast
-
pmid: 25971775
-
S. Preissler et al., Not4-dependent translational repression is important for cellular protein homeostasis in yeast. EMBO J.34, 1905-1924 (2015). doi: 10.15252/embj.201490194; pmid: 25971775
-
(2015)
EMBO J.
, vol.34
, pp. 1905-1924
-
-
Preissler, S.1
-
149
-
-
84960850555
-
Failure of RQC machinery causes protein aggregation and proteotoxic stress
-
pmid: 26934223
-
Y.-J. Choe et al., Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature 531, 191-195 (2016). doi: 10.1038/nature16973; pmid: 26934223
-
(2016)
Nature
, vol.531
, pp. 191-195
-
-
Choe, Y.-J.1
-
150
-
-
84954207877
-
Ribosome-associated protein quality control
-
pmid: 26733220
-
O. Brandman, R. S. Hegde, Ribosome-associated protein quality control. Nat. Struct. Mol. Biol. 23, 7-15 (2016). doi: 10.1038/nsmb.3147; pmid: 26733220
-
(2016)
Nat. Struct. Mol. Biol.
, vol.23
, pp. 7-15
-
-
Brandman, O.1
Hegde, R.S.2
-
151
-
-
84964290546
-
The Rqc2/Tae2 subunit of the ribosomeassociated quality control (RQC) complex marks ribosomestalled nascent polypeptide chains for aggregation
-
pmid: 26943317
-
R. Yonashiro et al., The Rqc2/Tae2 subunit of the ribosomeassociated quality control (RQC) complex marks ribosomestalled nascent polypeptide chains for aggregation. eLife 5, e11794 (2016). doi: 10.7554/eLife.11794; pmid: 26943317
-
(2016)
E-Life
, vol.5
, pp. e11794
-
-
Yonashiro, R.1
-
152
-
-
84942292545
-
Structural, morphological, and functional diversity of amyloid oligomers
-
pmid: 26188543
-
L. Breydo, V. N. Uversky, Structural, morphological, and functional diversity of amyloid oligomers. FEBS Lett. 589 (19PartA), 2640-2648 (2015). doi: 10.1016/ j.febslet.2015.07.013; pmid: 26188543
-
(2015)
FEBS Lett.
, vol.589
, Issue.19
, pp. 2640-2648
-
-
Breydo, L.1
Uversky, V.N.2
-
153
-
-
0037408279
-
Transcriptional abnormalities in Huntington disease
-
pmid: 12711212
-
K. L. Sugars, D. C. Rubinsztein, Transcriptional abnormalities in Huntington disease. Trends Genet. 19, 233-238 (2003). doi: 10.1016/S0168-9525(03)00074-X; pmid: 12711212
-
(2003)
Trends Genet
, vol.19
, pp. 233-238
-
-
Sugars, K.L.1
Rubinsztein, D.C.2
-
154
-
-
78650963274
-
Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions
-
pmid: 21215370
-
H. Olzscha et al., Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67-78 (2011). doi: 10.1016/ j.cell.2010.11.050; pmid: 21215370
-
(2011)
Cell
, vol.144
, pp. 67-78
-
-
Olzscha, H.1
-
155
-
-
84940403835
-
A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation
-
pmid: 26317470
-
A. Patel et al., A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066-1077 (2015). doi: 10.1016/j.cell.2015.07.047; pmid: 26317470
-
(2015)
Cell
, vol.162
, pp. 1066-1077
-
-
Patel, A.1
-
156
-
-
84955098544
-
Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA
-
pmid: 26634439
-
A. C. Woerner et al., Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science 351, 173-176 (2016). doi: 10.1126/science.aad2033; pmid: 26634439
-
(2016)
Science
, vol.351
, pp. 173-176
-
-
Woerner, A.C.1
-
157
-
-
84951845194
-
Emerging roles of disordered sequences in RNA-binding proteins
-
pmid: 26481498
-
S. Calabretta, S. Richard, Emerging roles of disordered sequences in RNA-binding proteins. Trends Biochem. Sci. 40, 662-672 (2015). doi: 10.1016/j.tibs.2015.08.012; pmid: 26481498
-
(2015)
Trends Biochem. Sci.
, vol.40
, pp. 662-672
-
-
Calabretta, S.1
Richard, S.2
-
158
-
-
84940925534
-
GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport
-
pmid: 26308899
-
B. D. Freibaum et al., GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525, 129-133 (2015). doi: 10.1038/nature14974; pmid: 26308899
-
(2015)
Nature
, vol.525
, pp. 129-133
-
-
Freibaum, B.D.1
-
159
-
-
84887606872
-
Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins
-
pmid: 24183671
-
P. Ciryam, G. G. Tartaglia, R. I. Morimoto, C. M. Dobson, M. Vendruscolo, Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Reports 5, 781-790 (2013). doi: 10.1016/j.celrep.2013.09.043; pmid: 24183671
-
(2013)
Cell Reports
, vol.5
, pp. 781-790
-
-
Ciryam, P.1
Tartaglia, G.G.2
Morimoto, R.I.3
Dobson, C.M.4
Vendruscolo, M.5
-
160
-
-
84892420536
-
Aneuploidy: Implications for protein homeostasis and disease
-
pmid: 24396150
-
A. B. Oromendia, A. Amon, Aneuploidy: Implications for protein homeostasis and disease. Dis. Model. Mech. 7, 15-20 (2014). doi: 10.1242/dmm.013391; pmid: 24396150
-
(2014)
Dis. Model. Mech
, vol.7
, pp. 15-20
-
-
Oromendia, A.B.1
Amon, A.2
-
161
-
-
84928963751
-
Widespread Proteome Remodeling and Aggregation in Aging C elegans
-
pmid: 25957690
-
D. M. Walther et al., Widespread Proteome Remodeling and Aggregation in Aging C. elegans. Cell 161, 919-932 (2015). doi: 10.1016/j.cell.2015.03.032; pmid: 25957690
-
(2015)
Cell
, vol.161
, pp. 919-932
-
-
Walther, D.M.1
-
162
-
-
33748792821
-
Opposing activities protect against age-onset proteotoxicity
-
pmid: 16902091
-
E. Cohen, J. Bieschke, R. M. Perciavalle, J. W. Kelly, A. Dillin, Opposing activities protect against age-onset proteotoxicity. Science 313, 1604-1610 (2006). doi: 10.1126/ science.1124646; pmid: 16902091
-
(2006)
Science
, vol.313
, pp. 1604-1610
-
-
Cohen, E.1
Bieschke, J.2
Perciavalle, R.M.3
Kelly, J.W.4
Dillin, A.5
-
163
-
-
50649116818
-
Misfolded proteins partition between two distinct quality control compartments
-
pmid: 18756251
-
D. Kaganovich, R. Kopito, J. Frydman, Misfolded proteins partition between two distinct quality control compartments.Nature 454, 1088-1095 (2008). doi: 10.1038/nature07195; pmid: 18756251
-
(2008)
Nature
, vol.454
, pp. 1088-1095
-
-
Kaganovich, D.1
Kopito, R.2
Frydman, J.3
-
164
-
-
84865722715
-
SERF protein is a direct modifier of amyloid fiber assembly
-
pmid: 22854022
-
S. F. Falsone et al., SERF protein is a direct modifier of amyloid fiber assembly. Cell Reports 2, 358-371 (2012). doi: 10.1016/j.celrep.2012.06.012; pmid: 22854022
-
(2012)
Cell Reports
, vol.2
, pp. 358-371
-
-
Falsone, S.F.1
-
165
-
-
84885095437
-
Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress
-
pmid: 24036477
-
S. Escusa-Toret, W. I. Vonk, J. Frydman, Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress. Nat. Cell Biol. 15, 1231-1243 (2013). doi: 10.1038/ncb2838; pmid: 24036477
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 1231-1243
-
-
Escusa-Toret, S.1
Vonk, W.I.2
Frydman, J.3
-
166
-
-
84902666176
-
Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae
-
pmid: 24855027
-
S. M. Hill, X. Hao, B. Liu, T. Nyström, Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science 344, 1389-1392 (2014). doi: 10.1126/science.1252634; pmid: 24855027
-
(2014)
Science
, vol.344
, pp. 1389-1392
-
-
Hill, S.M.1
Hao, X.2
Liu, B.3
Nyström, T.4
-
167
-
-
84892865694
-
Sorting out the trash: The spatial nature of eukaryotic protein quality control
-
pmid: 24463332
-
E. M. Sontag, W. I. M. Vonk, J. Frydman, Sorting out the trash: The spatial nature of eukaryotic protein quality control. Curr. Opin. Cell Biol. 26, 139-146 (2014). doi: 10.1016/ j.ceb.2013.12.006; pmid: 24463332
-
(2014)
Curr. Opin. Cell Biol.
, vol.26
, pp. 139-146
-
-
Sontag, E.M.1
Vonk, W.I.M.2
Frydman, J.3
-
168
-
-
84941339084
-
Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress
-
pmid: 26359986
-
E. W. J. Wallace et al., Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162, 1286-1298 (2015). doi: 10.1016/j.cell.2015.08.041; pmid: 26359986
-
(2015)
Cell
, vol.162
, pp. 1286-1298
-
-
Wallace, E.W.J.1
-
169
-
-
7244236320
-
Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death
-
pmid: 15483602
-
M. Arrasate, S. Mitra, E. S. Schweitzer, M. R. Segal, S. Finkbeiner, Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805-810 (2004). doi: 10.1038/nature02998; pmid: 15483602
-
(2004)
Nature
, vol.431
, pp. 805-810
-
-
Arrasate, M.1
Mitra, S.2
Schweitzer, E.S.3
Segal, M.R.4
Finkbeiner, S.5
-
170
-
-
67650410543
-
Biological and chemical approaches to diseases of proteostasis deficiency
-
pmid: 19298183
-
E. T. Powers, R. I. Morimoto, A. Dillin, J. W. Kelly, W. E. Balch, Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959-991 (2009). doi: 10.1146/annurev.biochem.052308.114844; pmid: 19298183
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 959-991
-
-
Powers, E.T.1
Morimoto, R.I.2
Dillin, A.3
Kelly, J.W.4
Balch, W.E.5
-
171
-
-
84874267225
-
The therapeutic target Hsp90 and cancer hallmarks
-
pmid: 22920906
-
Y. Miyata, H. Nakamoto, L. Neckers, The therapeutic target Hsp90 and cancer hallmarks. Curr. Pharm. Des. 19, 347-365 (2013). doi: 10.2174/138161213804143725; pmid: 22920906
-
(2013)
Curr. Pharm. Des.
, vol.19
, pp. 347-365
-
-
Miyata, Y.1
Nakamoto, H.2
Neckers, L.3
-
172
-
-
84986888478
-
Targeting allosteric control mechanisms in heat shock protein 70 (Hsp70)
-
pmid: 27072701
-
X. Li, H. Shao, I. R. Taylor, J. E. Gestwicki, Targeting allosteric control mechanisms in heat shock protein 70 (Hsp70). Curr. Top. Med. Chem. (2016). pmid: 27072701
-
(2016)
Curr. Top. Med. Chem.
-
-
Li, X.1
Shao, H.2
Taylor, I.R.3
Gestwicki, J.E.4
-
173
-
-
79953288480
-
Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis
-
pmid: 21385720
-
P. Tsaytler, H. P. Harding, D. Ron, A. Bertolotti, Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332, 91-94 (2011). doi: 10.1126/science.1201396; pmid: 21385720
-
(2011)
Science
, vol.332
, pp. 91-94
-
-
Tsaytler, P.1
Harding, H.P.2
Ron, D.3
Bertolotti, A.4
-
174
-
-
84927619395
-
Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit
-
pmid: 25859045
-
I. Das et al., Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348, 239-242 (2015). doi: 10.1126/science.aaa4484 pmid: 25859045
-
(2015)
Science
, vol.348
, pp. 239-242
-
-
Das, I.1
-
175
-
-
84897002606
-
ER stress-induced eIF2-a phosphorylation underlies sensitivity of striatal neurons to pathogenic huntingtin
-
pmid: 24594939
-
J. Leitman et al., ER stress-induced eIF2-a phosphorylation underlies sensitivity of striatal neurons to pathogenic huntingtin. PLOS ONE 9, e90803 (2014). doi: 10.1371/journal. pone.0090803; pmid: 24594939
-
(2014)
PLOS ONE
, vol.9
, pp. e90803
-
-
Leitman, J.1
-
176
-
-
84881530677
-
Pharmacological brake-release of mRNA translation enhances cognitive memory
-
pmid: 23741617
-
C. Sidrauski et al., Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2, e00498 (2013). doi: 10.7554/eLife.00498; pmid: 23741617
-
(2013)
E-Life
, vol.2
, pp. e00498
-
-
Sidrauski, C.1
-
177
-
-
84930636316
-
Stress responses. Mutations in a translation initiation factor identify the target of a memory-enhancing compound
-
pmid: 25858979
-
Y. Sekine et al., Stress responses. Mutations in a translation initiation factor identify the target of a memory-enhancing compound. Science 348, 1027-1030 (2015). doi: 10.1126/ science.aaa6986; pmid: 25858979
-
(2015)
Science
, vol.348
, pp. 1027-1030
-
-
Sekine, Y.1
-
178
-
-
84928141313
-
Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response
-
pmid: 25875391
-
C. Sidrauski et al., Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. eLife 4, e07314 (2015). doi: 10.7554/eLife.07314; pmid: 25875391
-
(2015)
E-Life
, vol.4
, pp. e07314
-
-
Sidrauski, C.1
-
179
-
-
84856089134
-
Small-molecule proteostasis regulators for protein conformational diseases
-
pmid: 22198733
-
B. Calamini et al., Small-molecule proteostasis regulators for protein conformational diseases. Nat. Chem. Biol. 8, 185-196 (2011). doi: 10.1038/nchembio.763; pmid: 22198733
-
(2011)
Nat. Chem. Biol.
, vol.8
, pp. 185-196
-
-
Calamini, B.1
-
180
-
-
84906993311
-
Unfolded protein response activation reduces secretion and extracellular aggregation of amyloidogenic immunoglobulin light chain
-
pmid: 25157167
-
C. B. Cooley et al., Unfolded protein response activation reduces secretion and extracellular aggregation of amyloidogenic immunoglobulin light chain. Proc. Natl. Acad. Sci. U.S.A. 111, 13046-13051 (2014). doi: 10.1073/ pnas.1406050111; pmid: 25157167
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 13046-13051
-
-
Cooley, C.B.1
-
181
-
-
84930638305
-
Endoplasmic reticulum stressindependent activation of unfolded protein response kinases by a small molecule ATP-mimic
-
pmid: 25986605
-
A. S. Mendez et al., Endoplasmic reticulum stressindependent activation of unfolded protein response kinases by a small molecule ATP-mimic. eLife 4, e05434 (2015). doi: 10.7554/eLife.05434; pmid: 25986605
-
(2015)
E-Life
, vol.4
, pp. e05434
-
-
Mendez, A.S.1
-
182
-
-
84963566241
-
The S/T-rich motif in the DNAJB6 chaperone delays polyglutamine aggregation and the onset of disease in a mouse model
-
pmid:27151442
-
V. Kakkar et al., The S/T-rich motif in the DNAJB6 chaperone delays polyglutamine aggregation and the onset of disease in a mouse model. Mol. Cell 62,272-283 (2016). doi: 10.1016/j.molcel.2016.03.017;pmid:27151442
-
(2016)
Mol. Cell
, vol.62
, pp. 272-283
-
-
Kakkar, V.1
-
183
-
-
84966430282
-
Extended survival of misfolded G85R SOD1-linked ALS mice by transgenic expression of chaperone Hsp110
-
pmid: 27114530
-
M. Nagy, W. A. Fenton, D. Li, K. Furtak, A. L. Horwich, Extended survival of misfolded G85R SOD1-linked ALS mice by transgenic expression of chaperone Hsp110. Proc. Natl. Acad. Sci. U.S.A. 113, 5424-5428 (2016). doi: 10.1073/ pnas.1604885113; pmid: 27114530
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. 5424-5428
-
-
Nagy, M.1
Fenton, W.A.2
Li, D.3
Furtak, K.4
Horwich, A.L.5
-
184
-
-
77956527159
-
Enhancement of proteasome activity by a small-molecule inhibitor of USP14
-
pmid: 20829789
-
B. H. Lee et al., Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179-184 (2010). doi: 10.1038/nature09299; pmid: 20829789
-
(2010)
Nature
, vol.467
, pp. 179-184
-
-
Lee, B.H.1
-
185
-
-
84940457605
-
Therapeutic targeting of autophagy in neurodegenerative and infectious diseases
-
pmid: 26101267
-
D. C. Rubinsztein, C. F. Bento, V. Deretic, Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J. Exp. Med. 212, 979-990 (2015). doi: 10.1084/ jem.20150956; pmid: 26101267
-
(2015)
J. Exp. Med.
, vol.212
, pp. 979-990
-
-
Rubinsztein, D.C.1
Bento, C.F.2
Deretic, V.3
-
186
-
-
84956613592
-
From CFTR biology toward combinatorial pharmacotherapy: Expanded classification of cystic fibrosis mutations
-
pmid: 26823392
-
G. Veit et al., From CFTR biology toward combinatorial pharmacotherapy: Expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 27, 424-433 (2016). doi: 10.1091/ mbc.E14-04-0935; pmid: 26823392
-
(2016)
Mol. Biol. Cell.
, vol.27
, pp. 424-433
-
-
Veit, G.1
-
187
-
-
84957103451
-
A current pharmacologic agent versus the promise of next generation therapeutics to ameliorate protein misfolding and/or aggregation diseases
-
pmid: 26859714
-
A. Baranczak, J. W. Kelly, A current pharmacologic agent versus the promise of next generation therapeutics to ameliorate protein misfolding and/or aggregation diseases. Curr. Opin. Chem. Biol. 32, 10-21 (2016). doi: 10.1016/ j.cbpa.2016.01.009; pmid: 26859714
-
(2016)
Curr. Opin. Chem. Biol.
, vol.32
, pp. 10-21
-
-
Baranczak, A.1
Kelly, J.W.2
|