메뉴 건너뛰기




Volumn 109, Issue 52, 2012, Pages 21208-21215

Folding of large multidomain proteins by partial encapsulation in the chaperonin TRiC/CCT

Author keywords

116 kDa u5 small nuclear ribonucleoprotein component; Folding cage; Molecular chaperone; Snu114 homolog

Indexed keywords

ACTIN; ADENOSINE TRIPHOSPHATE; CHAPERONIN CONTAINING TCP1; PROTEOME;

EID: 84871831177     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1218836109     Document Type: Article
Times cited : (49)

References (70)
  • 1
    • 0242540367 scopus 로고    scopus 로고
    • Protein folding: Importance of the Anfinsen cage
    • Ellis RJ (2003) Protein folding: Importance of the Anfinsen cage. Curr Biol 13(22): R881-R883.
    • (2003) Curr Biol , vol.13 , Issue.22
    • Ellis, R.J.1
  • 2
    • 79551687316 scopus 로고    scopus 로고
    • Protein folding in the cell: Challenges and progress
    • Gershenson A, Gierasch LM (2011) Protein folding in the cell: Challenges and progress. Curr Opin Struct Biol 21(1):32-41.
    • (2011) Curr Opin Struct Biol , vol.21 , Issue.1 , pp. 32-41
    • Gershenson, A.1    Gierasch, L.M.2
  • 3
    • 0029992278 scopus 로고    scopus 로고
    • Molecular chaperones in cellular protein folding
    • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381(6583): 571-579.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 571-579
    • Hartl, F.U.1
  • 5
    • 0034924812 scopus 로고    scopus 로고
    • Folding of newly translated proteins in vivo: The role of molecular chaperones
    • Frydman J (2001) Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu Rev Biochem 70:603-647.
    • (2001) Annu Rev Biochem , vol.70 , pp. 603-647
    • Frydman, J.1
  • 6
    • 79960652801 scopus 로고    scopus 로고
    • Molecular chaperones in protein folding and proteostasis
    • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324-332.
    • (2011) Nature , vol.475 , Issue.7356 , pp. 324-332
    • Hartl, F.U.1    Bracher, A.2    Hayer-Hartl, M.3
  • 7
    • 0036899202 scopus 로고    scopus 로고
    • The chaperonin folding machine
    • DOI 10.1016/S0968-0004(02)02211-9, PII S0968000402022119
    • Saibil HR, Ranson NA (2002) The chaperonin folding machine. Trends Biochem Sci 27 (12):627-632. (Pubitemid 35435312)
    • (2002) Trends in Biochemical Sciences , vol.27 , Issue.12 , pp. 627-632
    • Saibil, H.R.1    Ranson, N.A.2
  • 8
    • 58149229533 scopus 로고    scopus 로고
    • Chaperonin complex with a newly folded protein encapsulated in the folding chamber
    • Clare DK, Bakkes PJ, van Heerikhuizen H, van der Vies SM, Saibil HR (2009) Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature 457(7225):107-110.
    • (2009) Nature , vol.457 , Issue.7225 , pp. 107-110
    • Clare, D.K.1    Bakkes, P.J.2    Van Heerikhuizen, H.3    Van Der Vies, S.M.4    Saibil, H.R.5
  • 9
    • 0030870719 scopus 로고    scopus 로고
    • The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex
    • DOI 10.1038/41944
    • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388(6644):741-750. (Pubitemid 27375147)
    • (1997) Nature , vol.388 , Issue.6644 , pp. 741-750
    • Xu, Z.1    Horwich, A.L.2    Sigler, P.B.3
  • 10
    • 77951974784 scopus 로고    scopus 로고
    • A systematic survey of in vivo obligate chaperonin-dependent substrates
    • Fujiwara K, Ishihama Y, Nakahigashi K, Soga T, Taguchi H (2010) A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J 29(9):1552-1564.
    • (2010) EMBO J , vol.29 , Issue.9 , pp. 1552-1564
    • Fujiwara, K.1    Ishihama, Y.2    Nakahigashi, K.3    Soga, T.4    Taguchi, H.5
  • 11
    • 0033547324 scopus 로고    scopus 로고
    • Identification of in vivo substrates of the chaperonin GroEL
    • Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402(6758):147-154.
    • (1999) Nature , vol.402 , Issue.6758 , pp. 147-154
    • Houry, W.A.1    Frishman, D.2    Eckerskorn, C.3    Lottspeich, F.4    Hartl, F.U.5
  • 13
    • 0035913910 scopus 로고    scopus 로고
    • GroEL/GroES-mediated folding of a protein too large to be encapsulated
    • DOI 10.1016/S0092-8674(01)00523-2
    • Chaudhuri TK, Farr GW, Fenton WA, Rospert S, Horwich AL (2001) GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell 107(2):235-246. (Pubitemid 33035949)
    • (2001) Cell , vol.107 , Issue.2 , pp. 235-246
    • Chaudhuri, T.K.1    Farr, G.W.2    Fenton, W.A.3    Rospert, S.4    Horwich, A.L.5
  • 14
    • 0030844281 scopus 로고    scopus 로고
    • Recombination of protein domains facilitated by co-translational folding in eukaryotes
    • DOI 10.1038/41024
    • Netzer WJ, Hartl FU (1997) Recombination of protein domains facilitated by cotranslational folding in eukaryotes. Nature 388(6640):343-349. (Pubitemid 27334805)
    • (1997) Nature , vol.388 , Issue.6640 , pp. 343-349
    • Netzer, W.J.1    Hartl, F.U.2
  • 15
    • 34547830871 scopus 로고    scopus 로고
    • Different mechanistic requirements for prokaryotic and eukaryotic chaperonins: A lattice study
    • DOI 10.1093/bioinformatics/btm180
    • Jacob E, Horovitz A, Unger R (2007) Different mechanistic requirements for prokaryotic and eukaryotic chaperonins: a lattice study. Bioinformatics 23(13):i240-i248. (Pubitemid 47244406)
    • (2007) Bioinformatics , vol.23 , Issue.13
    • Jacob, E.1    Horovitz, A.2    Unger, R.3
  • 16
    • 0032005026 scopus 로고    scopus 로고
    • Protein folding in the cytosol: Chaperonin-dependent and -independent mechanisms
    • DOI 10.1016/S0968-0004(97)01171-7, PII S0968000497011717
    • Netzer WJ, Hartl FU (1998) Protein folding in the cytosol: Chaperonin-dependent and -independent mechanisms. Trends Biochem Sci 23(2):68-73. (Pubitemid 28085230)
    • (1998) Trends in Biochemical Sciences , vol.23 , Issue.2 , pp. 68-73
    • Netzer, W.J.1    Hartl, F.U.2
  • 18
    • 57149098022 scopus 로고    scopus 로고
    • Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies
    • Yam AY, et al. (2008) Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol 15 (12):1255-1262.
    • (2008) Nat Struct Mol Biol , vol.15 , Issue.12 , pp. 1255-1262
    • Yam, A.Y.1
  • 19
    • 77950456761 scopus 로고    scopus 로고
    • 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement
    • Cong Y, et al. (2010) 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci USA 107(11):4967-4972.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.11 , pp. 4967-4972
    • Cong, Y.1
  • 20
    • 84856509221 scopus 로고    scopus 로고
    • Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle
    • Cong Y, et al. (2012) Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle. EMBO J 31(3):720-730.
    • (2012) EMBO J , vol.31 , Issue.3 , pp. 720-730
    • Cong, Y.1
  • 21
    • 79961026866 scopus 로고    scopus 로고
    • The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins
    • Dekker C, et al. (2011) The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins. EMBO J 30(15):3078-3090.
    • (2011) EMBO J , vol.30 , Issue.15 , pp. 3078-3090
    • Dekker, C.1
  • 22
    • 84857385799 scopus 로고    scopus 로고
    • Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling
    • Kalisman N, Adams CM, Levitt M (2012) Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proc Natl Acad Sci USA 109(8):2884-2889.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.8 , pp. 2884-2889
    • Kalisman, N.1    Adams, C.M.2    Levitt, M.3
  • 23
    • 84861102204 scopus 로고    scopus 로고
    • The molecular architecture of the eukaryotic chaperonin TRiC/CCT
    • Leitner A, et al. (2012) The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure 20(5):814-825.
    • (2012) Structure , vol.20 , Issue.5 , pp. 814-825
    • Leitner, A.1
  • 24
    • 0035783161 scopus 로고    scopus 로고
    • Gene duplication and the evolution of group II chaperonins: Implications for structure and function
    • Archibald JM, Blouin C, Doolittle WF (2001) Gene duplication and the evolution of group II chaperonins: implications for structure and function. J Struct Biol 135(2):157-169.
    • (2001) J Struct Biol , vol.135 , Issue.2 , pp. 157-169
    • Archibald, J.M.1    Blouin, C.2    Doolittle, W.F.3
  • 25
    • 77955282609 scopus 로고    scopus 로고
    • Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes
    • Amit M, et al. (2010) Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes. J Mol Biol 401(3):532-543.
    • (2010) J Mol Biol , vol.401 , Issue.3 , pp. 532-543
    • Amit, M.1
  • 26
    • 33749080319 scopus 로고    scopus 로고
    • Identification of the TRiC/CCT Substrate Binding Sites Uncovers the Function of Subunit Diversity in Eukaryotic Chaperonins
    • DOI 10.1016/j.molcel.2006.09.003, PII S1097276506006319
    • Spiess C, Miller EJ, McClellan AJ, Frydman J (2006) Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. Mol Cell 24(1):25-37. (Pubitemid 44466686)
    • (2006) Molecular Cell , vol.24 , Issue.1 , pp. 25-37
    • Spiess, C.1    Miller, E.J.2    McClellan, A.J.3    Frydman, J.4
  • 28
    • 0026776331 scopus 로고
    • A cytoplasmic chaperonin that catalyzes beta-actin folding
    • Gao Y, Thomas JO, Chow RL, Lee GH, Cowan NJ (1992) A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell 69(6):1043-1050.
    • (1992) Cell , vol.69 , Issue.6 , pp. 1043-1050
    • Gao, Y.1    Thomas, J.O.2    Chow, R.L.3    Lee, G.H.4    Cowan, N.J.5
  • 29
    • 7444231693 scopus 로고    scopus 로고
    • Mechanism of the eukaryotic chaperonin: Protein folding in the chamber of secrets
    • DOI 10.1016/j.tcb.2004.09.015, PII S0962892404002661
    • Spiess C, Meyer AS, Reissmann S, Frydman J (2004) Mechanism of the eukaryotic chaperonin: Protein folding in the chamber of secrets. Trends Cell Biol 14(11):598-604. (Pubitemid 39440608)
    • (2004) Trends in Cell Biology , vol.14 , Issue.11 , pp. 598-604
    • Spiess, C.1    Meyer, A.S.2    Reissmann, S.3    Frydman, J.4
  • 30
    • 0026650749 scopus 로고
    • TCP1 complex is a molecular chaperone in tubulin biogenesis
    • Yaffe MB, et al. (1992) TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358(6383):245-248.
    • (1992) Nature , vol.358 , Issue.6383 , pp. 245-248
    • Yaffe, M.B.1
  • 31
    • 70450219488 scopus 로고    scopus 로고
    • Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei
    • Hirtreiter AM, et al. (2009) Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei. Mol Microbiol 74(5):1152-1168.
    • (2009) Mol Microbiol , vol.74 , Issue.5 , pp. 1152-1168
    • Hirtreiter, A.M.1
  • 33
    • 0038737003 scopus 로고    scopus 로고
    • Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis
    • DOI 10.1016/S0092-8674(03)00307-6
    • Meyer AS, et al. (2003) Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113(3):369-381. (Pubitemid 36556118)
    • (2003) Cell , vol.113 , Issue.3 , pp. 369-381
    • Meyer, A.S.1    Gillespie, J.R.2    Walther, D.3    Millet, I.S.4    Doniach, S.5    Frydman, J.6
  • 34
    • 78650980445 scopus 로고    scopus 로고
    • Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin
    • Muñoz IG, et al. (2011) Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat Struct Mol Biol 18(1):14-19.
    • (2011) Nat Struct Mol Biol , vol.18 , Issue.1 , pp. 14-19
    • Muñoz, I.G.1
  • 35
    • 17844378217 scopus 로고    scopus 로고
    • Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis
    • DOI 10.1038/nsmb901
    • Rivenzon-Segal D, Wolf SG, Shimon L, Willison KR, Horovitz A (2005) Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis. Nat Struct Mol Biol 12(3):233-237. (Pubitemid 43079364)
    • (2005) Nature Structural and Molecular Biology , vol.12 , Issue.3 , pp. 233-237
    • Rivenzon-Segal, D.1    Wolf, S.G.2    Shimon, L.3    Willison, K.R.4    Horovitz, A.5
  • 36
    • 40049109706 scopus 로고    scopus 로고
    • ATP-induced allostery in the eukaryotic chaperonin CCT is abolished by the mutation G345D in CCT4 that renders yeast temperature-sensitive for growth
    • Shimon L, Hynes GM, McCormack EA, Willison KR, Horovitz A (2008) ATP-induced allostery in the eukaryotic chaperonin CCT is abolished by the mutation G345D in CCT4 that renders yeast temperature-sensitive for growth. J Mol Biol 377(2):469-477.
    • (2008) J Mol Biol , vol.377 , Issue.2 , pp. 469-477
    • Shimon, L.1    Hynes, G.M.2    McCormack, E.A.3    Willison, K.R.4    Horovitz, A.5
  • 37
    • 34247635168 scopus 로고    scopus 로고
    • Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins
    • DOI 10.1038/nsmb1236, PII NSMB1236
    • Reissmann S, Parnot C, Booth CR, Chiu W, Frydman J (2007) Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat Struct Mol Biol 14(5):432-440. (Pubitemid 46685886)
    • (2007) Nature Structural and Molecular Biology , vol.14 , Issue.5 , pp. 432-440
    • Reissmann, S.1    Parnot, C.2    Booth, C.R.3    Chiu, W.4    Frydman, J.5
  • 38
    • 0028586011 scopus 로고
    • Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo
    • Chen X, Sullivan DS, Huffaker TC (1994) Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc Natl Acad Sci USA 91(19):9111-9115.
    • (1994) Proc Natl Acad Sci USA , vol.91 , Issue.19 , pp. 9111-9115
    • Chen, X.1    Sullivan, D.S.2    Huffaker, T.C.3
  • 39
    • 26844472785 scopus 로고    scopus 로고
    • Efficient production of native actin upon translation in a bacterial lysate supplemented with the eukaryotic chaperonin TRiC
    • DOI 10.1515/BC.2005.088
    • Stemp MJ, Guha S, Hartl FU, Barral JM (2005) Efficient production of native actin upon translation in a bacterial lysate supplemented with the eukaryotic chaperonin TRiC. Biol Chem 386(8):753-757. (Pubitemid 41448156)
    • (2005) Biological Chemistry , vol.386 , Issue.8 , pp. 753-757
    • Stemp, M.J.1    Guha, S.2    Hartl, F.U.3    Barral, J.M.4
  • 40
    • 0028587244 scopus 로고
    • A yeast TCP-1-like protein is required for actin function in vivo
    • Vinh DB, Drubin DG (1994) A yeast TCP-1-like protein is required for actin function in vivo. Proc Natl Acad Sci USA 91(19):9116-9120.
    • (1994) Proc Natl Acad Sci USA , vol.91 , Issue.19 , pp. 9116-9120
    • Vinh, D.B.1    Drubin, D.G.2
  • 42
    • 0016361516 scopus 로고
    • Actin is the naturally occurring inhibitor of deoxyribonuclease I
    • Lazarides E, Lindberg U (1974) Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci USA 71(12):4742-4746.
    • (1974) Proc Natl Acad Sci USA , vol.71 , Issue.12 , pp. 4742-4746
    • Lazarides, E.1    Lindberg, U.2
  • 44
    • 0035783276 scopus 로고    scopus 로고
    • Point mutations in a hinge linking the small and large domains of beta-actin result in trapped folding intermediates bound to cytosolic chaperonin CCT
    • McCormack EA, Llorca O, Carrascosa JL, Valpuesta JM, Willison KR (2001) Point mutations in a hinge linking the small and large domains of beta-actin result in trapped folding intermediates bound to cytosolic chaperonin CCT. J Struct Biol 135(2):198-204.
    • (2001) J Struct Biol , vol.135 , Issue.2 , pp. 198-204
    • McCormack, E.A.1    Llorca, O.2    Carrascosa, J.L.3    Valpuesta, J.M.4    Willison, K.R.5
  • 47
    • 0032078861 scopus 로고    scopus 로고
    • Rapid actin-based plasticity in dendritic spines
    • DOI 10.1016/S0896-6273(00)80467-5
    • Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20(5):847-854. (Pubitemid 28247391)
    • (1998) Neuron , vol.20 , Issue.5 , pp. 847-854
    • Fischer, M.1    Kaech, S.2    Knutti, D.3    Matus, A.4
  • 48
    • 0028944687 scopus 로고
    • The actin fold
    • Kabsch W, Holmes KC (1995) The actin fold. FASEB J 9(2):167-174.
    • (1995) FASEB J , vol.9 , Issue.2 , pp. 167-174
    • Kabsch, W.1    Holmes, K.C.2
  • 49
    • 84863141713 scopus 로고    scopus 로고
    • Exploring the role of topological frustration in actin refolding with molecular simulations
    • Lee JY, Duan L, Iverson TM, Dima RI (2012) Exploring the role of topological frustration in actin refolding with molecular simulations. J Phys Chem B 116(5):1677-1686.
    • (2012) J Phys Chem B , vol.116 , Issue.5 , pp. 1677-1686
    • Lee, J.Y.1    Duan, L.2    Iverson, T.M.3    Dima, R.I.4
  • 50
    • 28844496012 scopus 로고    scopus 로고
    • Actin interacts with CCT via discrete binding sites: A binding transition-release model for CCT-mediated actin folding
    • DOI 10.1016/j.jmb.2005.10.051, PII S0022283605012982
    • Neirynck K, Waterschoot D, Vandekerckhove J, Ampe C, Rommelaere H (2006) Actin interacts with CCT via discrete binding sites: A binding transition-release model for CCT-mediated actin folding. J Mol Biol 355(1):124-138. (Pubitemid 41774144)
    • (2006) Journal of Molecular Biology , vol.355 , Issue.1 , pp. 124-138
    • Neirynck, K.1    Waterschoot, D.2    Vandekerckhove, J.3    Ampe, C.4    Rommelaere, H.5
  • 52
    • 0028196813 scopus 로고
    • Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates
    • Melki R, Cowan NJ (1994) Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates. Mol Cell Biol 14(5):2895-2904.
    • (1994) Mol Cell Biol , vol.14 , Issue.5 , pp. 2895-2904
    • Melki, R.1    Cowan, N.J.2
  • 53
    • 0031825279 scopus 로고    scopus 로고
    • MgATP binding to the nucleotide-binding domains of the eukaryotic cytoplasmic chaperonin induces conformational changes in the putative substrate-binding domains
    • Szpikowska BK, Swiderek KM, Sherman MA, Mas MT (1998) MgATP binding to the nucleotide-binding domains of the eukaryotic cytoplasmic chaperonin induces conformational changes in the putative substrate-binding domains. Protein Sci 7(7):1524-1530. (Pubitemid 28331271)
    • (1998) Protein Science , vol.7 , Issue.7 , pp. 1524-1530
    • Szpikowska, B.K.1    Swiderek, K.M.2    Sherman, M.A.3    Mas, M.T.4
  • 54
    • 0029980091 scopus 로고    scopus 로고
    • Principles of chaperone-assisted protein folding: Differences between in vitro and in vivo mechanisms
    • Frydman J, Hartl FU (1996) Principles of chaperone-assisted protein folding: Differences between in vitro and in vivo mechanisms. Science 272(5267):1497-1502. (Pubitemid 26200004)
    • (1996) Science , vol.272 , Issue.5267 , pp. 1497-1502
    • Frydman, J.1    Hartl, F.U.2
  • 55
    • 0030976931 scopus 로고    scopus 로고
    • An evolutionarily conserved U5 snRNP-specific protein is a GTP-binding factor closely related to the ribosomal translocase EF-2
    • DOI 10.1093/emboj/16.13.4092
    • Fabrizio P, Laggerbauer B, Lauber J, Lane WS, Lührmann R (1997) An evolutionarily conserved U5 snRNP-specific protein is a GTP-binding factor closely related to the ribosomal translocase EF-2. EMBO J 16(13):4092-4106. (Pubitemid 27281024)
    • (1997) EMBO Journal , vol.16 , Issue.13 , pp. 4092-4106
    • Fabrizio, P.1    Laggerbauer, B.2    Lauber, J.3    Lane, W.S.4    Luhrmann, R.5
  • 57
    • 28644437048 scopus 로고    scopus 로고
    • The importance of sequence diversity in the aggregation and evolution of proteins
    • DOI 10.1038/nature04195
    • Wright CF, Teichmann SA, Clarke J, Dobson CM (2005) The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438(7069):878-881. (Pubitemid 41753072)
    • (2005) Nature , vol.438 , Issue.7069 , pp. 878-881
    • Wright, C.F.1    Teichmann, S.A.2    Clarke, J.3    Dobson, C.M.4
  • 58
    • 0032983520 scopus 로고    scopus 로고
    • Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase
    • DOI 10.1038/10754
    • Frydman J, Erdjument-Bromage H, Tempst P, Hartl FU (1999) Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat Struct Biol 6(7):697-705. (Pubitemid 29318962)
    • (1999) Nature Structural Biology , vol.6 , Issue.7 , pp. 697-705
    • Frydman, J.1    Erdjument-Bromage, H.2    Tempst, P.3    Ulrich, H.F.4
  • 59
    • 0028361309 scopus 로고
    • Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones
    • DOI 10.1038/370111a0
    • Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370 (6485):111-117. (Pubitemid 24229115)
    • (1994) Nature , vol.370 , Issue.6485 , pp. 111-117
    • Frydman, J.1    Nimmesgern, E.2    Ohtsuka, K.3    Hartl, F.U.4
  • 61
    • 75149145980 scopus 로고    scopus 로고
    • Mechanism of folding chamber closure in a group II chaperonin
    • Zhang J, et al. (2010) Mechanism of folding chamber closure in a group II chaperonin. Nature 463(7279):379-383.
    • (2010) Nature , vol.463 , Issue.7279 , pp. 379-383
    • Zhang, J.1
  • 62
    • 79955798700 scopus 로고    scopus 로고
    • Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure
    • Zhang J, et al. (2011) Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure. Structure 19(5):633-639.
    • (2011) Structure , vol.19 , Issue.5 , pp. 633-639
    • Zhang, J.1
  • 63
    • 0030930753 scopus 로고    scopus 로고
    • The unique hetero-oligomeric nature of the subunits in the catalytic cooperativity of the yeast Cct chaperonin complex
    • DOI 10.1073/pnas.94.20.10780
    • Lin P, Sherman F (1997) The unique hetero-oligomeric nature of the subunits in the catalytic cooperativity of the yeast Cct chaperonin complex. Proc Natl Acad Sci USA 94(20):10780-10785. (Pubitemid 27430811)
    • (1997) Proceedings of the National Academy of Sciences of the United States of America , vol.94 , Issue.20 , pp. 10780-10785
    • Lin, P.1    Sherman, F.2
  • 64
    • 84868137417 scopus 로고    scopus 로고
    • A gradient of ATP affinities generates an asymmetric power stroke driving the chaperonin TRIC/CCT folding cycle
    • Reissmann S, et al. (2012) A gradient of ATP affinities generates an asymmetric power stroke driving the chaperonin TRIC/CCT folding cycle. Cell Rep 2(4):866-877.
    • (2012) Cell Rep , vol.2 , Issue.4 , pp. 866-877
    • Reissmann, S.1
  • 67
    • 33749177252 scopus 로고    scopus 로고
    • The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions
    • DOI 10.1038/ncb1477, PII NCB1477
    • Tam S, Geller R, Spiess C, Frydman J (2006) The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol 8(10):1155-1162. (Pubitemid 44473612)
    • (2006) Nature Cell Biology , vol.8 , Issue.10 , pp. 1155-1162
    • Tam, S.1    Geller, R.2    Spiess, C.3    Frydman, J.4
  • 68
    • 49449105092 scopus 로고    scopus 로고
    • The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin
    • Cuéllar J, et al. (2008) The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin. Nat Struct Mol Biol 15(8):858-864.
    • (2008) Nat Struct Mol Biol , vol.15 , Issue.8 , pp. 858-864
    • Cuéllar, J.1
  • 70
    • 66849109240 scopus 로고    scopus 로고
    • The ribosome as a platform for cotranslational processing, folding and targeting of newly synthesized proteins
    • Kramer G, Boehringer D, Ban N, Bukau B (2009) The ribosome as a platform for cotranslational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16(6):589-597.
    • (2009) Nat Struct Mol Biol , vol.16 , Issue.6 , pp. 589-597
    • Kramer, G.1    Boehringer, D.2    Ban, N.3    Bukau, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.