-
1
-
-
33746099650
-
Protein aggregation in crowded environments
-
Ellis RJ, Minton AP. 2006. Protein aggregation in crowded environments. Biol. Chem. 387:485-97
-
(2006)
Biol. Chem.
, vol.387
, pp. 485-497
-
-
Ellis, R.J.1
Minton, A.P.2
-
2
-
-
0344301982
-
Protein folding: A perspective from theory and experiment
-
Dobson CM, Sali A, Karplus M. 1998. Protein folding: a perspective from theory and experiment. Angew. Chem. Int. Ed. 37:868-93
-
(1998)
Angew. Chem. Int. Ed.
, vol.37
, pp. 868-893
-
-
Dobson, C.M.1
Sali, A.2
Karplus, M.3
-
3
-
-
66849106554
-
An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms
-
Bartlett AI, Radford SE. 2009. An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat. Struct. Mol. Biol. 16:582-88
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 582-588
-
-
Bartlett, A.I.1
Radford, S.E.2
-
4
-
-
0029992278
-
Molecular chaperones in cellular protein folding
-
Hartl FU. 1996. Molecular chaperones in cellular protein folding. Nature 381:571-79
-
(1996)
Nature
, vol.381
, pp. 571-579
-
-
Hartl, F.U.1
-
5
-
-
0032489016
-
The Hsp70 and Hsp60 chaperone machines
-
Bukau B, Horwich AL. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351-66
-
(1998)
Cell
, vol.92
, pp. 351-366
-
-
Bukau, B.1
Horwich, A.L.2
-
6
-
-
0034924812
-
Folding of newly translated proteins in vivo: The role of molecular chaperones
-
Frydman J. 2001. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70:603-47
-
(2001)
Annu. Rev. Biochem.
, vol.70
, pp. 603-647
-
-
Frydman, J.1
-
7
-
-
0037040541
-
Molecular chaperones in the cytosol: From nascent chain to folded protein
-
Hartl FU, Hayer-Hartl M. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852-58
-
(2002)
Science
, vol.295
, pp. 1852-1858
-
-
Hartl, F.U.1
Hayer-Hartl, M.2
-
9
-
-
33746377894
-
Protein misfolding, functional amyloid, and human disease
-
Chiti F, Dobson CM. 2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75:333-66
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 333-366
-
-
Chiti, F.1
Dobson, C.M.2
-
10
-
-
44849094781
-
Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging
-
Morimoto RI. 2008. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 22:1427-38
-
(2008)
Genes Dev.
, vol.22
, pp. 1427-1438
-
-
Morimoto, R.I.1
-
11
-
-
66849131417
-
Cellular mechanisms of membrane protein folding
-
Skach WR. 2009. Cellular mechanisms of membrane protein folding. Nat. Struct. Mol. Biol. 16:606-12
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 606-612
-
-
Skach, W.R.1
-
12
-
-
79959481888
-
Protein folding and modification in the mammalian endoplasmic reticulum
-
Braakman I, Bulleid NJ. 2011. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem. 80:71-99
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 71-99
-
-
Braakman, I.1
Bulleid, N.J.2
-
14
-
-
57049095821
-
Function and structure of inherently disordered proteins
-
Dunker AK, Silman I, Uversky VN, Sussman, JL. 2008. Function and structure of inherently disordered proteins. Curr. Opin. Struct. Biol. 18:756-64
-
(2008)
Curr. Opin. Struct. Biol.
, vol.18
, pp. 756-764
-
-
Dunker, A.K.1
Silman, I.2
Uversky, V.N.3
Sussman, J.L.4
-
15
-
-
22744447508
-
Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli
-
Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, et al. 2005. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209-20
-
(2005)
Cell
, vol.122
, pp. 209-220
-
-
Kerner, M.J.1
Naylor, D.J.2
Ishihama, Y.3
Maier, T.4
Chang, H.C.5
-
16
-
-
79959887638
-
A diversity of assembly mechanisms of a generic amyloid fold
-
Eichner T, Radford SE. 2011. A diversity of assembly mechanisms of a generic amyloid fold. Mol. Cell 43:8-18
-
(2011)
Mol. Cell
, vol.43
, pp. 8-18
-
-
Eichner, T.1
Radford, S.E.2
-
17
-
-
79960652801
-
Molecular chaperones in protein folding and proteostasis
-
Hartl FU, Bracher A, Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324-32
-
(2011)
Nature
, vol.475
, pp. 324-332
-
-
Hartl, F.U.1
Bracher, A.2
Hayer-Hartl, M.3
-
18
-
-
77955881152
-
ANS binding reveals common features of cytotoxic amyloid species
-
Bolognesi B, Kumita JR, Barros TP, Esbjorner EK, Luheshi LM, et al. 2010. ANS binding reveals common features of cytotoxic amyloid species. ACS Chem. Biol. 5:735-40
-
(2010)
ACS Chem. Biol.
, vol.5
, pp. 735-740
-
-
Bolognesi, B.1
Kumita, J.R.2
Barros, T.P.3
Esbjorner, E.K.4
Luheshi, L.M.5
-
19
-
-
0347004717
-
Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling
-
Ignatova Z, Gierasch LM. 2004. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc. Natl. Acad. Sci. USA 101:523-28
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 523-528
-
-
Ignatova, Z.1
Gierasch, L.M.2
-
21
-
-
33748804712
-
Atomically detailed simulations of concentrated protein solutions: The effects of salt, pH, point mutations, and protein concentration in simulations of 1000-molecule systems
-
McGuffee SR, Elcock AH. 2006. Atomically detailed simulations of concentrated protein solutions: the effects of salt, pH, point mutations, and protein concentration in simulations of 1000-molecule systems. J. Am. Chem. Soc. 128:12098-110
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 12098-12110
-
-
McGuffee, S.R.1
Elcock, A.H.2
-
22
-
-
77955044557
-
Macromolecular crowding remodels the energy landscape of a protein by favoring a more compact unfolded state
-
Hong J, Gierasch LM. 2010. Macromolecular crowding remodels the energy landscape of a protein by favoring a more compact unfolded state. J. Am. Chem. Soc. 132:10445-52
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 10445-10452
-
-
Hong, J.1
Gierasch, L.M.2
-
23
-
-
0642377466
-
More than folding: Localized functions of cytosolic chaperones
-
Young JC, Barral JM, Hartl FU. 2003. More than folding: localized functions of cytosolic chaperones. Trends Biochem. Sci. 28:541-47
-
(2003)
Trends Biochem. Sci.
, vol.28
, pp. 541-547
-
-
Young, J.C.1
Barral, J.M.2
Hartl, F.U.3
-
24
-
-
70349446764
-
Confined dynamics of a ribosome-bound nascent globin: Cone angle analysis of fluorescence depolarization decays in the presence of two local motions
-
Ellis JP, Culviner PH, Cavagnero S. 2009. Confined dynamics of a ribosome-bound nascent globin: cone angle analysis of fluorescence depolarization decays in the presence of two local motions. Protein Sci. 18:2003-15
-
(2009)
Protein Sci.
, vol.18
, pp. 2003-2015
-
-
Ellis, J.P.1
Culviner, P.H.2
Cavagnero, S.3
-
26
-
-
1542358892
-
Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins
-
Woolhead CA, McCormick PJ, Johnson AE. 2004. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116:725-36
-
(2004)
Cell
, vol.116
, pp. 725-736
-
-
Woolhead, C.A.1
McCormick, P.J.2
Johnson, A.E.3
-
27
-
-
28544449949
-
Folding zones inside the ribosomal exit tunnel
-
Lu JL, Deutsch C. 2005. Folding zones inside the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 12: 1123-29
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 1123-1129
-
-
Lu, J.L.1
Deutsch, C.2
-
28
-
-
78649494154
-
Transient tertiary structure formation within the ribosome exit port
-
O'Brien EP, Hsu S-TD, Christodoulou J, Vendruscolo M, Dobson CM. 2010. Transient tertiary structure formation within the ribosome exit port. J. Am. Chem. Soc. 132:16928-37
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 16928-16937
-
-
O'Brien, E.P.1
Hsu, S.-T.D.2
Christodoulou, J.3
Vendruscolo, M.4
Dobson, C.M.5
-
29
-
-
79953106751
-
The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling
-
Wilson DN, Beckmann R. 2011. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr. Opin. Struct. Biol. 21:274-82
-
(2011)
Curr. Opin. Struct. Biol.
, vol.21
, pp. 274-282
-
-
Wilson, D.N.1
Beckmann, R.2
-
30
-
-
33746592161
-
Molecular simulations of cotranslational protein folding: Fragment stabilities, folding cooperativity, and trapping in the ribosome
-
Elcock AH. 2006. Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome. PLoS Comput. Biol. 2:e98
-
(2006)
PLoS Comput. Biol.
, vol.2
-
-
Elcock, A.H.1
-
31
-
-
76049097596
-
Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy
-
Cabrita LD, Hsu ST, Launay H, Dobson CM, Christodoulou J. 2009. Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy. Proc. Natl. Acad. Sci. USA 106:22239-44
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 22239-22244
-
-
Cabrita, L.D.1
Hsu, S.T.2
Launay, H.3
Dobson, C.M.4
Christodoulou, J.5
-
32
-
-
77952694170
-
Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy
-
Eichmann C, Preissler S, Riek R, Deuerling E. 2010. Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy. Proc. Natl. Acad. Sci. USA 107:9111-16
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 9111-9116
-
-
Eichmann, C.1
Preissler, S.2
Riek, R.3
Deuerling, E.4
-
33
-
-
77950659587
-
Cotranslational folding increases GFP folding yield
-
Ugrinov KG, Clark PL. 2010. Cotranslational folding increases GFP folding yield. Biophys. J. 98:1312-20
-
(2010)
Biophys. J.
, vol.98
, pp. 1312-1320
-
-
Ugrinov, K.G.1
Clark, P.L.2
-
34
-
-
79551690253
-
Folding at the birth of the nascent chain: Coordinating translation with co-translational folding
-
Zhang G, Ignatova Z. 2011. Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr. Opin. Struct. Biol. 21:25-31
-
(2011)
Curr. Opin. Struct. Biol.
, vol.21
, pp. 25-31
-
-
Zhang, G.1
Ignatova, Z.2
-
35
-
-
84455194188
-
The ribosome modulates nascent protein folding
-
Kaiser CM, Goldman DH, Chodera JD, Tinoco I Jr, Bustamante C. 2011. The ribosome modulates nascent protein folding. Science 334:1723-27
-
(2011)
Science
, vol.334
, pp. 1723-1727
-
-
Kaiser, C.M.1
Goldman, D.H.2
Chodera, J.D.3
Tinoco Jr., I.4
Bustamante, C.5
-
36
-
-
0032005026
-
Protein folding in the cytosol: Chaperonin-dependent and -independent mechanisms
-
Netzer WJ, Hartl FU. 1998. Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms. Trends Biochem. Sci. 23:68-73
-
(1998)
Trends Biochem. Sci.
, vol.23
, pp. 68-73
-
-
Netzer, W.J.1
Hartl, F.U.2
-
37
-
-
1942421714
-
Function of trigger factor and DnaK in multidomain protein folding: Increase in yield at the expense of folding speed
-
Agashe VR, Guha S, Chang HC, Genevaux P, Hayer-Hartl M, et al. 2004. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117:199-209
-
(2004)
Cell
, vol.117
, pp. 199-209
-
-
Agashe, V.R.1
Guha, S.2
Chang, H.C.3
Genevaux, P.4
Hayer-Hartl, M.5
-
38
-
-
66849143696
-
Converging concepts of protein folding in vitro and in vivo
-
Hartl FU, Hayer-Hartl M. 2009. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16:574-81
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 574-581
-
-
Hartl, F.U.1
Hayer-Hartl, M.2
-
40
-
-
84860231100
-
The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria
-
Li G-W, Oh E, Weissman JS. 2012. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484:538-41
-
(2012)
Nature
, vol.484
, pp. 538-541
-
-
Li, G.-W.1
Oh, E.2
Weissman, J.S.3
-
41
-
-
84866449925
-
Prediction of variable translation rate effects on cotranslational protein folding
-
O'Brien EP, Vendruscolo M, Dobson CM. 2012. Prediction of variable translation rate effects on cotranslational protein folding. Nat. Commun. 3:868
-
(2012)
Nat. Commun.
, vol.3
, pp. 868
-
-
O'Brien, E.P.1
Vendruscolo, M.2
Dobson, C.M.3
-
42
-
-
84865098071
-
Silent substitutions predictably alter translation elongation rates and protein folding efficiencies
-
Spencer PS, Siller E, Anderson JF, Barral JM. 2012. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J. Mol. Biol. 422:328-35
-
(2012)
J. Mol. Biol.
, vol.422
, pp. 328-335
-
-
Spencer, P.S.1
Siller, E.2
Anderson, J.F.3
Barral, J.M.4
-
43
-
-
58249090246
-
The native 3D organization of bacterial polysomes
-
Brandt F, Etchells SA, Ortiz JO, Elcock, AH, Hartl FU, Baumeister W. 2009. The native 3D organization of bacterial polysomes. Cell 136:261-71
-
(2009)
Cell
, vol.136
, pp. 261-271
-
-
Brandt, F.1
Etchells, S.A.2
Ortiz, J.O.3
Elcock, A.H.4
Hartl, F.U.5
Baumeister, W.6
-
44
-
-
66649132872
-
Chaperonin overexpression promotes genetic variation and enzyme evolution
-
Tokuriki N, Tawfik DS. 2009. Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459:668-73
-
(2009)
Nature
, vol.459
, pp. 668-673
-
-
Tokuriki, N.1
Tawfik, D.S.2
-
45
-
-
77953916528
-
Hsp90 at the hub of protein homeostasis: Emerging mechanistic insights
-
Taipale M, Jarosz DF, Lindquist S. 2010. Hsp90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11:515-28
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 515-528
-
-
Taipale, M.1
Jarosz, D.F.2
Lindquist, S.3
-
47
-
-
30344462410
-
Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells
-
Albanese V, Yam AYW, Baughman J, Parnot C, Frydman J. 2006. Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124:75-88
-
(2006)
Cell
, vol.124
, pp. 75-88
-
-
Albanese, V.1
Yam, A.Y.W.2
Baughman, J.3
Parnot, C.4
Frydman, J.5
-
48
-
-
34848926209
-
Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches
-
McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J. 2007. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131:121-35
-
(2007)
Cell
, vol.131
, pp. 121-135
-
-
McClellan, A.J.1
Xia, Y.2
Deutschbauer, A.M.3
Davis, R.W.4
Gerstein, M.5
Frydman, J.6
-
49
-
-
46949104585
-
The interaction network of the chaperonin CCT
-
Dekker C, Stirling PC, McCormack EA, Filmore H, Paul A, et al. 2008. The interaction network of the chaperonin CCT. EMBO J. 27:1827-39
-
(2008)
EMBO J
, vol.27
, pp. 1827-1839
-
-
Dekker, C.1
Stirling, P.C.2
McCormack, E.A.3
Filmore, H.4
Paul, A.5
-
50
-
-
57149098022
-
Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies
-
Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M, Frydman J. 2008. Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat. Struct. Mol. Biol. 15:1255-62
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 1255-1262
-
-
Yam, A.Y.1
Xia, Y.2
Lin, H.T.3
Burlingame, A.4
Gerstein, M.5
Frydman, J.6
-
51
-
-
67650681847
-
An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: Implications to protein folding pathways in the cell
-
Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A, et al. 2009. An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol. Syst. Biol. 5:275
-
(2009)
Mol. Syst. Biol.
, vol.5
, pp. 275
-
-
Gong, Y.1
Kakihara, Y.2
Krogan, N.3
Greenblatt, J.4
Emili, A.5
-
52
-
-
70450219488
-
Differential substrate specificity of group i and group II chaperonins in the archaeon Methanosarcina mazei
-
Hirtreiter AM, Calloni G, Forner F, Scheibe B, Puype M, et al. 2009. Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei. Mol. Microbiol. 74:1152-68
-
(2009)
Mol. Microbiol.
, vol.74
, pp. 1152-1168
-
-
Hirtreiter, A.M.1
Calloni, G.2
Forner, F.3
Scheibe, B.4
Puype, M.5
-
53
-
-
77951974784
-
A systematic survey of in vivo obligate chaperonin-dependent substrates
-
Fujiwara K, Ishihama Y, Nakahigashi K, Soga T, Taguchi H. 2010. A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J. 29:1552-64
-
(2010)
EMBO J.
, vol.29
, pp. 1552-1564
-
-
Fujiwara, K.1
Ishihama, Y.2
Nakahigashi, K.3
Soga, T.4
Taguchi, H.5
-
54
-
-
79960923840
-
Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes
-
Del Alamo M, Hogan DJ, Pechmann S, Albanese V, Brown PO, Frydman J. 2011. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes. PLoS Biol. 9:e1001100
-
(2011)
PLoS Biol.
, vol.9
-
-
Del Alamo, M.1
Hogan, D.J.2
Pechmann, S.3
Albanese, V.4
Brown, P.O.5
Frydman, J.6
-
55
-
-
83255164895
-
Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo
-
Oh E, Becker AH, Sandikci A, Huber D, Chaba R, et al. 2011. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147:1295-308
-
(2011)
Cell
, vol.147
, pp. 1295-1308
-
-
Oh, E.1
Becker, A.H.2
Sandikci, A.3
Huber, D.4
Chaba, R.5
-
56
-
-
84861139210
-
DnaK functions as a central hub in the E. coli chaperone network
-
Calloni G, Chen T, Schermann SM, Chang H-C, Genevaux P, et al. 2012. DnaK functions as a central hub in the E. coli chaperone network. Cell Rep. 1:251-64
-
(2012)
Cell Rep.
, vol.1
, pp. 251-264
-
-
Calloni, G.1
Chen, T.2
Schermann, S.M.3
Chang, H.-C.4
Genevaux, P.5
-
58
-
-
0034646515
-
Getting newly synthesized proteins into shape
-
Bukau B, Deuerling E, Pfund C, Craig EA. 2000. Getting newly synthesized proteins into shape. Cell 101:119-22
-
(2000)
Cell
, vol.101
, pp. 119-122
-
-
Bukau, B.1
Deuerling, E.2
Pfund, C.3
Craig, E.A.4
-
59
-
-
84862848780
-
Ribosome-associated chaperones as key players in proteostasis
-
Preissler S, Deuerling E. 2012. Ribosome-associated chaperones as key players in proteostasis. Trends Biochem. Sci. 37:274-83
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 274-283
-
-
Preissler, S.1
Deuerling, E.2
-
60
-
-
0037068441
-
L23 protein functions as a chaperone docking site on the ribosome
-
Kramer G, Rauch T, Rist W, Vorderwülbecke S, Patzelt H, et al. 2002. L23 protein functions as a chaperone docking site on the ribosome. Nature 419:171-74
-
(2002)
Nature
, vol.419
, pp. 171-174
-
-
Kramer, G.1
Rauch, T.2
Rist, W.3
Vorderwülbecke, S.4
Patzelt, H.5
-
61
-
-
4944246094
-
Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins
-
Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling B, Ban N. 2004. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431:590-96
-
(2004)
Nature
, vol.431
, pp. 590-596
-
-
Ferbitz, L.1
Maier, T.2
Patzelt, H.3
Bukau, B.4
Deuerling, B.5
Ban, N.6
-
62
-
-
44649188719
-
Molecular mechanism and structure of trigger factor bound to the translating ribosome
-
Merz F, Boehringer D, Schaffitzel C, Preissler S, Hoffmann A, et al. 2008. Molecular mechanism and structure of trigger factor bound to the translating ribosome. EMBO J. 27:1622-32
-
(2008)
EMBO J.
, vol.27
, pp. 1622-1632
-
-
Merz, F.1
Boehringer, D.2
Schaffitzel, C.3
Preissler, S.4
Hoffmann, A.5
-
63
-
-
33751321592
-
Real-time observation of trigger factor function on translating ribosomes
-
Kaiser CM, Chang H-C, Agashe VR, Lakshmipathy SK, Etchells SA, et al. 2006. Real-time observation of trigger factor function on translating ribosomes. Nature 444:455-60
-
(2006)
Nature
, vol.444
, pp. 455-460
-
-
Kaiser, C.M.1
Chang, H.-C.2
Agashe, V.R.3
Lakshmipathy, S.K.4
Etchells, S.A.5
-
64
-
-
0142059982
-
Ligand crowding at a nascent signal sequence
-
Eisner G, Koch HG, Beck K, Brunner J, Müller M. 2003. Ligand crowding at a nascent signal sequence. J. Cell Biol. 163:35-44
-
(2003)
J. Cell Biol.
, vol.163
, pp. 35-44
-
-
Eisner, G.1
Koch, H.G.2
Beck, K.3
Brunner, J.4
Müller, M.5
-
65
-
-
0038360877
-
Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome
-
Ullers RS, Houben EN, Raine A, ten Hagen-Jongman CM, Ehrenberg M, et al. 2003. Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome. J. Cell Biol. 161:679-84
-
(2003)
J. Cell Biol.
, vol.161
, pp. 679-684
-
-
Ullers, R.S.1
Houben, E.N.2
Raine, A.3
Ten Hagen-Jongman, C.M.4
Ehrenberg, M.5
-
66
-
-
40449111025
-
A peptide deformylaseribosome complex reveals mechanism of nascent chain processing
-
Bingel-Erlenmeyer R, Kohler R, Kramer G, Sandikci A, Antolić S, et al. 2008. A peptide deformylaseribosome complex reveals mechanism of nascent chain processing. Nature 452:108-13
-
(2008)
Nature
, vol.452
, pp. 108-113
-
-
Bingel-Erlenmeyer, R.1
Kohler, R.2
Kramer, G.3
Sandikci, A.4
Antolić, S.5
-
67
-
-
1642487106
-
In vivo analysis of the overlapping functions of DnaK and trigger factor
-
Genevaux P, Keppel F, Schwager F, Langendijk-Genevaux PS, Hartl FU, Georgopoulos C. 2004. In vivo analysis of the overlapping functions of DnaK and trigger factor. EMBO Rep. 5:195-200
-
(2004)
EMBO Rep
, vol.5
, pp. 195-200
-
-
Genevaux, P.1
Keppel, F.2
Schwager, F.3
Langendijk-Genevaux, P.S.4
Hartl, F.U.5
Georgopoulos, C.6
-
69
-
-
34247281027
-
Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence
-
Raue U, Oellerer S, Rospert S. 2007. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J. Biol. Chem. 282:7809-16
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 7809-7816
-
-
Raue, U.1
Oellerer, S.2
Rospert, S.3
-
70
-
-
59449099818
-
Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast
-
Peisker K, Braun D, Wölfle T, Hentschel J, Fünfschilling U, et al. 2008. Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Mol. Biol. Cell 19:5279-88
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 5279-5288
-
-
Peisker, K.1
Braun, D.2
Wölfle, T.3
Hentschel, J.4
Fünfschilling, U.5
-
71
-
-
77950562866
-
A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes
-
Koplin A, Preissler S, Ilina Y, Koch M, Scior A, et al. 2010. A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. J. Cell Biol. 189:57-68
-
(2010)
J. Cell Biol.
, vol.189
, pp. 57-68
-
-
Koplin, A.1
Preissler, S.2
Ilina, Y.3
Koch, M.4
Scior, A.5
-
72
-
-
33646354930
-
A conserved motif is prerequisite for the interaction of NAC with ribosomal protein L23 and nascent chains
-
Wegrzyn RD, Hofmann D, Merz F, Nikolay R, Rauch T, et al. 2006. A conserved motif is prerequisite for the interaction of NAC with ribosomal protein L23 and nascent chains. J. Biol. Chem. 281:2847-57
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 2847-2857
-
-
Wegrzyn, R.D.1
Hofmann, D.2
Merz, F.3
Nikolay, R.4
Rauch, T.5
-
73
-
-
77953501128
-
Dual binding mode of the nascent polypeptideassociated complex reveals a novel universal adapter site on the ribosome
-
Pech M, Spreter T, Beckmann R, Beatrix B. 2010. Dual binding mode of the nascent polypeptideassociated complex reveals a novel universal adapter site on the ribosome. J. Biol. Chem. 285:19679-87
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 19679-19687
-
-
Pech, M.1
Spreter, T.2
Beckmann, R.3
Beatrix, B.4
-
74
-
-
84861850079
-
Global analysis of chaperone effects using a reconstituted cell-free translation system
-
Niwa T, Kanamori T, Ueda T, Taguchi H. 2012. Global analysis of chaperone effects using a reconstituted cell-free translation system. Proc. Natl. Acad. Sci. USA 109:8937-42
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 8937-8942
-
-
Niwa, T.1
Kanamori, T.2
Ueda, T.3
Taguchi, H.4
-
75
-
-
77954947810
-
The Hsp70 chaperone machinery: J proteins as drivers of functional specificity
-
Kampinga HH, Craig EA. 2010. The Hsp70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11:579-92
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 579-592
-
-
Kampinga, H.H.1
Craig, E.A.2
-
76
-
-
33846312878
-
Snapshot: Molecular chaperones, part II
-
Tang YC, Chang HC, Hayer-Hartl M, Hartl FU. 2007. Snapshot: molecular chaperones, part II. Cell 128:412
-
(2007)
Cell
, vol.128
, pp. 412
-
-
Tang, Y.C.1
Chang, H.C.2
Hayer-Hartl, M.3
Hartl, F.U.4
-
78
-
-
23044445800
-
The cotranslational contacts between ribosome-bound nascent polypeptides and the subunits of the hetero-oligomeric chaperonin TRiC probed by photocross-linking
-
Etchells SA, Meyer AS, Yam AY, Roobol A, Miao Y, et al. 2005. The cotranslational contacts between ribosome-bound nascent polypeptides and the subunits of the hetero-oligomeric chaperonin TRiC probed by photocross-linking. J. Biol. Chem. 280:28118-26
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 28118-28126
-
-
Etchells, S.A.1
Meyer, A.S.2
Yam, A.Y.3
Roobol, A.4
Miao, Y.5
-
79
-
-
49449105092
-
The structure of CCTHsc70NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin
-
Cuellar J, Martin-Benito J, Scheres SH, Sousa R, Moro F, et al. 2008. The structure of CCTHsc70NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin. Nat. Struct. Mol. Biol. 15:858-64
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 858-864
-
-
Cuellar, J.1
Martin-Benito, J.2
Scheres, S.H.3
Sousa, R.4
Moro, F.5
-
80
-
-
84934439633
-
Molecular interaction network of the Hsp90 chaperone system
-
Zhao R, Houry WA. 2007. Molecular interaction network of the Hsp90 chaperone system. Adv. Exp. Med. Biol. 594:27-36
-
(2007)
Adv. Exp. Med. Biol.
, vol.594
, pp. 27-36
-
-
Zhao, R.1
Houry, W.A.2
-
81
-
-
0035939668
-
Hsp90: A specialized but essential protein-folding tool
-
Young JC, Moarefi I, Hartl FU. 2001. Hsp90: a specialized but essential protein-folding tool. J. Cell Biol. 154:267-73
-
(2001)
J. Cell Biol.
, vol.154
, pp. 267-273
-
-
Young, J.C.1
Moarefi, I.2
Hartl, F.U.3
-
82
-
-
0037428164
-
Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70
-
Young JC, Hoogenraad NJ, Hartl FU. 2003. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112:41-50
-
(2003)
Cell
, vol.112
, pp. 41-50
-
-
Young, J.C.1
Hoogenraad, N.J.2
Hartl, F.U.3
-
83
-
-
84857943078
-
Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response
-
014654
-
Sharma K, Vabulas RM, Macek B, Pinkert S, Cox J, et al. 2012. Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response. Mol. Cell. Proteomics 11:M111. 014654
-
(2012)
Mol. Cell. Proteomics
, vol.11
-
-
Sharma, K.1
Vabulas, R.M.2
Macek, B.3
Pinkert, S.4
Cox, J.5
-
84
-
-
34248187981
-
Heat shock protein 90: The cancer chaperone
-
Neckers L. 2007. Heat shock protein 90: the cancer chaperone. J. Biosci. 32:517-30
-
(2007)
J. Biosci.
, vol.32
, pp. 517-530
-
-
Neckers, L.1
-
85
-
-
75349113019
-
Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation
-
Haslberger T, Bukau B, Mogk A. 2010. Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation. Biochem. Cell Biol. 88:63-75
-
(2010)
Biochem. Cell Biol.
, vol.88
, pp. 63-75
-
-
Haslberger, T.1
Bukau, B.2
Mogk, A.3
-
86
-
-
35648993510
-
To be, or not to be molecular chaperones in protein degradation
-
Arndt V, Rogon C, Höhfeld J. 2007. To be, or not to be - molecular chaperones in protein degradation. Cell. Mol. Life Sci. 64:2525-41
-
(2007)
Cell. Mol. Life Sci.
, vol.64
, pp. 2525-2541
-
-
Arndt, V.1
Rogon, C.2
Höhfeld, J.3
-
87
-
-
34249691985
-
Identification of nascent chain interaction sites on trigger factor
-
Lakshmipathy SK, Tomic S, Kaiser CM, Chang HC, Genevaux P, et al. 2007. Identification of nascent chain interaction sites on trigger factor. J. Biol. Chem. 282:12186-93
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 12186-12193
-
-
Lakshmipathy, S.K.1
Tomic, S.2
Kaiser, C.M.3
Chang, H.C.4
Genevaux, P.5
-
88
-
-
77955659939
-
Versatility of trigger factor interactions with ribosome-nascent chain complexes
-
Lakshmipathy SK, Gupta R, Pinkert S, Etchells SA, Hartl FU. 2010. Versatility of trigger factor interactions with ribosome-nascent chain complexes. J. Biol. Chem. 285:27911-23
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 27911-27923
-
-
Lakshmipathy, S.K.1
Gupta, R.2
Pinkert, S.3
Etchells, S.A.4
Hartl, F.U.5
-
89
-
-
24744435971
-
Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action
-
Baram D, Pyetan E, Sittner A, Auerbach-Nevo T, Bashan A, Yonath A. 2005. Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. Proc. Natl. Acad. Sci. USA 102:12017-22
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 12017-12022
-
-
Baram, D.1
Pyetan, E.2
Sittner, A.3
Auerbach-Nevo, T.4
Bashan, A.5
Yonath, A.6
-
90
-
-
27644447766
-
The binding mode of the trigger factor on the ribosome: Implications for protein folding and SRP interaction
-
Schlünzen F, Wilson DN, Tian P, Harms JM, McInnes SJ, et al. 2005. The binding mode of the trigger factor on the ribosome: implications for protein folding and SRP interaction. Structure 13:1685-94
-
(2005)
Structure
, vol.13
, pp. 1685-1694
-
-
Schlünzen, F.W.1
-
91
-
-
2942519292
-
Functional dissection of Escherichia coli trigger factor: Unraveling the function of individual domains
-
Kramer G, Rutkowska A, Wegrzyn RD, Patzelt H, Kurz TA, et al. 2004. Functional dissection of Escherichia coli trigger factor: unraveling the function of individual domains. J. Bacteriol. 186:3777-84
-
(2004)
J. Bacteriol.
, vol.186
, pp. 3777-3784
-
-
Kramer, G.1
Rutkowska, A.2
Wegrzyn, R.D.3
Patzelt, H.4
Kurz, T.A.5
-
92
-
-
73949113446
-
Chaperone domains convert prolyl isomerases into generic catalysts of protein folding
-
Jakob RP, Zoldak G, Aumüller T, Schmid FX. 2009. Chaperone domains convert prolyl isomerases into generic catalysts of protein folding. Proc. Natl. Acad. Sci. USA 106:20282-87
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 20282-20287
-
-
Jakob, R.P.1
Zoldak, G.2
Aumüller, T.3
Schmid, F.X.4
-
93
-
-
33845984939
-
The C-terminal domain of Escherichia coli trigger factor represents the central module of its chaperone activity
-
Merz F, Hoffmann A, Rutkowska A, Zachmann-Brand B, Bukau B, Deuerling E. 2006. The C-terminal domain of Escherichia coli trigger factor represents the central module of its chaperone activity. J. Biol. Chem. 281:31963-71
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 31963-31971
-
-
Merz, F.1
Hoffmann, A.2
Rutkowska, A.3
Zachmann-Brand, B.4
Bukau, B.5
Deuerling, E.6
-
94
-
-
0036806274
-
Three-state equilibrium of Escherichia coli trigger factor
-
Patzelt H, Kramer G, Rauch T, Schönfeld HJ, Bukau B, Deuerling E. 2002. Three-state equilibrium of Escherichia coli trigger factor. Biol. Chem. 383:1611-19
-
(2002)
Biol. Chem.
, vol.383
, pp. 1611-1619
-
-
Patzelt, H.1
Kramer, G.2
Rauch, T.3
Schönfeld, H.J.4
Bukau, B.5
Deuerling, E.6
-
95
-
-
77955655122
-
Trigger factor lacking the PPIase domain can enhance the folding of eukaryotic multi-domain proteins in Escherichia coli
-
Gupta R, Lakshmipathy SK, Chang HC, Etchells SA, Hartl FU. 2010. Trigger factor lacking the PPIase domain can enhance the folding of eukaryotic multi-domain proteins in Escherichia coli. FEBS Lett. 584:3620-24
-
(2010)
FEBS Lett
, vol.584
, pp. 3620-3624
-
-
Gupta, R.1
Lakshmipathy, S.K.2
Chang, H.C.3
Etchells, S.A.4
Hartl, F.U.5
-
96
-
-
84867379923
-
Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding
-
Hoffmann A, Becker AH, Zachmann-Brand B, Deuerling E, Bukau B, Kramer G. 2012. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol. Cell 48:63-74
-
(2012)
Mol. Cell
, vol.48
, pp. 63-74
-
-
Hoffmann, A.1
Becker, A.H.2
Zachmann-Brand, B.3
Deuerling, E.4
Bukau, B.5
Kramer, G.6
-
97
-
-
17144403794
-
Dimeric trigger factor stably binds folding-competent intermediates and cooperates with the DnaK-DnaJ-GrpE chaperone system to allow refolding
-
Liu C-P, Perrett S, Zhou J-M. 2005. Dimeric trigger factor stably binds folding-competent intermediates and cooperates with the DnaK-DnaJ-GrpE chaperone system to allow refolding. J. Biol. Chem. 280:13315-20
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 13315-13320
-
-
Liu, C.-P.1
Perrett, S.2
Zhou, J.-M.3
-
98
-
-
69449095153
-
Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone
-
Martinez-Hackert E, Hendrickson WA. 2009. Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138:923-34
-
(2009)
Cell
, vol.138
, pp. 923-934
-
-
Martinez-Hackert, E.1
Hendrickson, W.A.2
-
99
-
-
84874473589
-
Allostery in the Hsp70 chaperone proteins
-
Zuiderweg ER, Bertelsen EB, Rousaki A, Mayer MP, Gestwicki JE, Ahmad A. 2013. Allostery in the Hsp70 chaperone proteins. Top. Curr. Chem. 328:99-152
-
(2013)
Top. Curr. Chem.
, vol.328
, pp. 99-152
-
-
Zuiderweg, E.R.1
Bertelsen, E.B.2
Rousaki, A.3
Mayer, M.P.4
Gestwicki, J.E.5
Ahmad, A.6
-
100
-
-
77955506092
-
Gymnastics of molecular chaperones
-
Mayer MP. 2010. Gymnastics of molecular chaperones. Mol. Cell 39:321-31
-
(2010)
Mol. Cell
, vol.39
, pp. 321-331
-
-
Mayer, M.P.1
-
101
-
-
84871689599
-
Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones
-
Kityk R, Kopp J, Sinning I, Mayer MP. 2012. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48:863-74
-
(2012)
Mol. Cell
, vol.48
, pp. 863-874
-
-
Kityk, R.1
Kopp, J.2
Sinning, I.3
Mayer, M.P.4
-
103
-
-
34848869936
-
Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1
-
Liu QL, Hendrickson WA. 2007. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131:106-20
-
(2007)
Cell
, vol.131
, pp. 106-120
-
-
Liu, Q.L.1
Hendrickson, W.A.2
-
104
-
-
44649110104
-
Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding
-
Polier S, Dragovic Z, Hartl FU, Bracher A. 2008. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133:1068-79
-
(2008)
Cell
, vol.133
, pp. 1068-1079
-
-
Polier, S.1
Dragovic, Z.2
Hartl, F.U.3
Bracher, A.4
-
105
-
-
45849091944
-
Structure of the Hsp110:Hsc70 nucleotide exchange machine
-
Schuermann JP, Jiang JW, Cuellar J, Llorca O, Wang L, et al. 2008. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol. Cell 31:232-43
-
(2008)
Mol. Cell
, vol.31
, pp. 232-243
-
-
Schuermann, J.P.1
Jiang, J.W.2
Cuellar, J.3
Llorca, O.4
Wang, L.5
-
106
-
-
64649094781
-
Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate
-
Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER. 2009. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. USA 106:8471-76
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 8471-8476
-
-
Bertelsen, E.B.1
Chang, L.2
Gestwicki, J.E.3
Zuiderweg, E.R.4
-
107
-
-
77950431096
-
The conformational dynamics of the mitochondrial Hsp70 chaperone
-
Mapa K, Sikor M, Kudryavtsev V, Waegemann K, Kalinin S, et al. 2010. The conformational dynamics of the mitochondrial Hsp70 chaperone. Mol. Cell 38:89-100
-
(2010)
Mol. Cell
, vol.38
, pp. 89-100
-
-
Mapa, K.1
Sikor, M.2
Kudryavtsev, V.3
Waegemann, K.4
Kalinin, S.5
-
108
-
-
79959685900
-
Fine tuning of a biological machine: DnaK gains improved chaperone activity by altered allosteric communication and substrate binding
-
Schweizer RS, Aponte RA, Zimmermann S, Weber A, Reinstein J. 2011. Fine tuning of a biological machine: DnaK gains improved chaperone activity by altered allosteric communication and substrate binding. ChemBioChem 12:1559-73
-
(2011)
ChemBioChem
, vol.12
, pp. 1559-1573
-
-
Schweizer, R.S.1
Aponte, R.A.2
Zimmermann, S.3
Weber, A.4
Reinstein, J.5
-
109
-
-
34047268015
-
Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker
-
Swain JF, Dinler G, Sivendran R, Montgomery DL, Stotz M, Gierasch LM. 2007. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol. Cell 26:27-39
-
(2007)
Mol. Cell
, vol.26
, pp. 27-39
-
-
Swain, J.F.1
Dinler, G.2
Sivendran, R.3
Montgomery, D.L.4
Stotz, M.5
Gierasch, L.M.6
-
110
-
-
77957274298
-
An interdomain sector mediating allostery in Hsp70 molecular chaperones
-
Smock RG, Rivoire O, Russ WP, Swain JF, Leibler S, et al. 2010. An interdomain sector mediating allostery in Hsp70 molecular chaperones. Mol. Syst. Biol. 6:414
-
(2010)
Mol. Syst. Biol.
, vol.6
, pp. 414
-
-
Smock, R.G.1
Rivoire, O.2
Russ, W.P.3
Swain, J.F.4
Leibler, S.5
-
111
-
-
79955565642
-
Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones
-
Zhuravleva A, Gierasch LM. 2011. Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proc. Natl. Acad. Sci. USA 108:6987-92
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 6987-6992
-
-
Zhuravleva, A.1
Gierasch, L.M.2
-
112
-
-
35649024724
-
Structural basis of J cochaperone binding and regulation of Hsp70
-
Jiang J, Maes EG, Taylor AB, Wang L, Hinck AP, et al. 2007. Structural basis of J cochaperone binding and regulation of Hsp70. Mol. Cell 28:422-33
-
(2007)
Mol. Cell
, vol.28
, pp. 422-433
-
-
Jiang, J.1
Maes, E.G.2
Taylor, A.B.3
Wang, L.4
Hinck, A.P.5
-
113
-
-
82755187767
-
Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface
-
Ahmad A, Bhattacharya A, McDonald RA, Cordes M, Ellington B, et al. 2011. Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface. Proc. Natl. Acad. Sci. USA 108:18966-71
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 18966-18971
-
-
Ahmad, A.1
Bhattacharya, A.2
McDonald, R.A.3
Cordes, M.4
Ellington, B.5
-
115
-
-
79951491416
-
Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5
-
Hagiwara M, Maegawa K-I, Suzuki M, Ushioda R, Araki K, et al. 2011. Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5. Mol. Cell 41:432-44
-
(2011)
Mol. Cell
, vol.41
, pp. 432-444
-
-
Hagiwara, M.1
Maegawa, K.-I.2
Suzuki, M.3
Ushioda, R.4
Araki, K.5
-
116
-
-
0036275663
-
Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p
-
Kabani M, Beckerich JM, Brodsky JL. 2002. Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol. Cell Biol. 22:4677-89
-
(2002)
Mol. Cell Biol.
, vol.22
, pp. 4677-4689
-
-
Kabani, M.1
Beckerich, J.M.2
Brodsky, J.L.3
-
118
-
-
33745762927
-
Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s
-
Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU. 2006. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J. 25:2519-28
-
(2006)
EMBO J
, vol.25
, pp. 2519-2528
-
-
Dragovic, Z.1
Broadley, S.A.2
Shomura, Y.3
Bracher, A.4
Hartl, F.U.5
-
119
-
-
33745749328
-
Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor
-
Raviol H, Sadlish H, Rodriguez F, Mayer MP, Bukau B. 2006. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J. 25:2510-18
-
(2006)
EMBO J
, vol.25
, pp. 2510-2518
-
-
Raviol, H.1
Sadlish, H.2
Rodriguez, F.3
Mayer, M.P.4
Bukau, B.5
-
120
-
-
13244278043
-
Regulation ofHsp70 function by HspBP1: Structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange
-
Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC, et al. 2005. Regulation ofHsp70 function by HspBP1: Structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol. Cell 17:367-79
-
(2005)
Mol. Cell
, vol.17
, pp. 367-379
-
-
Shomura, Y.1
Dragovic, Z.2
Chang, H.C.3
Tzvetkov, N.4
Young, J.C.5
-
121
-
-
57149092290
-
Structural basis of nucleotide exchange and client binding by the Hsp70 cochaperone Bag2
-
Xu Z, Page RC, Gomes MM, Kohli E, Nix JC, et al. 2008. Structural basis of nucleotide exchange and client binding by the Hsp70 cochaperone Bag2. Nat. Struct. Mol. Biol. 15:1309-17
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 1309-1317
-
-
Xu, Z.1
Page, R.C.2
Gomes, M.M.3
Kohli, E.4
Nix, J.C.5
-
122
-
-
77649095684
-
The C-terminal BAG domain of BAG5 induces conformational changes of the Hsp70 nucleotide-binding domain for ADP-ATP exchange
-
Arakawa A, Handa N, Ohsawa N, Shida M, Kigawa T, et al. 2010. The C-terminal BAG domain of BAG5 induces conformational changes of the Hsp70 nucleotide-binding domain for ADP-ATP exchange. Structure 18:309-19
-
(2010)
Structure
, vol.18
, pp. 309-319
-
-
Arakawa, A.1
Handa, N.2
Ohsawa, N.3
Shida, M.4
Kigawa, T.5
-
123
-
-
80052177927
-
Structural analysis of the Sil1-Bip complex reveals the mechanism for Sil1 to function as a nucleotide-exchange factor
-
Yan M, Li J, Sha B. 2011. Structural analysis of the Sil1-Bip complex reveals the mechanism for Sil1 to function as a nucleotide-exchange factor. Biochem. J. 438:447-55
-
(2011)
Biochem. J.
, vol.438
, pp. 447-455
-
-
Yan, M.1
Li, J.2
Sha, B.3
-
124
-
-
80054699747
-
The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system
-
Shorter J. 2011. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS ONE 6:e26319
-
(2011)
PLoS ONE
, vol.6
-
-
Shorter, J.1
-
125
-
-
84868525116
-
Metazoan Hsp70 machines use Hsp110 to power protein disaggregation
-
Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, et al. 2012. Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J. 31:4221-35
-
(2012)
EMBO J
, vol.31
, pp. 4221-4235
-
-
Rampelt, H.1
Kirstein-Miles, J.2
Nillegoda, N.B.3
Chi, K.4
Scholz, S.R.5
-
126
-
-
28444474185
-
The gene disrupted in Marinesco-Sj ögren syndrome encodes SIL1, an HSPA5 cochaperone
-
Anttonen AK, Mahjneh I, Hämäläinen RH, Lagier-Tourenne C, Kopra O, et al. 2005. The gene disrupted in Marinesco-Sj ögren syndrome encodes SIL1, an HSPA5 cochaperone. Nat. Genet. 37:1309-11
-
(2005)
Nat. Genet.
, vol.37
, pp. 1309-1311
-
-
Anttonen, A.K.1
Mahjneh, I.2
Hämäläinen, R.H.3
Lagier-Tourenne, C.4
Kopra, O.5
-
127
-
-
28444497039
-
Mutations in SIL1 cause Marinesco-Sj ögren syndrome, a cerebellar ataxia with cataract and myopathy
-
Senderek J, Krieger M, Stendel C, Bergmann C, Moser M, et al. 2005. Mutations in SIL1 cause Marinesco-Sj ögren syndrome, a cerebellar ataxia with cataract and myopathy. Nat. Genet. 37:1312-14
-
(2005)
Nat. Genet.
, vol.37
, pp. 1312-1314
-
-
Senderek, J.1
Krieger, M.2
Stendel, C.3
Bergmann, C.4
Moser, M.5
-
128
-
-
34247644778
-
Topologies of a substrate protein bound to the chaperonin GroEL
-
Elad N, Farr GW, Clare DK, Orlova EV, Horwich AL, Saibil HR. 2007. Topologies of a substrate protein bound to the chaperonin GroEL. Mol. Cell 26:415-26
-
(2007)
Mol. Cell
, vol.26
, pp. 415-426
-
-
Elad, N.1
Farr, G.W.2
Clare, D.K.3
Orlova, E.V.4
Horwich, A.L.5
Saibil, H.R.6
-
129
-
-
24644501099
-
Direct NMR observation of a substrate protein bound to the chaperonin GroEL
-
Horst R, Bertelsen EB, Fiaux J, Wider G, Horwich AL, Wüthrich K. 2005. Direct NMR observation of a substrate protein bound to the chaperonin GroEL. Proc. Natl. Acad. Sci. USA 102:12748-53
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 12748-12753
-
-
Horst, R.1
Bertelsen, E.B.2
Fiaux, J.3
Wider, G.4
Horwich, A.L.5
Wüthrich, K.6
-
130
-
-
41149089882
-
Monitoring protein conformation along the pathway of chaperonin-assisted folding
-
Sharma S, Chakraborty K, Müller BK, Astola N, Tang Y-C, et al. 2008. Monitoring protein conformation along the pathway of chaperonin-assisted folding. Cell 133:142-53
-
(2008)
Cell
, vol.133
, pp. 142-153
-
-
Sharma, S.1
Chakraborty, K.2
Müller, B.K.3
Astola, N.4
Tang, Y.-C.5
-
131
-
-
51649109975
-
Probing protein-chaperone interactions with single-molecule fluorescence spectroscopy
-
Hillger F, Hanni D, Nettels D, Geister S, Grandin M, et al. 2008. Probing protein-chaperone interactions with single-molecule fluorescence spectroscopy. Angew. Chem. Int. Ed. 47:6184-88
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 6184-6188
-
-
Hillger, F.1
Hanni, D.2
Nettels, D.3
Geister, S.4
Grandin, M.5
-
132
-
-
33646897305
-
Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein
-
Tang Y-C, Chang H-C, Roeben A, Wischnewski D, Wischnewski N, et al. 2006. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125:903-14
-
(2006)
Cell
, vol.125
, pp. 903-914
-
-
Tang, Y.-C.1
Chang, H.-C.2
Roeben, A.3
Wischnewski, D.4
Wischnewski, N.5
-
133
-
-
44349090822
-
Essential role of the chaperonin folding compartment in vivo
-
Tang YC, Chang HC, Chakraborty K, Hartl FU, Hayer-Hartl M. 2008. Essential role of the chaperonin folding compartment in vivo. EMBO J. 27:1458-68
-
(2008)
EMBO J
, vol.27
, pp. 1458-1468
-
-
Tang, Y.C.1
Chang, H.C.2
Chakraborty, K.3
Hartl, F.U.4
Hayer-Hartl, M.5
-
134
-
-
58149229533
-
Chaperonin complex with a newly folded protein encapsulated in the folding chamber
-
Clare DK, Bakkes PJ, van Heerikhuizen H, van der Vies SM, Saibil HR. 2009. Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature 457:107-10
-
(2009)
Nature
, vol.457
, pp. 107-110
-
-
Clare, D.K.1
Bakkes, P.J.2
Van Heerikhuizen, H.3
Van Der Vies, S.M.4
Saibil, H.R.5
-
135
-
-
78649692077
-
Polypeptide in the chaperonin cage partly protrudes out and then folds inside or escapes outside
-
Motojima F, Yoshida M. 2010. Polypeptide in the chaperonin cage partly protrudes out and then folds inside or escapes outside. EMBO J. 29:4008-19
-
(2010)
EMBO J
, vol.29
, pp. 4008-4019
-
-
Motojima, F.1
Yoshida, M.2
-
137
-
-
84859211500
-
ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of theGroEL chaperonin
-
Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, et al. 2012. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of theGroEL chaperonin. Cell 149:113-23
-
(2012)
Cell
, vol.149
, pp. 113-123
-
-
Clare, D.K.1
Vasishtan, D.2
Stagg, S.3
Quispe, J.4
Farr, G.W.5
-
138
-
-
53049103895
-
Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant
-
Koike-Takeshita A, Yoshida M, Taguchi H. 2008. Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant. J. Biol. Chem. 283:23774-81
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 23774-23781
-
-
Koike-Takeshita, A.1
Yoshida, M.2
Taguchi, H.3
-
140
-
-
40949124274
-
GroEL stimulates protein folding through forced unfolding
-
Lin Z, Madan D, Rye HS. 2008. GroEL stimulates protein folding through forced unfolding. Nat. Struct. Mol. Biol. 15:303-11
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 303-311
-
-
Lin, Z.1
Madan, D.2
Rye, H.S.3
-
141
-
-
77954277524
-
Chaperonin-catalyzed rescue of kinetically trapped states in protein folding
-
Chakraborty K, Chatila M, Sinha J, Shi Q, Poschner BC, et al. 2010. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell 142:112-22
-
(2010)
Cell
, vol.142
, pp. 112-122
-
-
Chakraborty, K.1
Chatila, M.2
Sinha, J.3
Shi, Q.4
Poschner, B.C.5
-
142
-
-
0043238073
-
Effects of confinement in chaperonin assisted protein folding: Rate enhancement by decreasing the roughness of the folding energy landscape
-
Baumketner A, Jewett A, Shea JE. 2003. Effects of confinement in chaperonin assisted protein folding: rate enhancement by decreasing the roughness of the folding energy landscape. J. Mol. Biol. 332:701-13
-
(2003)
J. Mol. Biol.
, vol.332
, pp. 701-713
-
-
Baumketner, A.1
Jewett, A.2
Shea, J.E.3
-
143
-
-
33750720952
-
A simple semiempirical model for the effect of molecular confinement upon the rate of protein folding
-
Hayer-Hartl M, Minton AP. 2006. A simple semiempirical model for the effect of molecular confinement upon the rate of protein folding. Biochemistry 45:13356-60
-
(2006)
Biochemistry
, vol.45
, pp. 13356-13360
-
-
Hayer-Hartl, M.1
Minton, A.P.2
-
144
-
-
41949137386
-
Rattling the cage: Computational models of chaperonin-mediated protein folding
-
England J, Lucent D, Pande V. 2008. Rattling the cage: computational models of chaperonin-mediated protein folding. Curr. Opin. Struct. Biol. 18:163-69
-
(2008)
Curr. Opin. Struct. Biol.
, vol.18
, pp. 163-169
-
-
England, J.1
Lucent, D.2
Pande, V.3
-
145
-
-
80053060122
-
Simulation studies of protein folding/unfolding equilibrium under polar and nonpolar confinement
-
Tian J, Garcia AE. 2011. Simulation studies of protein folding/unfolding equilibrium under polar and nonpolar confinement. J. Am. Chem. Soc. 133:15157-64
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 15157-15164
-
-
Tian, J.1
Garcia, A.E.2
-
146
-
-
56249135270
-
Chaperonin chamber accelerates protein folding through passive action of preventing aggregation
-
Apetri AC, Horwich AL. 2008. Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proc. Natl. Acad. Sci. USA 105:17351-55
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 17351-17355
-
-
Apetri, A.C.1
Horwich, A.L.2
-
147
-
-
4944221602
-
Expansion and compression of a protein folding intermediate by GroEL
-
Lin Z, Rye HS. 2004. Expansion and compression of a protein folding intermediate by GroEL. Mol. Cell 16:23-34
-
(2004)
Mol. Cell
, vol.16
, pp. 23-34
-
-
Lin, Z.1
Rye, H.S.2
-
148
-
-
0037184939
-
Directed evolution of substrateoptimized GroEL/S chaperonins
-
Wang JD, Herman C, Tipton KA, Gross CA, Weissman JS. 2002. Directed evolution of substrateoptimized GroEL/S chaperonins. Cell 111:1027-39
-
(2002)
Cell
, vol.111
, pp. 1027-1039
-
-
Wang, J.D.1
Herman, C.2
Tipton, K.A.3
Gross, C.A.4
Weissman, J.S.5
-
149
-
-
77954502545
-
A more precise characterization of chaperonin substrates
-
Raineri E, Ribeca P, Serrano L, Maier T. 2010. A more precise characterization of chaperonin substrates. Bioinformatics 26:1685-89
-
(2010)
Bioinformatics
, vol.26
, pp. 1685-1689
-
-
Raineri, E.1
Ribeca, P.2
Serrano, L.3
Maier, T.4
-
150
-
-
84856113243
-
Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins
-
Mallam AL, Jackson SE. 2012. Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins. Nat. Chem. Biol. 8:147-53
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 147-153
-
-
Mallam, A.L.1
Jackson, S.E.2
-
151
-
-
0347757092
-
Crystal structures of the group II chaperonin from Thermococcus strain KS-1: Steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms
-
Shomura Y, Yoshida T, Iizuka R, Maruyama T, Yohda M, Miki K. 2004. Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. J. Mol. Biol. 335:1265-78
-
(2004)
J. Mol. Biol.
, vol.335
, pp. 1265-1278
-
-
Shomura, Y.1
Yoshida, T.2
Iizuka, R.3
Maruyama, T.4
Yohda, M.5
Miki, K.6
-
152
-
-
77957786479
-
Crystal structure of group II chaperonin in the open state
-
Huo Y, Hu Z, Zhang K, Wang L, Zhai Y, et al. 2010. Crystal structure of group II chaperonin in the open state. Structure 18:1270-79
-
(2010)
Structure
, vol.18
, pp. 1270-1279
-
-
Huo, Y.1
Hu, Z.2
Zhang, K.3
Wang, L.4
Zhai, Y.5
-
153
-
-
77950456761
-
4. 0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement
-
Cong Y, Baker ML, Jakana J, Woolford D, Miller EJ, et al. 2010. 4. 0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc. Natl. Acad. Sci. USA 107:4967-72
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 4967-4972
-
-
Cong, Y.1
Baker, M.L.2
Jakana, J.3
Woolford, D.4
Miller, E.J.5
-
154
-
-
77956256437
-
Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle
-
Pereira JH, Ralston CY, Douglas NR, Meyer D, Knee KM, et al. 2010. Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. J. Biol. Chem. 285:27958-66
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 27958-27966
-
-
Pereira, J.H.1
Ralston, C.Y.2
Douglas, N.R.3
Meyer, D.4
Knee, K.M.5
-
155
-
-
79961026866
-
The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins
-
Dekker C, Roe SM, McCormack EA, Beuron F, Pearl LH, Willison KR. 2011. The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins. EMBO J. 30:3078-90
-
(2011)
EMBO J
, vol.30
, pp. 3078-3090
-
-
Dekker, C.1
Roe, S.M.2
McCormack, E.A.3
Beuron, F.4
Pearl, L.H.5
Willison, K.R.6
-
156
-
-
79955798700
-
Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure
-
Zhang J, Ma B, DiMaio F, Douglas NR, Joachimiak LA, et al. 2011. Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure. Structure 19:633-39
-
(2011)
Structure
, vol.19
, pp. 633-639
-
-
Zhang, J.1
Ma, B.2
Dimaio, F.3
Douglas, N.R.4
Joachimiak, L.A.5
-
157
-
-
78650980445
-
Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin
-
Munoz IG, Yebenes H, Zhou M, Mesa P, Serna M, et al. 2011. Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat. Struct. Mol. Biol. 18:14-19
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 14-19
-
-
Munoz, I.G.1
Yebenes, H.2
Zhou, M.3
Mesa, P.4
Serna, M.5
-
158
-
-
84856509221
-
Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle
-
Cong Y, Schroder GF, Meyer AS, Jakana J, Ma B, et al. 2012. Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle. EMBO J. 31:720-30
-
(2012)
EMBO J
, vol.31
, pp. 720-730
-
-
Cong, Y.1
Schroder, G.F.2
Meyer, A.S.3
Jakana, J.4
Ma, B.5
-
159
-
-
84857385799
-
Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling
-
Kalisman N, Adams CM, Levitt M. 2012. Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proc. Natl. Acad. Sci. USA 109:2884-89
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 2884-2889
-
-
Kalisman, N.1
Adams, C.M.2
Levitt, M.3
-
160
-
-
84861102204
-
The molecular architecture of the eukaryotic chaperonin TRiC/CCT
-
Leitner A, Joachimiak LA, Bracher A, Mönkemeyer L, Walzthoeni T, et al. 2012. The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure 20:814-25
-
(2012)
Structure
, vol.20
, pp. 814-825
-
-
Leitner, A.1
Joachimiak, L.A.2
Bracher, A.3
Mönkemeyer, L.4
Walzthoeni, T.5
-
161
-
-
78651499753
-
Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber
-
Douglas NR, Reissmann S, Zhang J, Chen B, Jakana J, et al. 2011. Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Cell 144:240-52
-
(2011)
Cell
, vol.144
, pp. 240-252
-
-
Douglas, N.R.1
Reissmann, S.2
Zhang, J.3
Chen, B.4
Jakana, J.5
-
162
-
-
0038737003
-
Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis
-
Meyer AS, Gillespie JR, Walther D, Millet IS, Doniach S, Frydman J. 2003. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113:369-81
-
(2003)
Cell
, vol.113
, pp. 369-381
-
-
Meyer, A.S.1
Gillespie, J.R.2
Walther, D.3
Millet, I.S.4
Doniach, S.5
Frydman, J.6
-
163
-
-
33749080319
-
Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins
-
Spiess C, Miller EJ, McClellan AJ, Frydman J. 2006. Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. Mol. Cell 24:25-37
-
(2006)
Mol. Cell
, vol.24
, pp. 25-37
-
-
Spiess, C.1
Miller, E.J.2
McClellan, A.J.3
Frydman, J.4
-
164
-
-
34247635168
-
Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins
-
Reissmann S, Parnot C, Booth CR, Chiu W, Frydman J. 2007. Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat. Struct. Mol. Biol. 14:432-40 164a.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 432-440
-
-
Reissmann, S.1
Parnot, C.2
Booth, C.R.3
Chiu, W.4
Frydman, J.5
-
165
-
-
84871831177
-
Folding of large multidomain proteins by partial encapsulation in the chaperonin TRiC/CCT
-
Rüßmann F, Stemp MJ, Mönkemeyer L, Etchells SA, Bracher A, Hartl FU. 2012. Folding of large multidomain proteins by partial encapsulation in the chaperonin TRiC/CCT. Proc. Natl. Acad. Sci. USA 109:21208-15
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 21208-21215
-
-
Rüßmann, F.1
Stemp, M.J.2
Mönkemeyer, L.3
Etchells, S.A.4
Bracher, A.5
Hartl, F.U.6
-
166
-
-
33749176269
-
Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state
-
Kitamura A, Kubota H, Pack CG, Matsumoto G, Hirayama S, et al. 2006. Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat. Cell Biol. 8:1163-70
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 1163-1170
-
-
Kitamura, A.1
Kubota, H.2
Pack, C.G.3
Matsumoto, G.4
Hirayama, S.5
-
167
-
-
33748561495
-
Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers
-
Behrends C, Langer CA, Boteva R, Böttcher UM, Stemp MJ, et al. 2006. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol. Cell 23:887-97
-
(2006)
Mol. Cell
, vol.23
, pp. 887-897
-
-
Behrends, C.1
Langer, C.A.2
Boteva, R.3
Böttcher, U.M.4
Stemp, M.J.5
-
168
-
-
33749177252
-
The chaperoninTRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions
-
Tam S, Geller R, Spiess C, Frydman J. 2006. The chaperoninTRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat. Cell Biol. 8:1155-62
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 1155-1162
-
-
Tam, S.1
Geller, R.2
Spiess, C.3
Frydman, J.4
-
169
-
-
71449084004
-
The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation
-
Tam S, Spiess C, Auyeung W, Joachimiak L, Chen B, et al. 2009. The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat. Struct. Mol. Biol. 16:1279-85
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 1279-1285
-
-
Tam, S.1
Spiess, C.2
Auyeung, W.3
Joachimiak, L.4
Chen, B.5
-
170
-
-
33746364784
-
Structure and mechanism of the Hsp90 molecular chaperone machinery
-
Pearl LH, Prodromou C. 2006. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75:271-94
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 271-294
-
-
Pearl, L.H.1
Prodromou, C.2
-
171
-
-
33750008686
-
Structural analysis of E. coli Hsp90 reveals dramatic nucleotide-dependent conformational rearrangements
-
Shiau AK, Harris SF, Southworth DR, Agard DA. 2006. Structural analysis of E. coli Hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127:329-40
-
(2006)
Cell
, vol.127
, pp. 329-340
-
-
Shiau, A.K.1
Harris, S.F.2
Southworth, D.R.3
Agard, D.A.4
-
172
-
-
33646176246
-
Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex
-
Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, et al. 2006. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440:1013-17
-
(2006)
Nature
, vol.440
, pp. 1013-1017
-
-
Ali, M.M.1
Roe, S.M.2
Vaughan, C.K.3
Meyer, P.4
Panaretou, B.5
-
173
-
-
34948893963
-
Structures of Grp94-nucleotide complexes reveal mechanistic differences between the Hsp90 chaperones
-
Dollins DE, Warren JJ, Immormino RM, Gewirth DT. 2007. Structures of Grp94-nucleotide complexes reveal mechanistic differences between the Hsp90 chaperones. Mol. Cell 28:41-56
-
(2007)
Mol. Cell
, vol.28
, pp. 41-56
-
-
Dollins, D.E.1
Warren, J.J.2
Immormino, R.M.3
Gewirth, D.T.4
-
174
-
-
2942533020
-
The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site
-
Harris SF, Shiau AK, Agard DA. 2004. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12:1087-97
-
(2004)
Structure
, vol.12
, pp. 1087-1097
-
-
Harris, S.F.1
Shiau, A.K.2
Agard, D.A.3
-
175
-
-
0742269688
-
The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50cdc37
-
Roe SM, Ali MM, Meyer P, Vaughan CK, Panaretou B, et al. 2004. The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50cdc37. Cell 116:87-98
-
(2004)
Cell
, vol.116
, pp. 87-98
-
-
Roe, S.M.1
Ali, M.M.2
Meyer, P.3
Vaughan, C.K.4
Panaretou, B.5
-
176
-
-
33747878717
-
Structure of an Hsp90-Cdc37- Cdk4 complex
-
Vaughan CK, Gohlke U, Sobott F, Good VM, Ali MMU, et al. 2006. Structure of an Hsp90-Cdc37- Cdk4 complex. Mol. Cell 23:697-707
-
(2006)
Mol. Cell
, vol.23
, pp. 697-707
-
-
Vaughan, C.K.1
Gohlke, U.2
Sobott, F.3
Good, V.M.4
Ali, M.M.U.5
-
177
-
-
79959344309
-
Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:HOP complex
-
Southworth DR, Agard DA. 2011. Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:HOP complex. Mol. Cell 42:771-81
-
(2011)
Mol. Cell
, vol.42
, pp. 771-781
-
-
Southworth, D.R.1
Agard, D.A.2
-
178
-
-
42949147146
-
Multiple conformations of E. coli Hsp90 in solution: Insights into the conformational dynamics of Hsp90
-
Krukenberg KA, Forster F, Rice LM, Sali A, Agard DA. 2008. Multiple conformations of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90. Structure 16:755-65
-
(2008)
Structure
, vol.16
, pp. 755-765
-
-
Krukenberg, K.A.1
Forster, F.2
Rice, L.M.3
Sali, A.4
Agard, D.A.5
-
179
-
-
69249130057
-
The charged linker region is an important regulator of Hsp90 function
-
Hainzl O, Lapina MC, Buchner J, Richter K. 2009. The charged linker region is an important regulator of Hsp90 function. J. Biol. Chem. 284:22559-67
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 22559-22567
-
-
Hainzl, O.1
Lapina, M.C.2
Buchner, J.3
Richter, K.4
-
180
-
-
70350759550
-
Hsp90 charged-linker truncation reverses the functional consequences of weakened hydrophobic contacts in the N domain
-
Tsutsumi S, Mollapour M, Graf C, Lee C-T, Scroggins BT, et al. 2009. Hsp90 charged-linker truncation reverses the functional consequences of weakened hydrophobic contacts in the N domain. Nat. Struct. Mol. Biol. 16:1141-47
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 1141-1147
-
-
Tsutsumi, S.1
Mollapour, M.2
Graf, C.3
Lee, C.-T.4
Scroggins, B.T.5
-
181
-
-
0037352446
-
Structural and functional analysis of the middle segment of hsp90: Implications for ATP hydrolysis and client protein and cochaperone interactions
-
Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, et al. Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol. Cell 11:647-58
-
Mol. Cell
, vol.11
, pp. 647-658
-
-
Meyer, P.1
Prodromou, C.2
Hu, B.3
Vaughan, C.4
Roe, S.M.5
-
182
-
-
75949106173
-
Asymmetric activation of the Hsp90 dimer by its cochaperone Aha1
-
Retzlaff M, Hagn F, Mitschke L, Hessling M, Gugel F, et al. 2010. Asymmetric activation of the Hsp90 dimer by its cochaperone Aha1. Mol. Cell 37:344-54
-
(2010)
Mol. Cell
, vol.37
, pp. 344-354
-
-
Retzlaff, M.1
Hagn, F.2
Mitschke, L.3
Hessling, M.4
Gugel, F.5
-
183
-
-
77949438155
-
Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis
-
Koulov AV, Lapointe P, Lu B, Razvi A, Coppinger J, et al. 2010. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol. Biol. Cell 21:871-84
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 871-884
-
-
Koulov, A.V.1
Lapointe, P.2
Lu, B.3
Razvi, A.4
Coppinger, J.5
-
184
-
-
84857042271
-
The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones
-
Li J, Soroka J, Buchner J. 2012. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim. Biophys. Acta 1823:624-35
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 624-635
-
-
Li, J.1
Soroka, J.2
Buchner, J.3
-
185
-
-
79952665421
-
Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity
-
Mollapour M, Tsutsumi S, Truman AW, Xu W, Vaughan CK, et al. 2011. Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity. Mol. Cell 41:672-81
-
(2011)
Mol. Cell
, vol.41
, pp. 672-681
-
-
Mollapour, M.1
Tsutsumi, S.2
Truman, A.W.3
Xu, W.4
Vaughan, C.K.5
-
186
-
-
84857390643
-
Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation
-
Soroka J, Wandinger SK, Müsbacher N, Schreiber T, Richter K, et al. 2012. Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation. Mol. Cell 45:517-28
-
(2012)
Mol. Cell
, vol.45
, pp. 517-528
-
-
Soroka, J.1
Wandinger, S.K.2
Müsbacher, N.3
Schreiber, T.4
Richter, K.5
-
187
-
-
61949349758
-
Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90
-
Hessling M, Richter K, Buchner J. 2009. Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat. Struct. Mol. Biol. 16:287-93
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 287-293
-
-
Hessling, M.1
Richter, K.2
Buchner, J.3
-
188
-
-
56849131626
-
Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle
-
Southworth DR, Agard DA. 2008. Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol. Cell 32:631-40
-
(2008)
Mol. Cell
, vol.32
, pp. 631-640
-
-
Southworth, D.R.1
Agard, D.A.2
-
189
-
-
61949212626
-
The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis
-
Mickler M, Hessling M, Ratzke C, Buchner J, Hugel T. 2009. The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat. Struct. Mol. Biol. 16:281-86
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 281-286
-
-
Mickler, M.1
Hessling, M.2
Ratzke, C.3
Buchner, J.4
Hugel, T.5
-
190
-
-
84858763945
-
The architecture of functional modules in the Hsp90 co-chaperone Sti1/HOP
-
Schmid AB, Lagleder S, Gräwert MA, Röhl A, Hagn F, et al. 2012. The architecture of functional modules in the Hsp90 co-chaperone Sti1/HOP. EMBO J. 31:1506-17
-
(2012)
EMBO J.
, vol.31
, pp. 1506-1517
-
-
Schmid, A.B.1
Lagleder, S.2
Gräwert, M.A.3
Röhl, A.4
Hagn, F.5
-
191
-
-
4444291743
-
The co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle
-
Richter K, Walter S, Buchner J. 2004. The co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. J. Mol. Biol. 342:1403-13
-
(2004)
J. Mol. Biol.
, vol.342
, pp. 1403-1413
-
-
Richter, K.1
Walter, S.2
Buchner, J.3
-
192
-
-
0036931438
-
Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone Aha1
-
Panaretou B, Siligardi G, Meyer P, Maloney A, Sullivan JK, et al. 2002. Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone Aha1. Mol. Cell 10:1307-18
-
(2002)
Mol. Cell
, vol.10
, pp. 1307-1318
-
-
Panaretou, B.1
Siligardi, G.2
Meyer, P.3
Maloney, A.4
Sullivan, J.K.5
-
193
-
-
79959463520
-
Regulation of HSF1 function in the heat stress response: Implications in aging and disease
-
Anckar J, Sistonen L. 2011. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem. 80:1089-115
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 1089-1115
-
-
Anckar, J.1
Sistonen, L.2
-
194
-
-
82255173966
-
The unfolded protein response: From stress pathway to homeostatic regulation
-
Walter P, Ron D. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081-86
-
(2011)
Science
, vol.334
, pp. 1081-1086
-
-
Walter, P.1
Ron, D.2
-
195
-
-
78649728763
-
The mitochondrial UPR - Protecting organelle protein homeostasis
-
Haynes CM, Ron D. 2010. The mitochondrial UPR - protecting organelle protein homeostasis. J. Cell Sci. 123:3849-55
-
(2010)
J. Cell Sci.
, vol.123
, pp. 3849-3855
-
-
Haynes, C.M.1
Ron, D.2
-
196
-
-
77649128585
-
HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans
-
Kern A, Ackermann B, Clement AM, Duerk H, Behl C. 2010. HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans. PLoS ONE 5:e8568
-
(2010)
PLoS ONE
, vol.5
-
-
Kern, A.1
Ackermann, B.2
Clement, A.M.3
Duerk, H.4
Behl, C.5
-
197
-
-
80053371954
-
Firefly luciferase mutants as sensors of proteome stress
-
Gupta R, Kasturi P, Bracher A, Loew C, Zheng M, et al. 2011. Firefly luciferase mutants as sensors of proteome stress. Nat. Methods 8:879-84
-
(2011)
Nat. Methods
, vol.8
, pp. 879-884
-
-
Gupta, R.1
Kasturi, P.2
Bracher, A.3
Loew, C.4
Zheng, M.5
-
199
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D. 2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78:477-513
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
200
-
-
77952851112
-
Chaperone-assisted degradation: Multiple paths to destruction
-
Kettern N, Dreiseidler M, Tawo R, Höhfeld J. 2010. Chaperone-assisted degradation: multiple paths to destruction. Biol. Chem. 391:481-89
-
(2010)
Biol. Chem.
, vol.391
, pp. 481-489
-
-
Kettern, N.1
Dreiseidler, M.2
Tawo, R.3
Höhfeld, J.4
-
202
-
-
79954422997
-
Chaperone-mediated autophagy in protein quality control
-
Arias E, Cuervo AM. 2011. Chaperone-mediated autophagy in protein quality control. Curr. Opin. Cell Biol. 23:184-89
-
(2011)
Curr. Opin. Cell Biol.
, vol.23
, pp. 184-189
-
-
Arias, E.1
Cuervo, A.M.2
-
204
-
-
27944495299
-
Chaperoned ubiquitylation - Crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex
-
Zhang MH, Windheim M, Roe SM, Peggie M, Cohen P, et al. 2005. Chaperoned ubiquitylation - crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20:525-38
-
(2005)
Mol. Cell
, vol.20
, pp. 525-538
-
-
Zhang, M.H.1
Windheim, M.2
Roe, S.M.3
Peggie, M.4
Cohen, P.5
-
205
-
-
44349182079
-
Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes
-
Xu Z, Kohli E, Devlin KI, Bold M, Nix JC, Misra S. 2008. Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes. BMC Struct. Biol. 8:26
-
(2008)
BMC Struct. Biol.
, vol.8
, pp. 26
-
-
Xu, Z.1
Kohli, E.2
Devlin, K.I.3
Bold, M.4
Nix, J.C.5
Misra, S.6
-
206
-
-
65449117176
-
Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3
-
Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C. 2009. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J. 28:889-901
-
(2009)
EMBO J
, vol.28
, pp. 889-901
-
-
Gamerdinger, M.1
Hajieva, P.2
Kaya, A.M.3
Wolfrum, U.4
Hartl, F.U.5
Behl, C.6
-
207
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, et al. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880-84
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
Murata, S.4
Iwata, J.5
-
208
-
-
0034578389
-
Aggresomes, inclusion bodies and protein aggregation
-
Kopito RR. 2000. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10:524-30
-
(2000)
Trends Cell Biol
, vol.10
, pp. 524-530
-
-
Kopito, R.R.1
-
209
-
-
50649116818
-
Misfolded proteins partition between two distinct quality control compartments
-
Kaganovich D, Kopito R, Frydman J. 2008. Misfolded proteins partition between two distinct quality control compartments. Nature 454:1088-95
-
(2008)
Nature
, vol.454
, pp. 1088-1095
-
-
Kaganovich, D.1
Kopito, R.2
Frydman, J.3
-
210
-
-
77958487260
-
Cellular strategies for controlling protein aggregation
-
Tyedmers J, Mogk A, Bukau B. 2010. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11:777-88
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 777-788
-
-
Tyedmers, J.1
Mogk, A.2
Bukau, B.3
-
211
-
-
81355149538
-
Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae
-
Specht S, Miller SBM, Mogk A, Bukau B. 2011. Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J. Cell Biol. 195:617-29
-
(2011)
J. Cell Biol.
, vol.195
, pp. 617-629
-
-
Specht, S.1
Miller, S.B.M.2
Mogk, A.3
Bukau, B.4
-
212
-
-
28844475400
-
HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin
-
Iwata A, Riley BE, Johnston JA, Kopito RR. 2005. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280:40282-92
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 40282-40292
-
-
Iwata, A.1
Riley, B.E.2
Johnston, J.A.3
Kopito, R.R.4
-
213
-
-
24944482408
-
Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation
-
Iwata A, Christianson JC, Bucci M, Ellerby LM, Nukina N, et al. 2005. Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc. Natl. Acad. Sci. USA 102:13135-40
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 13135-13140
-
-
Iwata, A.1
Christianson, J.C.2
Bucci, M.3
Ellerby, L.M.4
Nukina, N.5
-
214
-
-
77950506157
-
Chaperone-mediated autophagy in health and disease
-
Kon M, Cuervo AM. 2010. Chaperone-mediated autophagy in health and disease. FEBS Lett. 584:1399-404
-
(2010)
FEBS Lett
, vol.584
, pp. 1399-1404
-
-
Kon, M.1
Cuervo, A.M.2
-
215
-
-
74549133523
-
Chaperone-assisted selective autophagy is essential for muscle maintenance
-
Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, et al. 2010. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr. Biol. 20:143-48
-
(2010)
Curr. Biol.
, vol.20
, pp. 143-148
-
-
Arndt, V.1
Dick, N.2
Tawo, R.3
Dreiseidler, M.4
Wenzel, D.5
-
216
-
-
0036678146
-
The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans
-
Morley JF, Brignull HR, Weyers JJ, Morimoto RI. 2002. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 99:10417-22
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 10417-10422
-
-
Morley, J.F.1
Brignull, H.R.2
Weyers, J.J.3
Morimoto, R.I.4
-
217
-
-
0742323000
-
Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones
-
Morley JF, Morimoto RI. 2004. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15:657-64
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 657-664
-
-
Morley, J.F.1
Morimoto, R.I.2
-
218
-
-
33748792821
-
Opposing activities protect against age-onset proteotoxicity
-
Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A. 2006. Opposing activities protect against age-onset proteotoxicity. Science 313:1604-10
-
(2006)
Science
, vol.313
, pp. 1604-1610
-
-
Cohen, E.1
Bieschke, J.2
Perciavalle, R.M.3
Kelly, J.W.4
Dillin, A.5
-
219
-
-
70349266064
-
Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging
-
Ben-Zvi A, Miller EA, Morimoto RI. 2009. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl. Acad. Sci. USA 106:14914-19
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 14914-14919
-
-
Ben-Zvi, A.1
Miller, E.A.2
Morimoto, R.I.3
-
220
-
-
71449108913
-
Reduced IGF-1 signaling delays age-associated proteotoxicity in mice
-
Cohen E, Paulsson JF, Blinder P, Burstyn-Cohen T, Du D, et al. 2009. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139:1157-69
-
(2009)
Cell
, vol.139
, pp. 1157-1169
-
-
Cohen, E.1
Paulsson, J.F.2
Blinder, P.3
Burstyn-Cohen, T.4
Du, D.5
-
221
-
-
77956795163
-
Widespread protein aggregation as an inherent part of aging in C. elegans
-
David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C. 2010. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol. 8:e1000450
-
(2010)
PLoS Biol.
, vol.8
-
-
David, D.C.1
Ollikainen, N.2
Trinidad, J.C.3
Cary, M.P.4
Burlingame, A.L.5
Kenyon, C.6
-
222
-
-
78650918920
-
FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging
-
Demontis F, Perrimon N. 2010. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813-25
-
(2010)
Cell
, vol.143
, pp. 813-825
-
-
Demontis, F.1
Perrimon, N.2
-
223
-
-
78650963274
-
Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions
-
Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, et al. 2011. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144:67-78
-
(2011)
Cell
, vol.144
, pp. 67-78
-
-
Olzscha, H.1
Schermann, S.M.2
Woerner, A.C.3
Pinkert, S.4
Hecht, M.H.5
-
225
-
-
33644850056
-
Progressive disruption of cellular protein folding in models of polyglutamine diseases
-
Gidalevitz T, Ben-Zvi A, Ho KH, Brignull H, Morimoto RI. 2006. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311:1471-74
-
(2006)
Science
, vol.311
, pp. 1471-1474
-
-
Gidalevitz, T.1
Ben-Zvi, A.2
Ho, K.H.3
Brignull, H.4
Morimoto, R.I.5
-
226
-
-
84859983420
-
Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease
-
Hipp MS, Patel CN, Bersuker K, Riley BE, Kaiser SE, et al. 2012. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease. J. Cell Biol. 196:573-87
-
(2012)
J. Cell Biol.
, vol.196
, pp. 573-587
-
-
Hipp, M.S.1
Patel, C.N.2
Bersuker, K.3
Riley, B.E.4
Kaiser, S.E.5
-
227
-
-
84862234023
-
Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade
-
Bulawa CE, Connelly S, Devit M, Wang L, Weigel C, et al. 2012. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl. Acad. Sci. USA 109:9629-34
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 9629-9634
-
-
Bulawa, C.E.1
Connelly, S.2
Devit, M.3
Wang, L.4
Weigel, C.5
-
228
-
-
79953288480
-
Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis
-
Tsaytler P, Harding HP, Ron D, Bertolotti A. 2011. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332:91-94
-
(2011)
Science
, vol.332
, pp. 91-94
-
-
Tsaytler, P.1
Harding, H.P.2
Ron, D.3
Bertolotti, A.4
-
229
-
-
77949884097
-
Induction of molecular chaperones as a therapeutic strategy for the polyglutamine diseases
-
Nagai Y, Fujikake N, Popiel HA, Wada K. 2010. Induction of molecular chaperones as a therapeutic strategy for the polyglutamine diseases. Curr. Pharm. Biotechnol. 11:188-97
-
(2010)
Curr. Pharm. Biotechnol.
, vol.11
, pp. 188-197
-
-
Nagai, Y.1
Fujikake, N.2
Popiel, H.A.3
Wada, K.4
-
230
-
-
25844466597
-
Heat shock response modulators as therapeutic tools for diseases of protein conformation
-
Westerheide SD, Morimoto RI. 2005. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J. Biol. Chem. 280:33097-100
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 33097-33100
-
-
Westerheide, S.D.1
Morimoto, R.I.2
-
231
-
-
50249175120
-
Chemical and biological approaches synergize to ameliorate protein-folding diseases
-
Mu TW, Ong DS, Wang YJ, Balch WE, Yates JR, et al. 2008. Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134:769-81
-
(2008)
Cell
, vol.134
, pp. 769-781
-
-
Mu, T.W.1
Ong, D.S.2
Wang, Y.J.3
Balch, W.E.4
Yates, J.R.5
-
232
-
-
84856089134
-
Small-molecule proteostasis regulators for protein conformational diseases
-
Calamini B, Silva MC, Madoux F, Hutt DM, Khanna S, et al. 2012. Small-molecule proteostasis regulators for protein conformational diseases. Nat. Chem. Biol. 8:185-96
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 185-196
-
-
Calamini, B.1
Silva, M.C.2
Madoux, F.3
Hutt, D.M.4
Khanna, S.5
-
233
-
-
3042717240
-
Cellular toxicity of polyglutamine expansion proteins: Mechanism of transcription factor deactivation
-
Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, et al. 2004. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15:95-105
-
(2004)
Mol. Cell
, vol.15
, pp. 95-105
-
-
Schaffar, G.1
Breuer, P.2
Boteva, R.3
Behrends, C.4
Tzvetkov, N.5
-
234
-
-
78649685457
-
Hsp70 and Hsp40 functionally interact with soluble mutant huntingtin oligomers in a classic ATP-dependent reaction cycle
-
Lotz GP, Legleiter J, Aron R, Mitchell EJ, Huang SY, et al. 2010. Hsp70 and Hsp40 functionally interact with soluble mutant huntingtin oligomers in a classic ATP-dependent reaction cycle. J. Biol. Chem. 285:38183-93
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 38183-38193
-
-
Lotz, G.P.1
Legleiter, J.2
Aron, R.3
Mitchell, E.J.4
Huang, S.Y.5
-
235
-
-
0036468432
-
Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease
-
Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM. 2002. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295:865-68
-
(2002)
Science
, vol.295
, pp. 865-868
-
-
Auluck, P.K.1
Chan, H.Y.2
Trojanowski, J.Q.3
Lee, V.M.4
Bonini, N.M.5
-
236
-
-
75949094261
-
A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation
-
Hageman J, Rujano MA, VAN Waarde MAWH, Kakkar V, Dirks RP, et al. 2010. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol. Cell 37:355-69
-
(2010)
Mol. Cell
, vol.37
, pp. 355-369
-
-
Hageman, J.1
Rujano, M.A.2
Van Waarde, M.A.W.H.3
Kakkar, V.4
Dirks, R.P.5
-
237
-
-
57649227693
-
Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies
-
Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC. 2009. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine- expanded huntingtin and related proteinopathies. Cell Death Differ. 16:46-56
-
(2009)
Cell Death Differ.
, vol.16
, pp. 46-56
-
-
Sarkar, S.1
Ravikumar, B.2
Floto, R.A.3
Rubinsztein, D.C.4
-
238
-
-
77956527159
-
Enhancement of proteasome activity by a small-molecule inhibitor of USP14
-
Lee B-H, Lee MJ, Park S, Oh DC, Elsasser S, et al. 2010. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467:179-84
-
(2010)
Nature
, vol.467
, pp. 179-184
-
-
Lee, B.-H.1
Lee, M.J.2
Park, S.3
Oh, D.C.4
Elsasser, S.5
-
239
-
-
28244437028
-
The yin and yang of protein folding
-
Jahn TR, Radford SE. 2005. The yin and yang of protein folding. FEBS J. 272:5962-70
-
(2005)
FEBS J.
, vol.272
, pp. 5962-5970
-
-
Jahn, T.R.1
Radford, S.E.2
|