메뉴 건너뛰기




Volumn 82, Issue , 2013, Pages 323-355

Molecular chaperone functions in protein folding and proteostasis

Author keywords

Chaperonin; Degradation; Hsc70 Hsp70; Hsp90; Protein folding; Trigger factor

Indexed keywords

CHAPERONE; CHAPERONIN; HEAT SHOCK PROTEIN 70; HEAT SHOCK PROTEIN 90;

EID: 84878948560     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060208-092442     Document Type: Review
Times cited : (1129)

References (239)
  • 1
    • 33746099650 scopus 로고    scopus 로고
    • Protein aggregation in crowded environments
    • Ellis RJ, Minton AP. 2006. Protein aggregation in crowded environments. Biol. Chem. 387:485-97
    • (2006) Biol. Chem. , vol.387 , pp. 485-497
    • Ellis, R.J.1    Minton, A.P.2
  • 2
    • 0344301982 scopus 로고    scopus 로고
    • Protein folding: A perspective from theory and experiment
    • Dobson CM, Sali A, Karplus M. 1998. Protein folding: a perspective from theory and experiment. Angew. Chem. Int. Ed. 37:868-93
    • (1998) Angew. Chem. Int. Ed. , vol.37 , pp. 868-893
    • Dobson, C.M.1    Sali, A.2    Karplus, M.3
  • 3
    • 66849106554 scopus 로고    scopus 로고
    • An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms
    • Bartlett AI, Radford SE. 2009. An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat. Struct. Mol. Biol. 16:582-88
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 582-588
    • Bartlett, A.I.1    Radford, S.E.2
  • 4
    • 0029992278 scopus 로고    scopus 로고
    • Molecular chaperones in cellular protein folding
    • Hartl FU. 1996. Molecular chaperones in cellular protein folding. Nature 381:571-79
    • (1996) Nature , vol.381 , pp. 571-579
    • Hartl, F.U.1
  • 5
    • 0032489016 scopus 로고    scopus 로고
    • The Hsp70 and Hsp60 chaperone machines
    • Bukau B, Horwich AL. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351-66
    • (1998) Cell , vol.92 , pp. 351-366
    • Bukau, B.1    Horwich, A.L.2
  • 6
    • 0034924812 scopus 로고    scopus 로고
    • Folding of newly translated proteins in vivo: The role of molecular chaperones
    • Frydman J. 2001. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70:603-47
    • (2001) Annu. Rev. Biochem. , vol.70 , pp. 603-647
    • Frydman, J.1
  • 7
    • 0037040541 scopus 로고    scopus 로고
    • Molecular chaperones in the cytosol: From nascent chain to folded protein
    • Hartl FU, Hayer-Hartl M. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852-58
    • (2002) Science , vol.295 , pp. 1852-1858
    • Hartl, F.U.1    Hayer-Hartl, M.2
  • 9
    • 33746377894 scopus 로고    scopus 로고
    • Protein misfolding, functional amyloid, and human disease
    • Chiti F, Dobson CM. 2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75:333-66
    • (2006) Annu. Rev. Biochem. , vol.75 , pp. 333-366
    • Chiti, F.1    Dobson, C.M.2
  • 10
    • 44849094781 scopus 로고    scopus 로고
    • Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging
    • Morimoto RI. 2008. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 22:1427-38
    • (2008) Genes Dev. , vol.22 , pp. 1427-1438
    • Morimoto, R.I.1
  • 11
    • 66849131417 scopus 로고    scopus 로고
    • Cellular mechanisms of membrane protein folding
    • Skach WR. 2009. Cellular mechanisms of membrane protein folding. Nat. Struct. Mol. Biol. 16:606-12
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 606-612
    • Skach, W.R.1
  • 12
    • 79959481888 scopus 로고    scopus 로고
    • Protein folding and modification in the mammalian endoplasmic reticulum
    • Braakman I, Bulleid NJ. 2011. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem. 80:71-99
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 71-99
    • Braakman, I.1    Bulleid, N.J.2
  • 15
    • 22744447508 scopus 로고    scopus 로고
    • Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli
    • Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, et al. 2005. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209-20
    • (2005) Cell , vol.122 , pp. 209-220
    • Kerner, M.J.1    Naylor, D.J.2    Ishihama, Y.3    Maier, T.4    Chang, H.C.5
  • 16
    • 79959887638 scopus 로고    scopus 로고
    • A diversity of assembly mechanisms of a generic amyloid fold
    • Eichner T, Radford SE. 2011. A diversity of assembly mechanisms of a generic amyloid fold. Mol. Cell 43:8-18
    • (2011) Mol. Cell , vol.43 , pp. 8-18
    • Eichner, T.1    Radford, S.E.2
  • 17
    • 79960652801 scopus 로고    scopus 로고
    • Molecular chaperones in protein folding and proteostasis
    • Hartl FU, Bracher A, Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324-32
    • (2011) Nature , vol.475 , pp. 324-332
    • Hartl, F.U.1    Bracher, A.2    Hayer-Hartl, M.3
  • 19
    • 0347004717 scopus 로고    scopus 로고
    • Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling
    • Ignatova Z, Gierasch LM. 2004. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc. Natl. Acad. Sci. USA 101:523-28
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 523-528
    • Ignatova, Z.1    Gierasch, L.M.2
  • 20
    • 79551687316 scopus 로고    scopus 로고
    • Protein folding in the cell: Challenges and progress
    • Gershenson A, Gierasch LM. 2011. Protein folding in the cell: challenges and progress. Curr. Opin. Struct. Biol. 21:32-41
    • (2011) Curr. Opin. Struct. Biol. , vol.21 , pp. 32-41
    • Gershenson, A.1    Gierasch, L.M.2
  • 21
    • 33748804712 scopus 로고    scopus 로고
    • Atomically detailed simulations of concentrated protein solutions: The effects of salt, pH, point mutations, and protein concentration in simulations of 1000-molecule systems
    • McGuffee SR, Elcock AH. 2006. Atomically detailed simulations of concentrated protein solutions: the effects of salt, pH, point mutations, and protein concentration in simulations of 1000-molecule systems. J. Am. Chem. Soc. 128:12098-110
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 12098-12110
    • McGuffee, S.R.1    Elcock, A.H.2
  • 22
    • 77955044557 scopus 로고    scopus 로고
    • Macromolecular crowding remodels the energy landscape of a protein by favoring a more compact unfolded state
    • Hong J, Gierasch LM. 2010. Macromolecular crowding remodels the energy landscape of a protein by favoring a more compact unfolded state. J. Am. Chem. Soc. 132:10445-52
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 10445-10452
    • Hong, J.1    Gierasch, L.M.2
  • 23
    • 0642377466 scopus 로고    scopus 로고
    • More than folding: Localized functions of cytosolic chaperones
    • Young JC, Barral JM, Hartl FU. 2003. More than folding: localized functions of cytosolic chaperones. Trends Biochem. Sci. 28:541-47
    • (2003) Trends Biochem. Sci. , vol.28 , pp. 541-547
    • Young, J.C.1    Barral, J.M.2    Hartl, F.U.3
  • 24
    • 70349446764 scopus 로고    scopus 로고
    • Confined dynamics of a ribosome-bound nascent globin: Cone angle analysis of fluorescence depolarization decays in the presence of two local motions
    • Ellis JP, Culviner PH, Cavagnero S. 2009. Confined dynamics of a ribosome-bound nascent globin: cone angle analysis of fluorescence depolarization decays in the presence of two local motions. Protein Sci. 18:2003-15
    • (2009) Protein Sci. , vol.18 , pp. 2003-2015
    • Ellis, J.P.1    Culviner, P.H.2    Cavagnero, S.3
  • 26
    • 1542358892 scopus 로고    scopus 로고
    • Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins
    • Woolhead CA, McCormick PJ, Johnson AE. 2004. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116:725-36
    • (2004) Cell , vol.116 , pp. 725-736
    • Woolhead, C.A.1    McCormick, P.J.2    Johnson, A.E.3
  • 27
    • 28544449949 scopus 로고    scopus 로고
    • Folding zones inside the ribosomal exit tunnel
    • Lu JL, Deutsch C. 2005. Folding zones inside the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 12: 1123-29
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , pp. 1123-1129
    • Lu, J.L.1    Deutsch, C.2
  • 29
    • 79953106751 scopus 로고    scopus 로고
    • The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling
    • Wilson DN, Beckmann R. 2011. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr. Opin. Struct. Biol. 21:274-82
    • (2011) Curr. Opin. Struct. Biol. , vol.21 , pp. 274-282
    • Wilson, D.N.1    Beckmann, R.2
  • 30
    • 33746592161 scopus 로고    scopus 로고
    • Molecular simulations of cotranslational protein folding: Fragment stabilities, folding cooperativity, and trapping in the ribosome
    • Elcock AH. 2006. Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome. PLoS Comput. Biol. 2:e98
    • (2006) PLoS Comput. Biol. , vol.2
    • Elcock, A.H.1
  • 32
    • 77952694170 scopus 로고    scopus 로고
    • Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy
    • Eichmann C, Preissler S, Riek R, Deuerling E. 2010. Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy. Proc. Natl. Acad. Sci. USA 107:9111-16
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 9111-9116
    • Eichmann, C.1    Preissler, S.2    Riek, R.3    Deuerling, E.4
  • 33
    • 77950659587 scopus 로고    scopus 로고
    • Cotranslational folding increases GFP folding yield
    • Ugrinov KG, Clark PL. 2010. Cotranslational folding increases GFP folding yield. Biophys. J. 98:1312-20
    • (2010) Biophys. J. , vol.98 , pp. 1312-1320
    • Ugrinov, K.G.1    Clark, P.L.2
  • 34
    • 79551690253 scopus 로고    scopus 로고
    • Folding at the birth of the nascent chain: Coordinating translation with co-translational folding
    • Zhang G, Ignatova Z. 2011. Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr. Opin. Struct. Biol. 21:25-31
    • (2011) Curr. Opin. Struct. Biol. , vol.21 , pp. 25-31
    • Zhang, G.1    Ignatova, Z.2
  • 36
    • 0032005026 scopus 로고    scopus 로고
    • Protein folding in the cytosol: Chaperonin-dependent and -independent mechanisms
    • Netzer WJ, Hartl FU. 1998. Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms. Trends Biochem. Sci. 23:68-73
    • (1998) Trends Biochem. Sci. , vol.23 , pp. 68-73
    • Netzer, W.J.1    Hartl, F.U.2
  • 37
    • 1942421714 scopus 로고    scopus 로고
    • Function of trigger factor and DnaK in multidomain protein folding: Increase in yield at the expense of folding speed
    • Agashe VR, Guha S, Chang HC, Genevaux P, Hayer-Hartl M, et al. 2004. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117:199-209
    • (2004) Cell , vol.117 , pp. 199-209
    • Agashe, V.R.1    Guha, S.2    Chang, H.C.3    Genevaux, P.4    Hayer-Hartl, M.5
  • 38
    • 66849143696 scopus 로고    scopus 로고
    • Converging concepts of protein folding in vitro and in vivo
    • Hartl FU, Hayer-Hartl M. 2009. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16:574-81
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 574-581
    • Hartl, F.U.1    Hayer-Hartl, M.2
  • 40
    • 84860231100 scopus 로고    scopus 로고
    • The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria
    • Li G-W, Oh E, Weissman JS. 2012. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484:538-41
    • (2012) Nature , vol.484 , pp. 538-541
    • Li, G.-W.1    Oh, E.2    Weissman, J.S.3
  • 41
    • 84866449925 scopus 로고    scopus 로고
    • Prediction of variable translation rate effects on cotranslational protein folding
    • O'Brien EP, Vendruscolo M, Dobson CM. 2012. Prediction of variable translation rate effects on cotranslational protein folding. Nat. Commun. 3:868
    • (2012) Nat. Commun. , vol.3 , pp. 868
    • O'Brien, E.P.1    Vendruscolo, M.2    Dobson, C.M.3
  • 42
    • 84865098071 scopus 로고    scopus 로고
    • Silent substitutions predictably alter translation elongation rates and protein folding efficiencies
    • Spencer PS, Siller E, Anderson JF, Barral JM. 2012. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J. Mol. Biol. 422:328-35
    • (2012) J. Mol. Biol. , vol.422 , pp. 328-335
    • Spencer, P.S.1    Siller, E.2    Anderson, J.F.3    Barral, J.M.4
  • 44
    • 66649132872 scopus 로고    scopus 로고
    • Chaperonin overexpression promotes genetic variation and enzyme evolution
    • Tokuriki N, Tawfik DS. 2009. Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459:668-73
    • (2009) Nature , vol.459 , pp. 668-673
    • Tokuriki, N.1    Tawfik, D.S.2
  • 45
    • 77953916528 scopus 로고    scopus 로고
    • Hsp90 at the hub of protein homeostasis: Emerging mechanistic insights
    • Taipale M, Jarosz DF, Lindquist S. 2010. Hsp90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11:515-28
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 515-528
    • Taipale, M.1    Jarosz, D.F.2    Lindquist, S.3
  • 47
    • 30344462410 scopus 로고    scopus 로고
    • Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells
    • Albanese V, Yam AYW, Baughman J, Parnot C, Frydman J. 2006. Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124:75-88
    • (2006) Cell , vol.124 , pp. 75-88
    • Albanese, V.1    Yam, A.Y.W.2    Baughman, J.3    Parnot, C.4    Frydman, J.5
  • 48
    • 34848926209 scopus 로고    scopus 로고
    • Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches
    • McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J. 2007. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131:121-35
    • (2007) Cell , vol.131 , pp. 121-135
    • McClellan, A.J.1    Xia, Y.2    Deutschbauer, A.M.3    Davis, R.W.4    Gerstein, M.5    Frydman, J.6
  • 50
    • 57149098022 scopus 로고    scopus 로고
    • Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies
    • Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M, Frydman J. 2008. Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat. Struct. Mol. Biol. 15:1255-62
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 1255-1262
    • Yam, A.Y.1    Xia, Y.2    Lin, H.T.3    Burlingame, A.4    Gerstein, M.5    Frydman, J.6
  • 51
    • 67650681847 scopus 로고    scopus 로고
    • An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: Implications to protein folding pathways in the cell
    • Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A, et al. 2009. An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol. Syst. Biol. 5:275
    • (2009) Mol. Syst. Biol. , vol.5 , pp. 275
    • Gong, Y.1    Kakihara, Y.2    Krogan, N.3    Greenblatt, J.4    Emili, A.5
  • 52
    • 70450219488 scopus 로고    scopus 로고
    • Differential substrate specificity of group i and group II chaperonins in the archaeon Methanosarcina mazei
    • Hirtreiter AM, Calloni G, Forner F, Scheibe B, Puype M, et al. 2009. Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei. Mol. Microbiol. 74:1152-68
    • (2009) Mol. Microbiol. , vol.74 , pp. 1152-1168
    • Hirtreiter, A.M.1    Calloni, G.2    Forner, F.3    Scheibe, B.4    Puype, M.5
  • 53
    • 77951974784 scopus 로고    scopus 로고
    • A systematic survey of in vivo obligate chaperonin-dependent substrates
    • Fujiwara K, Ishihama Y, Nakahigashi K, Soga T, Taguchi H. 2010. A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J. 29:1552-64
    • (2010) EMBO J. , vol.29 , pp. 1552-1564
    • Fujiwara, K.1    Ishihama, Y.2    Nakahigashi, K.3    Soga, T.4    Taguchi, H.5
  • 54
    • 79960923840 scopus 로고    scopus 로고
    • Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes
    • Del Alamo M, Hogan DJ, Pechmann S, Albanese V, Brown PO, Frydman J. 2011. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes. PLoS Biol. 9:e1001100
    • (2011) PLoS Biol. , vol.9
    • Del Alamo, M.1    Hogan, D.J.2    Pechmann, S.3    Albanese, V.4    Brown, P.O.5    Frydman, J.6
  • 55
    • 83255164895 scopus 로고    scopus 로고
    • Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo
    • Oh E, Becker AH, Sandikci A, Huber D, Chaba R, et al. 2011. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147:1295-308
    • (2011) Cell , vol.147 , pp. 1295-1308
    • Oh, E.1    Becker, A.H.2    Sandikci, A.3    Huber, D.4    Chaba, R.5
  • 57
    • 84861161529 scopus 로고    scopus 로고
    • FoldEco: A model for proteostasis in E. coli
    • Powers ET, Powers DL, Gierasch LM. 2012. FoldEco: a model for proteostasis in E. coli. Cell Rep. 1:265-76
    • (2012) Cell Rep. , vol.1 , pp. 265-276
    • Powers, E.T.1    Powers, D.L.2    Gierasch, L.M.3
  • 58
    • 0034646515 scopus 로고    scopus 로고
    • Getting newly synthesized proteins into shape
    • Bukau B, Deuerling E, Pfund C, Craig EA. 2000. Getting newly synthesized proteins into shape. Cell 101:119-22
    • (2000) Cell , vol.101 , pp. 119-122
    • Bukau, B.1    Deuerling, E.2    Pfund, C.3    Craig, E.A.4
  • 59
    • 84862848780 scopus 로고    scopus 로고
    • Ribosome-associated chaperones as key players in proteostasis
    • Preissler S, Deuerling E. 2012. Ribosome-associated chaperones as key players in proteostasis. Trends Biochem. Sci. 37:274-83
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 274-283
    • Preissler, S.1    Deuerling, E.2
  • 60
    • 0037068441 scopus 로고    scopus 로고
    • L23 protein functions as a chaperone docking site on the ribosome
    • Kramer G, Rauch T, Rist W, Vorderwülbecke S, Patzelt H, et al. 2002. L23 protein functions as a chaperone docking site on the ribosome. Nature 419:171-74
    • (2002) Nature , vol.419 , pp. 171-174
    • Kramer, G.1    Rauch, T.2    Rist, W.3    Vorderwülbecke, S.4    Patzelt, H.5
  • 61
    • 4944246094 scopus 로고    scopus 로고
    • Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins
    • Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling B, Ban N. 2004. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431:590-96
    • (2004) Nature , vol.431 , pp. 590-596
    • Ferbitz, L.1    Maier, T.2    Patzelt, H.3    Bukau, B.4    Deuerling, B.5    Ban, N.6
  • 62
    • 44649188719 scopus 로고    scopus 로고
    • Molecular mechanism and structure of trigger factor bound to the translating ribosome
    • Merz F, Boehringer D, Schaffitzel C, Preissler S, Hoffmann A, et al. 2008. Molecular mechanism and structure of trigger factor bound to the translating ribosome. EMBO J. 27:1622-32
    • (2008) EMBO J. , vol.27 , pp. 1622-1632
    • Merz, F.1    Boehringer, D.2    Schaffitzel, C.3    Preissler, S.4    Hoffmann, A.5
  • 65
    • 0038360877 scopus 로고    scopus 로고
    • Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome
    • Ullers RS, Houben EN, Raine A, ten Hagen-Jongman CM, Ehrenberg M, et al. 2003. Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome. J. Cell Biol. 161:679-84
    • (2003) J. Cell Biol. , vol.161 , pp. 679-684
    • Ullers, R.S.1    Houben, E.N.2    Raine, A.3    Ten Hagen-Jongman, C.M.4    Ehrenberg, M.5
  • 66
    • 40449111025 scopus 로고    scopus 로고
    • A peptide deformylaseribosome complex reveals mechanism of nascent chain processing
    • Bingel-Erlenmeyer R, Kohler R, Kramer G, Sandikci A, Antolić S, et al. 2008. A peptide deformylaseribosome complex reveals mechanism of nascent chain processing. Nature 452:108-13
    • (2008) Nature , vol.452 , pp. 108-113
    • Bingel-Erlenmeyer, R.1    Kohler, R.2    Kramer, G.3    Sandikci, A.4    Antolić, S.5
  • 69
    • 34247281027 scopus 로고    scopus 로고
    • Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence
    • Raue U, Oellerer S, Rospert S. 2007. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J. Biol. Chem. 282:7809-16
    • (2007) J. Biol. Chem. , vol.282 , pp. 7809-7816
    • Raue, U.1    Oellerer, S.2    Rospert, S.3
  • 70
    • 59449099818 scopus 로고    scopus 로고
    • Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast
    • Peisker K, Braun D, Wölfle T, Hentschel J, Fünfschilling U, et al. 2008. Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Mol. Biol. Cell 19:5279-88
    • (2008) Mol. Biol. Cell , vol.19 , pp. 5279-5288
    • Peisker, K.1    Braun, D.2    Wölfle, T.3    Hentschel, J.4    Fünfschilling, U.5
  • 71
    • 77950562866 scopus 로고    scopus 로고
    • A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes
    • Koplin A, Preissler S, Ilina Y, Koch M, Scior A, et al. 2010. A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. J. Cell Biol. 189:57-68
    • (2010) J. Cell Biol. , vol.189 , pp. 57-68
    • Koplin, A.1    Preissler, S.2    Ilina, Y.3    Koch, M.4    Scior, A.5
  • 72
    • 33646354930 scopus 로고    scopus 로고
    • A conserved motif is prerequisite for the interaction of NAC with ribosomal protein L23 and nascent chains
    • Wegrzyn RD, Hofmann D, Merz F, Nikolay R, Rauch T, et al. 2006. A conserved motif is prerequisite for the interaction of NAC with ribosomal protein L23 and nascent chains. J. Biol. Chem. 281:2847-57
    • (2006) J. Biol. Chem. , vol.281 , pp. 2847-2857
    • Wegrzyn, R.D.1    Hofmann, D.2    Merz, F.3    Nikolay, R.4    Rauch, T.5
  • 73
    • 77953501128 scopus 로고    scopus 로고
    • Dual binding mode of the nascent polypeptideassociated complex reveals a novel universal adapter site on the ribosome
    • Pech M, Spreter T, Beckmann R, Beatrix B. 2010. Dual binding mode of the nascent polypeptideassociated complex reveals a novel universal adapter site on the ribosome. J. Biol. Chem. 285:19679-87
    • (2010) J. Biol. Chem. , vol.285 , pp. 19679-19687
    • Pech, M.1    Spreter, T.2    Beckmann, R.3    Beatrix, B.4
  • 74
    • 84861850079 scopus 로고    scopus 로고
    • Global analysis of chaperone effects using a reconstituted cell-free translation system
    • Niwa T, Kanamori T, Ueda T, Taguchi H. 2012. Global analysis of chaperone effects using a reconstituted cell-free translation system. Proc. Natl. Acad. Sci. USA 109:8937-42
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 8937-8942
    • Niwa, T.1    Kanamori, T.2    Ueda, T.3    Taguchi, H.4
  • 75
    • 77954947810 scopus 로고    scopus 로고
    • The Hsp70 chaperone machinery: J proteins as drivers of functional specificity
    • Kampinga HH, Craig EA. 2010. The Hsp70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11:579-92
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 579-592
    • Kampinga, H.H.1    Craig, E.A.2
  • 78
    • 23044445800 scopus 로고    scopus 로고
    • The cotranslational contacts between ribosome-bound nascent polypeptides and the subunits of the hetero-oligomeric chaperonin TRiC probed by photocross-linking
    • Etchells SA, Meyer AS, Yam AY, Roobol A, Miao Y, et al. 2005. The cotranslational contacts between ribosome-bound nascent polypeptides and the subunits of the hetero-oligomeric chaperonin TRiC probed by photocross-linking. J. Biol. Chem. 280:28118-26
    • (2005) J. Biol. Chem. , vol.280 , pp. 28118-28126
    • Etchells, S.A.1    Meyer, A.S.2    Yam, A.Y.3    Roobol, A.4    Miao, Y.5
  • 79
    • 49449105092 scopus 로고    scopus 로고
    • The structure of CCTHsc70NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin
    • Cuellar J, Martin-Benito J, Scheres SH, Sousa R, Moro F, et al. 2008. The structure of CCTHsc70NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin. Nat. Struct. Mol. Biol. 15:858-64
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 858-864
    • Cuellar, J.1    Martin-Benito, J.2    Scheres, S.H.3    Sousa, R.4    Moro, F.5
  • 80
    • 84934439633 scopus 로고    scopus 로고
    • Molecular interaction network of the Hsp90 chaperone system
    • Zhao R, Houry WA. 2007. Molecular interaction network of the Hsp90 chaperone system. Adv. Exp. Med. Biol. 594:27-36
    • (2007) Adv. Exp. Med. Biol. , vol.594 , pp. 27-36
    • Zhao, R.1    Houry, W.A.2
  • 81
    • 0035939668 scopus 로고    scopus 로고
    • Hsp90: A specialized but essential protein-folding tool
    • Young JC, Moarefi I, Hartl FU. 2001. Hsp90: a specialized but essential protein-folding tool. J. Cell Biol. 154:267-73
    • (2001) J. Cell Biol. , vol.154 , pp. 267-273
    • Young, J.C.1    Moarefi, I.2    Hartl, F.U.3
  • 82
    • 0037428164 scopus 로고    scopus 로고
    • Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70
    • Young JC, Hoogenraad NJ, Hartl FU. 2003. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112:41-50
    • (2003) Cell , vol.112 , pp. 41-50
    • Young, J.C.1    Hoogenraad, N.J.2    Hartl, F.U.3
  • 83
    • 84857943078 scopus 로고    scopus 로고
    • Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response
    • 014654
    • Sharma K, Vabulas RM, Macek B, Pinkert S, Cox J, et al. 2012. Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response. Mol. Cell. Proteomics 11:M111. 014654
    • (2012) Mol. Cell. Proteomics , vol.11
    • Sharma, K.1    Vabulas, R.M.2    Macek, B.3    Pinkert, S.4    Cox, J.5
  • 84
    • 34248187981 scopus 로고    scopus 로고
    • Heat shock protein 90: The cancer chaperone
    • Neckers L. 2007. Heat shock protein 90: the cancer chaperone. J. Biosci. 32:517-30
    • (2007) J. Biosci. , vol.32 , pp. 517-530
    • Neckers, L.1
  • 85
    • 75349113019 scopus 로고    scopus 로고
    • Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation
    • Haslberger T, Bukau B, Mogk A. 2010. Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation. Biochem. Cell Biol. 88:63-75
    • (2010) Biochem. Cell Biol. , vol.88 , pp. 63-75
    • Haslberger, T.1    Bukau, B.2    Mogk, A.3
  • 86
    • 35648993510 scopus 로고    scopus 로고
    • To be, or not to be molecular chaperones in protein degradation
    • Arndt V, Rogon C, Höhfeld J. 2007. To be, or not to be - molecular chaperones in protein degradation. Cell. Mol. Life Sci. 64:2525-41
    • (2007) Cell. Mol. Life Sci. , vol.64 , pp. 2525-2541
    • Arndt, V.1    Rogon, C.2    Höhfeld, J.3
  • 88
  • 89
    • 24744435971 scopus 로고    scopus 로고
    • Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action
    • Baram D, Pyetan E, Sittner A, Auerbach-Nevo T, Bashan A, Yonath A. 2005. Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. Proc. Natl. Acad. Sci. USA 102:12017-22
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 12017-12022
    • Baram, D.1    Pyetan, E.2    Sittner, A.3    Auerbach-Nevo, T.4    Bashan, A.5    Yonath, A.6
  • 90
    • 27644447766 scopus 로고    scopus 로고
    • The binding mode of the trigger factor on the ribosome: Implications for protein folding and SRP interaction
    • Schlünzen F, Wilson DN, Tian P, Harms JM, McInnes SJ, et al. 2005. The binding mode of the trigger factor on the ribosome: implications for protein folding and SRP interaction. Structure 13:1685-94
    • (2005) Structure , vol.13 , pp. 1685-1694
    • Schlünzen, F.W.1
  • 91
    • 2942519292 scopus 로고    scopus 로고
    • Functional dissection of Escherichia coli trigger factor: Unraveling the function of individual domains
    • Kramer G, Rutkowska A, Wegrzyn RD, Patzelt H, Kurz TA, et al. 2004. Functional dissection of Escherichia coli trigger factor: unraveling the function of individual domains. J. Bacteriol. 186:3777-84
    • (2004) J. Bacteriol. , vol.186 , pp. 3777-3784
    • Kramer, G.1    Rutkowska, A.2    Wegrzyn, R.D.3    Patzelt, H.4    Kurz, T.A.5
  • 92
    • 73949113446 scopus 로고    scopus 로고
    • Chaperone domains convert prolyl isomerases into generic catalysts of protein folding
    • Jakob RP, Zoldak G, Aumüller T, Schmid FX. 2009. Chaperone domains convert prolyl isomerases into generic catalysts of protein folding. Proc. Natl. Acad. Sci. USA 106:20282-87
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 20282-20287
    • Jakob, R.P.1    Zoldak, G.2    Aumüller, T.3    Schmid, F.X.4
  • 93
    • 33845984939 scopus 로고    scopus 로고
    • The C-terminal domain of Escherichia coli trigger factor represents the central module of its chaperone activity
    • Merz F, Hoffmann A, Rutkowska A, Zachmann-Brand B, Bukau B, Deuerling E. 2006. The C-terminal domain of Escherichia coli trigger factor represents the central module of its chaperone activity. J. Biol. Chem. 281:31963-71
    • (2006) J. Biol. Chem. , vol.281 , pp. 31963-31971
    • Merz, F.1    Hoffmann, A.2    Rutkowska, A.3    Zachmann-Brand, B.4    Bukau, B.5    Deuerling, E.6
  • 95
    • 77955655122 scopus 로고    scopus 로고
    • Trigger factor lacking the PPIase domain can enhance the folding of eukaryotic multi-domain proteins in Escherichia coli
    • Gupta R, Lakshmipathy SK, Chang HC, Etchells SA, Hartl FU. 2010. Trigger factor lacking the PPIase domain can enhance the folding of eukaryotic multi-domain proteins in Escherichia coli. FEBS Lett. 584:3620-24
    • (2010) FEBS Lett , vol.584 , pp. 3620-3624
    • Gupta, R.1    Lakshmipathy, S.K.2    Chang, H.C.3    Etchells, S.A.4    Hartl, F.U.5
  • 96
    • 84867379923 scopus 로고    scopus 로고
    • Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding
    • Hoffmann A, Becker AH, Zachmann-Brand B, Deuerling E, Bukau B, Kramer G. 2012. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol. Cell 48:63-74
    • (2012) Mol. Cell , vol.48 , pp. 63-74
    • Hoffmann, A.1    Becker, A.H.2    Zachmann-Brand, B.3    Deuerling, E.4    Bukau, B.5    Kramer, G.6
  • 97
    • 17144403794 scopus 로고    scopus 로고
    • Dimeric trigger factor stably binds folding-competent intermediates and cooperates with the DnaK-DnaJ-GrpE chaperone system to allow refolding
    • Liu C-P, Perrett S, Zhou J-M. 2005. Dimeric trigger factor stably binds folding-competent intermediates and cooperates with the DnaK-DnaJ-GrpE chaperone system to allow refolding. J. Biol. Chem. 280:13315-20
    • (2005) J. Biol. Chem. , vol.280 , pp. 13315-13320
    • Liu, C.-P.1    Perrett, S.2    Zhou, J.-M.3
  • 98
    • 69449095153 scopus 로고    scopus 로고
    • Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone
    • Martinez-Hackert E, Hendrickson WA. 2009. Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138:923-34
    • (2009) Cell , vol.138 , pp. 923-934
    • Martinez-Hackert, E.1    Hendrickson, W.A.2
  • 100
    • 77955506092 scopus 로고    scopus 로고
    • Gymnastics of molecular chaperones
    • Mayer MP. 2010. Gymnastics of molecular chaperones. Mol. Cell 39:321-31
    • (2010) Mol. Cell , vol.39 , pp. 321-331
    • Mayer, M.P.1
  • 101
    • 84871689599 scopus 로고    scopus 로고
    • Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones
    • Kityk R, Kopp J, Sinning I, Mayer MP. 2012. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48:863-74
    • (2012) Mol. Cell , vol.48 , pp. 863-874
    • Kityk, R.1    Kopp, J.2    Sinning, I.3    Mayer, M.P.4
  • 103
    • 34848869936 scopus 로고    scopus 로고
    • Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1
    • Liu QL, Hendrickson WA. 2007. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131:106-20
    • (2007) Cell , vol.131 , pp. 106-120
    • Liu, Q.L.1    Hendrickson, W.A.2
  • 104
    • 44649110104 scopus 로고    scopus 로고
    • Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding
    • Polier S, Dragovic Z, Hartl FU, Bracher A. 2008. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133:1068-79
    • (2008) Cell , vol.133 , pp. 1068-1079
    • Polier, S.1    Dragovic, Z.2    Hartl, F.U.3    Bracher, A.4
  • 106
    • 64649094781 scopus 로고    scopus 로고
    • Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate
    • Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER. 2009. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. USA 106:8471-76
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 8471-8476
    • Bertelsen, E.B.1    Chang, L.2    Gestwicki, J.E.3    Zuiderweg, E.R.4
  • 107
    • 77950431096 scopus 로고    scopus 로고
    • The conformational dynamics of the mitochondrial Hsp70 chaperone
    • Mapa K, Sikor M, Kudryavtsev V, Waegemann K, Kalinin S, et al. 2010. The conformational dynamics of the mitochondrial Hsp70 chaperone. Mol. Cell 38:89-100
    • (2010) Mol. Cell , vol.38 , pp. 89-100
    • Mapa, K.1    Sikor, M.2    Kudryavtsev, V.3    Waegemann, K.4    Kalinin, S.5
  • 108
    • 79959685900 scopus 로고    scopus 로고
    • Fine tuning of a biological machine: DnaK gains improved chaperone activity by altered allosteric communication and substrate binding
    • Schweizer RS, Aponte RA, Zimmermann S, Weber A, Reinstein J. 2011. Fine tuning of a biological machine: DnaK gains improved chaperone activity by altered allosteric communication and substrate binding. ChemBioChem 12:1559-73
    • (2011) ChemBioChem , vol.12 , pp. 1559-1573
    • Schweizer, R.S.1    Aponte, R.A.2    Zimmermann, S.3    Weber, A.4    Reinstein, J.5
  • 109
    • 34047268015 scopus 로고    scopus 로고
    • Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker
    • Swain JF, Dinler G, Sivendran R, Montgomery DL, Stotz M, Gierasch LM. 2007. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol. Cell 26:27-39
    • (2007) Mol. Cell , vol.26 , pp. 27-39
    • Swain, J.F.1    Dinler, G.2    Sivendran, R.3    Montgomery, D.L.4    Stotz, M.5    Gierasch, L.M.6
  • 111
    • 79955565642 scopus 로고    scopus 로고
    • Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones
    • Zhuravleva A, Gierasch LM. 2011. Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proc. Natl. Acad. Sci. USA 108:6987-92
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 6987-6992
    • Zhuravleva, A.1    Gierasch, L.M.2
  • 112
    • 35649024724 scopus 로고    scopus 로고
    • Structural basis of J cochaperone binding and regulation of Hsp70
    • Jiang J, Maes EG, Taylor AB, Wang L, Hinck AP, et al. 2007. Structural basis of J cochaperone binding and regulation of Hsp70. Mol. Cell 28:422-33
    • (2007) Mol. Cell , vol.28 , pp. 422-433
    • Jiang, J.1    Maes, E.G.2    Taylor, A.B.3    Wang, L.4    Hinck, A.P.5
  • 113
    • 82755187767 scopus 로고    scopus 로고
    • Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface
    • Ahmad A, Bhattacharya A, McDonald RA, Cordes M, Ellington B, et al. 2011. Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface. Proc. Natl. Acad. Sci. USA 108:18966-71
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 18966-18971
    • Ahmad, A.1    Bhattacharya, A.2    McDonald, R.A.3    Cordes, M.4    Ellington, B.5
  • 115
    • 79951491416 scopus 로고    scopus 로고
    • Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5
    • Hagiwara M, Maegawa K-I, Suzuki M, Ushioda R, Araki K, et al. 2011. Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5. Mol. Cell 41:432-44
    • (2011) Mol. Cell , vol.41 , pp. 432-444
    • Hagiwara, M.1    Maegawa, K.-I.2    Suzuki, M.3    Ushioda, R.4    Araki, K.5
  • 116
    • 0036275663 scopus 로고    scopus 로고
    • Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p
    • Kabani M, Beckerich JM, Brodsky JL. 2002. Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol. Cell Biol. 22:4677-89
    • (2002) Mol. Cell Biol. , vol.22 , pp. 4677-4689
    • Kabani, M.1    Beckerich, J.M.2    Brodsky, J.L.3
  • 118
    • 33745762927 scopus 로고    scopus 로고
    • Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s
    • Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU. 2006. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J. 25:2519-28
    • (2006) EMBO J , vol.25 , pp. 2519-2528
    • Dragovic, Z.1    Broadley, S.A.2    Shomura, Y.3    Bracher, A.4    Hartl, F.U.5
  • 119
    • 33745749328 scopus 로고    scopus 로고
    • Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor
    • Raviol H, Sadlish H, Rodriguez F, Mayer MP, Bukau B. 2006. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J. 25:2510-18
    • (2006) EMBO J , vol.25 , pp. 2510-2518
    • Raviol, H.1    Sadlish, H.2    Rodriguez, F.3    Mayer, M.P.4    Bukau, B.5
  • 120
    • 13244278043 scopus 로고    scopus 로고
    • Regulation ofHsp70 function by HspBP1: Structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange
    • Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC, et al. 2005. Regulation ofHsp70 function by HspBP1: Structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol. Cell 17:367-79
    • (2005) Mol. Cell , vol.17 , pp. 367-379
    • Shomura, Y.1    Dragovic, Z.2    Chang, H.C.3    Tzvetkov, N.4    Young, J.C.5
  • 121
    • 57149092290 scopus 로고    scopus 로고
    • Structural basis of nucleotide exchange and client binding by the Hsp70 cochaperone Bag2
    • Xu Z, Page RC, Gomes MM, Kohli E, Nix JC, et al. 2008. Structural basis of nucleotide exchange and client binding by the Hsp70 cochaperone Bag2. Nat. Struct. Mol. Biol. 15:1309-17
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 1309-1317
    • Xu, Z.1    Page, R.C.2    Gomes, M.M.3    Kohli, E.4    Nix, J.C.5
  • 122
    • 77649095684 scopus 로고    scopus 로고
    • The C-terminal BAG domain of BAG5 induces conformational changes of the Hsp70 nucleotide-binding domain for ADP-ATP exchange
    • Arakawa A, Handa N, Ohsawa N, Shida M, Kigawa T, et al. 2010. The C-terminal BAG domain of BAG5 induces conformational changes of the Hsp70 nucleotide-binding domain for ADP-ATP exchange. Structure 18:309-19
    • (2010) Structure , vol.18 , pp. 309-319
    • Arakawa, A.1    Handa, N.2    Ohsawa, N.3    Shida, M.4    Kigawa, T.5
  • 123
    • 80052177927 scopus 로고    scopus 로고
    • Structural analysis of the Sil1-Bip complex reveals the mechanism for Sil1 to function as a nucleotide-exchange factor
    • Yan M, Li J, Sha B. 2011. Structural analysis of the Sil1-Bip complex reveals the mechanism for Sil1 to function as a nucleotide-exchange factor. Biochem. J. 438:447-55
    • (2011) Biochem. J. , vol.438 , pp. 447-455
    • Yan, M.1    Li, J.2    Sha, B.3
  • 124
    • 80054699747 scopus 로고    scopus 로고
    • The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system
    • Shorter J. 2011. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS ONE 6:e26319
    • (2011) PLoS ONE , vol.6
    • Shorter, J.1
  • 125
  • 127
    • 28444497039 scopus 로고    scopus 로고
    • Mutations in SIL1 cause Marinesco-Sj ögren syndrome, a cerebellar ataxia with cataract and myopathy
    • Senderek J, Krieger M, Stendel C, Bergmann C, Moser M, et al. 2005. Mutations in SIL1 cause Marinesco-Sj ögren syndrome, a cerebellar ataxia with cataract and myopathy. Nat. Genet. 37:1312-14
    • (2005) Nat. Genet. , vol.37 , pp. 1312-1314
    • Senderek, J.1    Krieger, M.2    Stendel, C.3    Bergmann, C.4    Moser, M.5
  • 130
    • 41149089882 scopus 로고    scopus 로고
    • Monitoring protein conformation along the pathway of chaperonin-assisted folding
    • Sharma S, Chakraborty K, Müller BK, Astola N, Tang Y-C, et al. 2008. Monitoring protein conformation along the pathway of chaperonin-assisted folding. Cell 133:142-53
    • (2008) Cell , vol.133 , pp. 142-153
    • Sharma, S.1    Chakraborty, K.2    Müller, B.K.3    Astola, N.4    Tang, Y.-C.5
  • 131
    • 51649109975 scopus 로고    scopus 로고
    • Probing protein-chaperone interactions with single-molecule fluorescence spectroscopy
    • Hillger F, Hanni D, Nettels D, Geister S, Grandin M, et al. 2008. Probing protein-chaperone interactions with single-molecule fluorescence spectroscopy. Angew. Chem. Int. Ed. 47:6184-88
    • (2008) Angew. Chem. Int. Ed. , vol.47 , pp. 6184-6188
    • Hillger, F.1    Hanni, D.2    Nettels, D.3    Geister, S.4    Grandin, M.5
  • 132
    • 33646897305 scopus 로고    scopus 로고
    • Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein
    • Tang Y-C, Chang H-C, Roeben A, Wischnewski D, Wischnewski N, et al. 2006. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125:903-14
    • (2006) Cell , vol.125 , pp. 903-914
    • Tang, Y.-C.1    Chang, H.-C.2    Roeben, A.3    Wischnewski, D.4    Wischnewski, N.5
  • 135
    • 78649692077 scopus 로고    scopus 로고
    • Polypeptide in the chaperonin cage partly protrudes out and then folds inside or escapes outside
    • Motojima F, Yoshida M. 2010. Polypeptide in the chaperonin cage partly protrudes out and then folds inside or escapes outside. EMBO J. 29:4008-19
    • (2010) EMBO J , vol.29 , pp. 4008-4019
    • Motojima, F.1    Yoshida, M.2
  • 137
    • 84859211500 scopus 로고    scopus 로고
    • ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of theGroEL chaperonin
    • Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, et al. 2012. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of theGroEL chaperonin. Cell 149:113-23
    • (2012) Cell , vol.149 , pp. 113-123
    • Clare, D.K.1    Vasishtan, D.2    Stagg, S.3    Quispe, J.4    Farr, G.W.5
  • 138
    • 53049103895 scopus 로고    scopus 로고
    • Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant
    • Koike-Takeshita A, Yoshida M, Taguchi H. 2008. Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant. J. Biol. Chem. 283:23774-81
    • (2008) J. Biol. Chem. , vol.283 , pp. 23774-23781
    • Koike-Takeshita, A.1    Yoshida, M.2    Taguchi, H.3
  • 140
    • 40949124274 scopus 로고    scopus 로고
    • GroEL stimulates protein folding through forced unfolding
    • Lin Z, Madan D, Rye HS. 2008. GroEL stimulates protein folding through forced unfolding. Nat. Struct. Mol. Biol. 15:303-11
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 303-311
    • Lin, Z.1    Madan, D.2    Rye, H.S.3
  • 141
    • 77954277524 scopus 로고    scopus 로고
    • Chaperonin-catalyzed rescue of kinetically trapped states in protein folding
    • Chakraborty K, Chatila M, Sinha J, Shi Q, Poschner BC, et al. 2010. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell 142:112-22
    • (2010) Cell , vol.142 , pp. 112-122
    • Chakraborty, K.1    Chatila, M.2    Sinha, J.3    Shi, Q.4    Poschner, B.C.5
  • 142
    • 0043238073 scopus 로고    scopus 로고
    • Effects of confinement in chaperonin assisted protein folding: Rate enhancement by decreasing the roughness of the folding energy landscape
    • Baumketner A, Jewett A, Shea JE. 2003. Effects of confinement in chaperonin assisted protein folding: rate enhancement by decreasing the roughness of the folding energy landscape. J. Mol. Biol. 332:701-13
    • (2003) J. Mol. Biol. , vol.332 , pp. 701-713
    • Baumketner, A.1    Jewett, A.2    Shea, J.E.3
  • 143
    • 33750720952 scopus 로고    scopus 로고
    • A simple semiempirical model for the effect of molecular confinement upon the rate of protein folding
    • Hayer-Hartl M, Minton AP. 2006. A simple semiempirical model for the effect of molecular confinement upon the rate of protein folding. Biochemistry 45:13356-60
    • (2006) Biochemistry , vol.45 , pp. 13356-13360
    • Hayer-Hartl, M.1    Minton, A.P.2
  • 144
    • 41949137386 scopus 로고    scopus 로고
    • Rattling the cage: Computational models of chaperonin-mediated protein folding
    • England J, Lucent D, Pande V. 2008. Rattling the cage: computational models of chaperonin-mediated protein folding. Curr. Opin. Struct. Biol. 18:163-69
    • (2008) Curr. Opin. Struct. Biol. , vol.18 , pp. 163-169
    • England, J.1    Lucent, D.2    Pande, V.3
  • 145
    • 80053060122 scopus 로고    scopus 로고
    • Simulation studies of protein folding/unfolding equilibrium under polar and nonpolar confinement
    • Tian J, Garcia AE. 2011. Simulation studies of protein folding/unfolding equilibrium under polar and nonpolar confinement. J. Am. Chem. Soc. 133:15157-64
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 15157-15164
    • Tian, J.1    Garcia, A.E.2
  • 146
    • 56249135270 scopus 로고    scopus 로고
    • Chaperonin chamber accelerates protein folding through passive action of preventing aggregation
    • Apetri AC, Horwich AL. 2008. Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proc. Natl. Acad. Sci. USA 105:17351-55
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 17351-17355
    • Apetri, A.C.1    Horwich, A.L.2
  • 147
    • 4944221602 scopus 로고    scopus 로고
    • Expansion and compression of a protein folding intermediate by GroEL
    • Lin Z, Rye HS. 2004. Expansion and compression of a protein folding intermediate by GroEL. Mol. Cell 16:23-34
    • (2004) Mol. Cell , vol.16 , pp. 23-34
    • Lin, Z.1    Rye, H.S.2
  • 148
    • 0037184939 scopus 로고    scopus 로고
    • Directed evolution of substrateoptimized GroEL/S chaperonins
    • Wang JD, Herman C, Tipton KA, Gross CA, Weissman JS. 2002. Directed evolution of substrateoptimized GroEL/S chaperonins. Cell 111:1027-39
    • (2002) Cell , vol.111 , pp. 1027-1039
    • Wang, J.D.1    Herman, C.2    Tipton, K.A.3    Gross, C.A.4    Weissman, J.S.5
  • 149
    • 77954502545 scopus 로고    scopus 로고
    • A more precise characterization of chaperonin substrates
    • Raineri E, Ribeca P, Serrano L, Maier T. 2010. A more precise characterization of chaperonin substrates. Bioinformatics 26:1685-89
    • (2010) Bioinformatics , vol.26 , pp. 1685-1689
    • Raineri, E.1    Ribeca, P.2    Serrano, L.3    Maier, T.4
  • 150
    • 84856113243 scopus 로고    scopus 로고
    • Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins
    • Mallam AL, Jackson SE. 2012. Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins. Nat. Chem. Biol. 8:147-53
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 147-153
    • Mallam, A.L.1    Jackson, S.E.2
  • 151
    • 0347757092 scopus 로고    scopus 로고
    • Crystal structures of the group II chaperonin from Thermococcus strain KS-1: Steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms
    • Shomura Y, Yoshida T, Iizuka R, Maruyama T, Yohda M, Miki K. 2004. Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. J. Mol. Biol. 335:1265-78
    • (2004) J. Mol. Biol. , vol.335 , pp. 1265-1278
    • Shomura, Y.1    Yoshida, T.2    Iizuka, R.3    Maruyama, T.4    Yohda, M.5    Miki, K.6
  • 152
    • 77957786479 scopus 로고    scopus 로고
    • Crystal structure of group II chaperonin in the open state
    • Huo Y, Hu Z, Zhang K, Wang L, Zhai Y, et al. 2010. Crystal structure of group II chaperonin in the open state. Structure 18:1270-79
    • (2010) Structure , vol.18 , pp. 1270-1279
    • Huo, Y.1    Hu, Z.2    Zhang, K.3    Wang, L.4    Zhai, Y.5
  • 153
    • 77950456761 scopus 로고    scopus 로고
    • 4. 0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement
    • Cong Y, Baker ML, Jakana J, Woolford D, Miller EJ, et al. 2010. 4. 0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc. Natl. Acad. Sci. USA 107:4967-72
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 4967-4972
    • Cong, Y.1    Baker, M.L.2    Jakana, J.3    Woolford, D.4    Miller, E.J.5
  • 154
    • 77956256437 scopus 로고    scopus 로고
    • Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle
    • Pereira JH, Ralston CY, Douglas NR, Meyer D, Knee KM, et al. 2010. Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. J. Biol. Chem. 285:27958-66
    • (2010) J. Biol. Chem. , vol.285 , pp. 27958-27966
    • Pereira, J.H.1    Ralston, C.Y.2    Douglas, N.R.3    Meyer, D.4    Knee, K.M.5
  • 155
    • 79961026866 scopus 로고    scopus 로고
    • The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins
    • Dekker C, Roe SM, McCormack EA, Beuron F, Pearl LH, Willison KR. 2011. The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins. EMBO J. 30:3078-90
    • (2011) EMBO J , vol.30 , pp. 3078-3090
    • Dekker, C.1    Roe, S.M.2    McCormack, E.A.3    Beuron, F.4    Pearl, L.H.5    Willison, K.R.6
  • 156
    • 79955798700 scopus 로고    scopus 로고
    • Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure
    • Zhang J, Ma B, DiMaio F, Douglas NR, Joachimiak LA, et al. 2011. Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure. Structure 19:633-39
    • (2011) Structure , vol.19 , pp. 633-639
    • Zhang, J.1    Ma, B.2    Dimaio, F.3    Douglas, N.R.4    Joachimiak, L.A.5
  • 157
    • 78650980445 scopus 로고    scopus 로고
    • Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin
    • Munoz IG, Yebenes H, Zhou M, Mesa P, Serna M, et al. 2011. Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat. Struct. Mol. Biol. 18:14-19
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 14-19
    • Munoz, I.G.1    Yebenes, H.2    Zhou, M.3    Mesa, P.4    Serna, M.5
  • 158
    • 84856509221 scopus 로고    scopus 로고
    • Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle
    • Cong Y, Schroder GF, Meyer AS, Jakana J, Ma B, et al. 2012. Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle. EMBO J. 31:720-30
    • (2012) EMBO J , vol.31 , pp. 720-730
    • Cong, Y.1    Schroder, G.F.2    Meyer, A.S.3    Jakana, J.4    Ma, B.5
  • 159
    • 84857385799 scopus 로고    scopus 로고
    • Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling
    • Kalisman N, Adams CM, Levitt M. 2012. Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proc. Natl. Acad. Sci. USA 109:2884-89
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 2884-2889
    • Kalisman, N.1    Adams, C.M.2    Levitt, M.3
  • 161
    • 78651499753 scopus 로고    scopus 로고
    • Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber
    • Douglas NR, Reissmann S, Zhang J, Chen B, Jakana J, et al. 2011. Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Cell 144:240-52
    • (2011) Cell , vol.144 , pp. 240-252
    • Douglas, N.R.1    Reissmann, S.2    Zhang, J.3    Chen, B.4    Jakana, J.5
  • 162
    • 0038737003 scopus 로고    scopus 로고
    • Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis
    • Meyer AS, Gillespie JR, Walther D, Millet IS, Doniach S, Frydman J. 2003. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113:369-81
    • (2003) Cell , vol.113 , pp. 369-381
    • Meyer, A.S.1    Gillespie, J.R.2    Walther, D.3    Millet, I.S.4    Doniach, S.5    Frydman, J.6
  • 163
    • 33749080319 scopus 로고    scopus 로고
    • Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins
    • Spiess C, Miller EJ, McClellan AJ, Frydman J. 2006. Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. Mol. Cell 24:25-37
    • (2006) Mol. Cell , vol.24 , pp. 25-37
    • Spiess, C.1    Miller, E.J.2    McClellan, A.J.3    Frydman, J.4
  • 164
    • 34247635168 scopus 로고    scopus 로고
    • Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins
    • Reissmann S, Parnot C, Booth CR, Chiu W, Frydman J. 2007. Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat. Struct. Mol. Biol. 14:432-40 164a.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 432-440
    • Reissmann, S.1    Parnot, C.2    Booth, C.R.3    Chiu, W.4    Frydman, J.5
  • 166
    • 33749176269 scopus 로고    scopus 로고
    • Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state
    • Kitamura A, Kubota H, Pack CG, Matsumoto G, Hirayama S, et al. 2006. Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat. Cell Biol. 8:1163-70
    • (2006) Nat. Cell Biol. , vol.8 , pp. 1163-1170
    • Kitamura, A.1    Kubota, H.2    Pack, C.G.3    Matsumoto, G.4    Hirayama, S.5
  • 167
    • 33748561495 scopus 로고    scopus 로고
    • Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers
    • Behrends C, Langer CA, Boteva R, Böttcher UM, Stemp MJ, et al. 2006. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol. Cell 23:887-97
    • (2006) Mol. Cell , vol.23 , pp. 887-897
    • Behrends, C.1    Langer, C.A.2    Boteva, R.3    Böttcher, U.M.4    Stemp, M.J.5
  • 168
    • 33749177252 scopus 로고    scopus 로고
    • The chaperoninTRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions
    • Tam S, Geller R, Spiess C, Frydman J. 2006. The chaperoninTRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat. Cell Biol. 8:1155-62
    • (2006) Nat. Cell Biol. , vol.8 , pp. 1155-1162
    • Tam, S.1    Geller, R.2    Spiess, C.3    Frydman, J.4
  • 169
    • 71449084004 scopus 로고    scopus 로고
    • The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation
    • Tam S, Spiess C, Auyeung W, Joachimiak L, Chen B, et al. 2009. The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat. Struct. Mol. Biol. 16:1279-85
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 1279-1285
    • Tam, S.1    Spiess, C.2    Auyeung, W.3    Joachimiak, L.4    Chen, B.5
  • 170
    • 33746364784 scopus 로고    scopus 로고
    • Structure and mechanism of the Hsp90 molecular chaperone machinery
    • Pearl LH, Prodromou C. 2006. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75:271-94
    • (2006) Annu. Rev. Biochem. , vol.75 , pp. 271-294
    • Pearl, L.H.1    Prodromou, C.2
  • 171
    • 33750008686 scopus 로고    scopus 로고
    • Structural analysis of E. coli Hsp90 reveals dramatic nucleotide-dependent conformational rearrangements
    • Shiau AK, Harris SF, Southworth DR, Agard DA. 2006. Structural analysis of E. coli Hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127:329-40
    • (2006) Cell , vol.127 , pp. 329-340
    • Shiau, A.K.1    Harris, S.F.2    Southworth, D.R.3    Agard, D.A.4
  • 172
    • 33646176246 scopus 로고    scopus 로고
    • Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex
    • Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, et al. 2006. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440:1013-17
    • (2006) Nature , vol.440 , pp. 1013-1017
    • Ali, M.M.1    Roe, S.M.2    Vaughan, C.K.3    Meyer, P.4    Panaretou, B.5
  • 173
    • 34948893963 scopus 로고    scopus 로고
    • Structures of Grp94-nucleotide complexes reveal mechanistic differences between the Hsp90 chaperones
    • Dollins DE, Warren JJ, Immormino RM, Gewirth DT. 2007. Structures of Grp94-nucleotide complexes reveal mechanistic differences between the Hsp90 chaperones. Mol. Cell 28:41-56
    • (2007) Mol. Cell , vol.28 , pp. 41-56
    • Dollins, D.E.1    Warren, J.J.2    Immormino, R.M.3    Gewirth, D.T.4
  • 174
    • 2942533020 scopus 로고    scopus 로고
    • The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site
    • Harris SF, Shiau AK, Agard DA. 2004. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12:1087-97
    • (2004) Structure , vol.12 , pp. 1087-1097
    • Harris, S.F.1    Shiau, A.K.2    Agard, D.A.3
  • 175
    • 0742269688 scopus 로고    scopus 로고
    • The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50cdc37
    • Roe SM, Ali MM, Meyer P, Vaughan CK, Panaretou B, et al. 2004. The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50cdc37. Cell 116:87-98
    • (2004) Cell , vol.116 , pp. 87-98
    • Roe, S.M.1    Ali, M.M.2    Meyer, P.3    Vaughan, C.K.4    Panaretou, B.5
  • 177
    • 79959344309 scopus 로고    scopus 로고
    • Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:HOP complex
    • Southworth DR, Agard DA. 2011. Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:HOP complex. Mol. Cell 42:771-81
    • (2011) Mol. Cell , vol.42 , pp. 771-781
    • Southworth, D.R.1    Agard, D.A.2
  • 178
    • 42949147146 scopus 로고    scopus 로고
    • Multiple conformations of E. coli Hsp90 in solution: Insights into the conformational dynamics of Hsp90
    • Krukenberg KA, Forster F, Rice LM, Sali A, Agard DA. 2008. Multiple conformations of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90. Structure 16:755-65
    • (2008) Structure , vol.16 , pp. 755-765
    • Krukenberg, K.A.1    Forster, F.2    Rice, L.M.3    Sali, A.4    Agard, D.A.5
  • 179
    • 69249130057 scopus 로고    scopus 로고
    • The charged linker region is an important regulator of Hsp90 function
    • Hainzl O, Lapina MC, Buchner J, Richter K. 2009. The charged linker region is an important regulator of Hsp90 function. J. Biol. Chem. 284:22559-67
    • (2009) J. Biol. Chem. , vol.284 , pp. 22559-22567
    • Hainzl, O.1    Lapina, M.C.2    Buchner, J.3    Richter, K.4
  • 180
    • 70350759550 scopus 로고    scopus 로고
    • Hsp90 charged-linker truncation reverses the functional consequences of weakened hydrophobic contacts in the N domain
    • Tsutsumi S, Mollapour M, Graf C, Lee C-T, Scroggins BT, et al. 2009. Hsp90 charged-linker truncation reverses the functional consequences of weakened hydrophobic contacts in the N domain. Nat. Struct. Mol. Biol. 16:1141-47
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 1141-1147
    • Tsutsumi, S.1    Mollapour, M.2    Graf, C.3    Lee, C.-T.4    Scroggins, B.T.5
  • 181
    • 0037352446 scopus 로고    scopus 로고
    • Structural and functional analysis of the middle segment of hsp90: Implications for ATP hydrolysis and client protein and cochaperone interactions
    • Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, et al. Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol. Cell 11:647-58
    • Mol. Cell , vol.11 , pp. 647-658
    • Meyer, P.1    Prodromou, C.2    Hu, B.3    Vaughan, C.4    Roe, S.M.5
  • 182
    • 75949106173 scopus 로고    scopus 로고
    • Asymmetric activation of the Hsp90 dimer by its cochaperone Aha1
    • Retzlaff M, Hagn F, Mitschke L, Hessling M, Gugel F, et al. 2010. Asymmetric activation of the Hsp90 dimer by its cochaperone Aha1. Mol. Cell 37:344-54
    • (2010) Mol. Cell , vol.37 , pp. 344-354
    • Retzlaff, M.1    Hagn, F.2    Mitschke, L.3    Hessling, M.4    Gugel, F.5
  • 183
    • 77949438155 scopus 로고    scopus 로고
    • Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis
    • Koulov AV, Lapointe P, Lu B, Razvi A, Coppinger J, et al. 2010. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol. Biol. Cell 21:871-84
    • (2010) Mol. Biol. Cell , vol.21 , pp. 871-884
    • Koulov, A.V.1    Lapointe, P.2    Lu, B.3    Razvi, A.4    Coppinger, J.5
  • 184
    • 84857042271 scopus 로고    scopus 로고
    • The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones
    • Li J, Soroka J, Buchner J. 2012. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim. Biophys. Acta 1823:624-35
    • (2012) Biochim. Biophys. Acta , vol.1823 , pp. 624-635
    • Li, J.1    Soroka, J.2    Buchner, J.3
  • 185
    • 79952665421 scopus 로고    scopus 로고
    • Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity
    • Mollapour M, Tsutsumi S, Truman AW, Xu W, Vaughan CK, et al. 2011. Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity. Mol. Cell 41:672-81
    • (2011) Mol. Cell , vol.41 , pp. 672-681
    • Mollapour, M.1    Tsutsumi, S.2    Truman, A.W.3    Xu, W.4    Vaughan, C.K.5
  • 186
    • 84857390643 scopus 로고    scopus 로고
    • Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation
    • Soroka J, Wandinger SK, Müsbacher N, Schreiber T, Richter K, et al. 2012. Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation. Mol. Cell 45:517-28
    • (2012) Mol. Cell , vol.45 , pp. 517-528
    • Soroka, J.1    Wandinger, S.K.2    Müsbacher, N.3    Schreiber, T.4    Richter, K.5
  • 187
    • 61949349758 scopus 로고    scopus 로고
    • Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90
    • Hessling M, Richter K, Buchner J. 2009. Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat. Struct. Mol. Biol. 16:287-93
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 287-293
    • Hessling, M.1    Richter, K.2    Buchner, J.3
  • 188
    • 56849131626 scopus 로고    scopus 로고
    • Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle
    • Southworth DR, Agard DA. 2008. Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol. Cell 32:631-40
    • (2008) Mol. Cell , vol.32 , pp. 631-640
    • Southworth, D.R.1    Agard, D.A.2
  • 189
    • 61949212626 scopus 로고    scopus 로고
    • The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis
    • Mickler M, Hessling M, Ratzke C, Buchner J, Hugel T. 2009. The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat. Struct. Mol. Biol. 16:281-86
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 281-286
    • Mickler, M.1    Hessling, M.2    Ratzke, C.3    Buchner, J.4    Hugel, T.5
  • 190
    • 84858763945 scopus 로고    scopus 로고
    • The architecture of functional modules in the Hsp90 co-chaperone Sti1/HOP
    • Schmid AB, Lagleder S, Gräwert MA, Röhl A, Hagn F, et al. 2012. The architecture of functional modules in the Hsp90 co-chaperone Sti1/HOP. EMBO J. 31:1506-17
    • (2012) EMBO J. , vol.31 , pp. 1506-1517
    • Schmid, A.B.1    Lagleder, S.2    Gräwert, M.A.3    Röhl, A.4    Hagn, F.5
  • 191
    • 4444291743 scopus 로고    scopus 로고
    • The co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle
    • Richter K, Walter S, Buchner J. 2004. The co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. J. Mol. Biol. 342:1403-13
    • (2004) J. Mol. Biol. , vol.342 , pp. 1403-1413
    • Richter, K.1    Walter, S.2    Buchner, J.3
  • 192
    • 0036931438 scopus 로고    scopus 로고
    • Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone Aha1
    • Panaretou B, Siligardi G, Meyer P, Maloney A, Sullivan JK, et al. 2002. Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone Aha1. Mol. Cell 10:1307-18
    • (2002) Mol. Cell , vol.10 , pp. 1307-1318
    • Panaretou, B.1    Siligardi, G.2    Meyer, P.3    Maloney, A.4    Sullivan, J.K.5
  • 193
    • 79959463520 scopus 로고    scopus 로고
    • Regulation of HSF1 function in the heat stress response: Implications in aging and disease
    • Anckar J, Sistonen L. 2011. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem. 80:1089-115
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 1089-1115
    • Anckar, J.1    Sistonen, L.2
  • 194
    • 82255173966 scopus 로고    scopus 로고
    • The unfolded protein response: From stress pathway to homeostatic regulation
    • Walter P, Ron D. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081-86
    • (2011) Science , vol.334 , pp. 1081-1086
    • Walter, P.1    Ron, D.2
  • 195
    • 78649728763 scopus 로고    scopus 로고
    • The mitochondrial UPR - Protecting organelle protein homeostasis
    • Haynes CM, Ron D. 2010. The mitochondrial UPR - protecting organelle protein homeostasis. J. Cell Sci. 123:3849-55
    • (2010) J. Cell Sci. , vol.123 , pp. 3849-3855
    • Haynes, C.M.1    Ron, D.2
  • 196
    • 77649128585 scopus 로고    scopus 로고
    • HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans
    • Kern A, Ackermann B, Clement AM, Duerk H, Behl C. 2010. HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans. PLoS ONE 5:e8568
    • (2010) PLoS ONE , vol.5
    • Kern, A.1    Ackermann, B.2    Clement, A.M.3    Duerk, H.4    Behl, C.5
  • 197
    • 80053371954 scopus 로고    scopus 로고
    • Firefly luciferase mutants as sensors of proteome stress
    • Gupta R, Kasturi P, Bracher A, Loew C, Zheng M, et al. 2011. Firefly luciferase mutants as sensors of proteome stress. Nat. Methods 8:879-84
    • (2011) Nat. Methods , vol.8 , pp. 879-884
    • Gupta, R.1    Kasturi, P.2    Bracher, A.3    Loew, C.4    Zheng, M.5
  • 199
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D. 2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78:477-513
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 200
    • 77952851112 scopus 로고    scopus 로고
    • Chaperone-assisted degradation: Multiple paths to destruction
    • Kettern N, Dreiseidler M, Tawo R, Höhfeld J. 2010. Chaperone-assisted degradation: multiple paths to destruction. Biol. Chem. 391:481-89
    • (2010) Biol. Chem. , vol.391 , pp. 481-489
    • Kettern, N.1    Dreiseidler, M.2    Tawo, R.3    Höhfeld, J.4
  • 202
    • 79954422997 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy in protein quality control
    • Arias E, Cuervo AM. 2011. Chaperone-mediated autophagy in protein quality control. Curr. Opin. Cell Biol. 23:184-89
    • (2011) Curr. Opin. Cell Biol. , vol.23 , pp. 184-189
    • Arias, E.1    Cuervo, A.M.2
  • 204
    • 27944495299 scopus 로고    scopus 로고
    • Chaperoned ubiquitylation - Crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex
    • Zhang MH, Windheim M, Roe SM, Peggie M, Cohen P, et al. 2005. Chaperoned ubiquitylation - crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20:525-38
    • (2005) Mol. Cell , vol.20 , pp. 525-538
    • Zhang, M.H.1    Windheim, M.2    Roe, S.M.3    Peggie, M.4    Cohen, P.5
  • 205
    • 44349182079 scopus 로고    scopus 로고
    • Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes
    • Xu Z, Kohli E, Devlin KI, Bold M, Nix JC, Misra S. 2008. Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes. BMC Struct. Biol. 8:26
    • (2008) BMC Struct. Biol. , vol.8 , pp. 26
    • Xu, Z.1    Kohli, E.2    Devlin, K.I.3    Bold, M.4    Nix, J.C.5    Misra, S.6
  • 206
    • 65449117176 scopus 로고    scopus 로고
    • Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3
    • Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C. 2009. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J. 28:889-901
    • (2009) EMBO J , vol.28 , pp. 889-901
    • Gamerdinger, M.1    Hajieva, P.2    Kaya, A.M.3    Wolfrum, U.4    Hartl, F.U.5    Behl, C.6
  • 207
    • 33646800306 scopus 로고    scopus 로고
    • Loss of autophagy in the central nervous system causes neurodegeneration in mice
    • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, et al. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880-84
    • (2006) Nature , vol.441 , pp. 880-884
    • Komatsu, M.1    Waguri, S.2    Chiba, T.3    Murata, S.4    Iwata, J.5
  • 208
    • 0034578389 scopus 로고    scopus 로고
    • Aggresomes, inclusion bodies and protein aggregation
    • Kopito RR. 2000. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10:524-30
    • (2000) Trends Cell Biol , vol.10 , pp. 524-530
    • Kopito, R.R.1
  • 209
    • 50649116818 scopus 로고    scopus 로고
    • Misfolded proteins partition between two distinct quality control compartments
    • Kaganovich D, Kopito R, Frydman J. 2008. Misfolded proteins partition between two distinct quality control compartments. Nature 454:1088-95
    • (2008) Nature , vol.454 , pp. 1088-1095
    • Kaganovich, D.1    Kopito, R.2    Frydman, J.3
  • 210
    • 77958487260 scopus 로고    scopus 로고
    • Cellular strategies for controlling protein aggregation
    • Tyedmers J, Mogk A, Bukau B. 2010. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11:777-88
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 777-788
    • Tyedmers, J.1    Mogk, A.2    Bukau, B.3
  • 211
    • 81355149538 scopus 로고    scopus 로고
    • Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae
    • Specht S, Miller SBM, Mogk A, Bukau B. 2011. Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J. Cell Biol. 195:617-29
    • (2011) J. Cell Biol. , vol.195 , pp. 617-629
    • Specht, S.1    Miller, S.B.M.2    Mogk, A.3    Bukau, B.4
  • 212
    • 28844475400 scopus 로고    scopus 로고
    • HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin
    • Iwata A, Riley BE, Johnston JA, Kopito RR. 2005. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280:40282-92
    • (2005) J. Biol. Chem. , vol.280 , pp. 40282-40292
    • Iwata, A.1    Riley, B.E.2    Johnston, J.A.3    Kopito, R.R.4
  • 213
    • 24944482408 scopus 로고    scopus 로고
    • Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation
    • Iwata A, Christianson JC, Bucci M, Ellerby LM, Nukina N, et al. 2005. Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc. Natl. Acad. Sci. USA 102:13135-40
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 13135-13140
    • Iwata, A.1    Christianson, J.C.2    Bucci, M.3    Ellerby, L.M.4    Nukina, N.5
  • 214
    • 77950506157 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy in health and disease
    • Kon M, Cuervo AM. 2010. Chaperone-mediated autophagy in health and disease. FEBS Lett. 584:1399-404
    • (2010) FEBS Lett , vol.584 , pp. 1399-1404
    • Kon, M.1    Cuervo, A.M.2
  • 215
    • 74549133523 scopus 로고    scopus 로고
    • Chaperone-assisted selective autophagy is essential for muscle maintenance
    • Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, et al. 2010. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr. Biol. 20:143-48
    • (2010) Curr. Biol. , vol.20 , pp. 143-148
    • Arndt, V.1    Dick, N.2    Tawo, R.3    Dreiseidler, M.4    Wenzel, D.5
  • 216
    • 0036678146 scopus 로고    scopus 로고
    • The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans
    • Morley JF, Brignull HR, Weyers JJ, Morimoto RI. 2002. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 99:10417-22
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 10417-10422
    • Morley, J.F.1    Brignull, H.R.2    Weyers, J.J.3    Morimoto, R.I.4
  • 217
    • 0742323000 scopus 로고    scopus 로고
    • Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones
    • Morley JF, Morimoto RI. 2004. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15:657-64
    • (2004) Mol. Biol. Cell , vol.15 , pp. 657-664
    • Morley, J.F.1    Morimoto, R.I.2
  • 219
    • 70349266064 scopus 로고    scopus 로고
    • Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging
    • Ben-Zvi A, Miller EA, Morimoto RI. 2009. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl. Acad. Sci. USA 106:14914-19
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 14914-14919
    • Ben-Zvi, A.1    Miller, E.A.2    Morimoto, R.I.3
  • 220
    • 71449108913 scopus 로고    scopus 로고
    • Reduced IGF-1 signaling delays age-associated proteotoxicity in mice
    • Cohen E, Paulsson JF, Blinder P, Burstyn-Cohen T, Du D, et al. 2009. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139:1157-69
    • (2009) Cell , vol.139 , pp. 1157-1169
    • Cohen, E.1    Paulsson, J.F.2    Blinder, P.3    Burstyn-Cohen, T.4    Du, D.5
  • 222
    • 78650918920 scopus 로고    scopus 로고
    • FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging
    • Demontis F, Perrimon N. 2010. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813-25
    • (2010) Cell , vol.143 , pp. 813-825
    • Demontis, F.1    Perrimon, N.2
  • 223
    • 78650963274 scopus 로고    scopus 로고
    • Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions
    • Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, et al. 2011. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144:67-78
    • (2011) Cell , vol.144 , pp. 67-78
    • Olzscha, H.1    Schermann, S.M.2    Woerner, A.C.3    Pinkert, S.4    Hecht, M.H.5
  • 225
    • 33644850056 scopus 로고    scopus 로고
    • Progressive disruption of cellular protein folding in models of polyglutamine diseases
    • Gidalevitz T, Ben-Zvi A, Ho KH, Brignull H, Morimoto RI. 2006. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311:1471-74
    • (2006) Science , vol.311 , pp. 1471-1474
    • Gidalevitz, T.1    Ben-Zvi, A.2    Ho, K.H.3    Brignull, H.4    Morimoto, R.I.5
  • 226
    • 84859983420 scopus 로고    scopus 로고
    • Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease
    • Hipp MS, Patel CN, Bersuker K, Riley BE, Kaiser SE, et al. 2012. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease. J. Cell Biol. 196:573-87
    • (2012) J. Cell Biol. , vol.196 , pp. 573-587
    • Hipp, M.S.1    Patel, C.N.2    Bersuker, K.3    Riley, B.E.4    Kaiser, S.E.5
  • 227
    • 84862234023 scopus 로고    scopus 로고
    • Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade
    • Bulawa CE, Connelly S, Devit M, Wang L, Weigel C, et al. 2012. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl. Acad. Sci. USA 109:9629-34
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 9629-9634
    • Bulawa, C.E.1    Connelly, S.2    Devit, M.3    Wang, L.4    Weigel, C.5
  • 228
    • 79953288480 scopus 로고    scopus 로고
    • Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis
    • Tsaytler P, Harding HP, Ron D, Bertolotti A. 2011. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332:91-94
    • (2011) Science , vol.332 , pp. 91-94
    • Tsaytler, P.1    Harding, H.P.2    Ron, D.3    Bertolotti, A.4
  • 229
    • 77949884097 scopus 로고    scopus 로고
    • Induction of molecular chaperones as a therapeutic strategy for the polyglutamine diseases
    • Nagai Y, Fujikake N, Popiel HA, Wada K. 2010. Induction of molecular chaperones as a therapeutic strategy for the polyglutamine diseases. Curr. Pharm. Biotechnol. 11:188-97
    • (2010) Curr. Pharm. Biotechnol. , vol.11 , pp. 188-197
    • Nagai, Y.1    Fujikake, N.2    Popiel, H.A.3    Wada, K.4
  • 230
    • 25844466597 scopus 로고    scopus 로고
    • Heat shock response modulators as therapeutic tools for diseases of protein conformation
    • Westerheide SD, Morimoto RI. 2005. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J. Biol. Chem. 280:33097-100
    • (2005) J. Biol. Chem. , vol.280 , pp. 33097-33100
    • Westerheide, S.D.1    Morimoto, R.I.2
  • 231
    • 50249175120 scopus 로고    scopus 로고
    • Chemical and biological approaches synergize to ameliorate protein-folding diseases
    • Mu TW, Ong DS, Wang YJ, Balch WE, Yates JR, et al. 2008. Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134:769-81
    • (2008) Cell , vol.134 , pp. 769-781
    • Mu, T.W.1    Ong, D.S.2    Wang, Y.J.3    Balch, W.E.4    Yates, J.R.5
  • 232
    • 84856089134 scopus 로고    scopus 로고
    • Small-molecule proteostasis regulators for protein conformational diseases
    • Calamini B, Silva MC, Madoux F, Hutt DM, Khanna S, et al. 2012. Small-molecule proteostasis regulators for protein conformational diseases. Nat. Chem. Biol. 8:185-96
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 185-196
    • Calamini, B.1    Silva, M.C.2    Madoux, F.3    Hutt, D.M.4    Khanna, S.5
  • 233
    • 3042717240 scopus 로고    scopus 로고
    • Cellular toxicity of polyglutamine expansion proteins: Mechanism of transcription factor deactivation
    • Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, et al. 2004. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15:95-105
    • (2004) Mol. Cell , vol.15 , pp. 95-105
    • Schaffar, G.1    Breuer, P.2    Boteva, R.3    Behrends, C.4    Tzvetkov, N.5
  • 234
    • 78649685457 scopus 로고    scopus 로고
    • Hsp70 and Hsp40 functionally interact with soluble mutant huntingtin oligomers in a classic ATP-dependent reaction cycle
    • Lotz GP, Legleiter J, Aron R, Mitchell EJ, Huang SY, et al. 2010. Hsp70 and Hsp40 functionally interact with soluble mutant huntingtin oligomers in a classic ATP-dependent reaction cycle. J. Biol. Chem. 285:38183-93
    • (2010) J. Biol. Chem. , vol.285 , pp. 38183-38193
    • Lotz, G.P.1    Legleiter, J.2    Aron, R.3    Mitchell, E.J.4    Huang, S.Y.5
  • 235
    • 0036468432 scopus 로고    scopus 로고
    • Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease
    • Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM. 2002. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295:865-68
    • (2002) Science , vol.295 , pp. 865-868
    • Auluck, P.K.1    Chan, H.Y.2    Trojanowski, J.Q.3    Lee, V.M.4    Bonini, N.M.5
  • 236
    • 75949094261 scopus 로고    scopus 로고
    • A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation
    • Hageman J, Rujano MA, VAN Waarde MAWH, Kakkar V, Dirks RP, et al. 2010. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol. Cell 37:355-69
    • (2010) Mol. Cell , vol.37 , pp. 355-369
    • Hageman, J.1    Rujano, M.A.2    Van Waarde, M.A.W.H.3    Kakkar, V.4    Dirks, R.P.5
  • 237
    • 57649227693 scopus 로고    scopus 로고
    • Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies
    • Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC. 2009. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine- expanded huntingtin and related proteinopathies. Cell Death Differ. 16:46-56
    • (2009) Cell Death Differ. , vol.16 , pp. 46-56
    • Sarkar, S.1    Ravikumar, B.2    Floto, R.A.3    Rubinsztein, D.C.4
  • 238
    • 77956527159 scopus 로고    scopus 로고
    • Enhancement of proteasome activity by a small-molecule inhibitor of USP14
    • Lee B-H, Lee MJ, Park S, Oh DC, Elsasser S, et al. 2010. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467:179-84
    • (2010) Nature , vol.467 , pp. 179-184
    • Lee, B.-H.1    Lee, M.J.2    Park, S.3    Oh, D.C.4    Elsasser, S.5
  • 239
    • 28244437028 scopus 로고    scopus 로고
    • The yin and yang of protein folding
    • Jahn TR, Radford SE. 2005. The yin and yang of protein folding. FEBS J. 272:5962-70
    • (2005) FEBS J. , vol.272 , pp. 5962-5970
    • Jahn, T.R.1    Radford, S.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.