메뉴 건너뛰기




Volumn 28, Issue 8, 2016, Pages 1099-1104

Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells

Author keywords

ER stress; Mitochondrial oxidative stress; MTOR; Pancreatic cells

Indexed keywords

MAMMALIAN TARGET OF RAPAMYCIN; PROTEIN KINASE B; TARGET OF RAPAMYCIN KINASE;

EID: 84969814814     PISSN: 08986568     EISSN: 18733913     Source Type: Journal    
DOI: 10.1016/j.cellsig.2016.05.007     Document Type: Review
Times cited : (143)

References (111)
  • 1
    • 0033513455 scopus 로고    scopus 로고
    • Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats
    • Xu G., et al. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999, 48(12):2270-2276.
    • (1999) Diabetes , vol.48 , Issue.12 , pp. 2270-2276
    • Xu, G.1
  • 2
    • 41149154404 scopus 로고    scopus 로고
    • Mice with beta cell overexpression of glycogen synthase kinase-3beta have reduced beta cell mass and proliferation
    • Liu Z., et al. Mice with beta cell overexpression of glycogen synthase kinase-3beta have reduced beta cell mass and proliferation. Diabetologia 2008, 51(4):623-631.
    • (2008) Diabetologia , vol.51 , Issue.4 , pp. 623-631
    • Liu, Z.1
  • 3
    • 0035210374 scopus 로고    scopus 로고
    • Islet β cell expression of constitutively active Akt1/PKBα induces striking hypertrophy, hyperplasia, and hyperinsulinemia
    • Ernesto Bernal-Mizrachi W.W., Stahlhut S., Welling C.M., Permutt M.A. Islet β cell expression of constitutively active Akt1/PKBα induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J. Clin. Investig. 2002, 108(11):1631-1638.
    • (2002) J. Clin. Investig. , vol.108 , Issue.11 , pp. 1631-1638
    • Ernesto Bernal-Mizrachi, W.W.1    Stahlhut, S.2    Welling, C.M.3    Permutt, M.A.4
  • 4
    • 0042822112 scopus 로고    scopus 로고
    • Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid
    • Butler A.E., et al. Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 2003, 52(9):2304-2314.
    • (2003) Diabetes , vol.52 , Issue.9 , pp. 2304-2314
    • Butler, A.E.1
  • 5
    • 0037219411 scopus 로고    scopus 로고
    • Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes
    • Butler A.E., et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003, 52(1):102-110.
    • (2003) Diabetes , vol.52 , Issue.1 , pp. 102-110
    • Butler, A.E.1
  • 6
    • 34247490186 scopus 로고    scopus 로고
    • Mitochondria, oxidative stress and cell death
    • Ott M., et al. Mitochondria, oxidative stress and cell death. Apoptosis 2007, 12(5):913-922.
    • (2007) Apoptosis , vol.12 , Issue.5 , pp. 913-922
    • Ott, M.1
  • 7
    • 0036895383 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress and the development of diabetes: a review
    • Harding H.P., Ron D. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 2002, 51(Suppl. 3):S455-S461.
    • (2002) Diabetes , vol.51 , pp. S455-S461
    • Harding, H.P.1    Ron, D.2
  • 8
    • 33744505375 scopus 로고    scopus 로고
    • Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1
    • Um S.H., D'Alessio D., Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 2006, 3(6):393-402.
    • (2006) Cell Metab. , vol.3 , Issue.6 , pp. 393-402
    • Um, S.H.1    D'Alessio, D.2    Thomas, G.3
  • 9
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger S., Loewith R., Hall M.N. TOR signaling in growth and metabolism. Cell 2006, 124(3):471-484.
    • (2006) Cell , vol.124 , Issue.3 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 10
    • 7944235758 scopus 로고    scopus 로고
    • Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
    • Estela J., et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 2004, 6(11):1122-1128.
    • (2004) Nat. Cell Biol. , vol.6 , Issue.11 , pp. 1122-1128
    • Estela, J.1
  • 11
    • 0037623417 scopus 로고    scopus 로고
    • GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
    • DH K., et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 2003, 11(4):895-904.
    • (2003) Mol. Cell , vol.11 , Issue.4 , pp. 895-904
    • Dh, K.1
  • 12
    • 67349241955 scopus 로고    scopus 로고
    • DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
    • Peterson T.R., et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009, 137(5):873-886.
    • (2009) Cell , vol.137 , Issue.5 , pp. 873-886
    • Peterson, T.R.1
  • 13
    • 77953800576 scopus 로고    scopus 로고
    • Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly
    • Takeshi K., et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J. Biol. Chem. 2010, 285(26):20109-20116.
    • (2010) J. Biol. Chem. , vol.285 , Issue.26 , pp. 20109-20116
    • Takeshi, K.1
  • 14
    • 0037178781 scopus 로고    scopus 로고
    • Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
    • Hara K., et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002, 110(2):177-189.
    • (2002) Cell , vol.110 , Issue.2 , pp. 177-189
    • Hara, K.1
  • 15
    • 33947264077 scopus 로고    scopus 로고
    • PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
    • Sancak Y., et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 2007, 25(6):903-915.
    • (2007) Mol. Cell , vol.25 , Issue.6 , pp. 903-915
    • Sancak, Y.1
  • 16
    • 33748471980 scopus 로고    scopus 로고
    • MSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s
    • Frias M.A., et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 2006, 16(18):1865-1870.
    • (2006) Curr. Biol. , vol.16 , Issue.18 , pp. 1865-1870
    • Frias, M.A.1
  • 17
    • 34347210090 scopus 로고    scopus 로고
    • Identification of Protor as a novel Rictor-binding component of mTOR complex-2
    • Pearce L., et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem. J. 2007, 405(Part 3):513-522.
    • (2007) Biochem. J. , vol.405 , pp. 513-522
    • Pearce, L.1
  • 18
    • 0036753494 scopus 로고    scopus 로고
    • Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
    • Loewith R., et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 2002, 10(3):457-468.
    • (2002) Mol. Cell , vol.10 , Issue.3 , pp. 457-468
    • Loewith, R.1
  • 19
    • 84862528153 scopus 로고    scopus 로고
    • Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2)
    • Barlow A.D., et al. Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2). Diabetologia 2012, 55(5):1355-1365.
    • (2012) Diabetologia , vol.55 , Issue.5 , pp. 1355-1365
    • Barlow, A.D.1
  • 20
    • 33646023695 scopus 로고    scopus 로고
    • Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
    • Sarbassov D.D., et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 2006, 22(2):159-168.
    • (2006) Mol. Cell , vol.22 , Issue.2 , pp. 159-168
    • Sarbassov, D.D.1
  • 21
    • 79954576972 scopus 로고    scopus 로고
    • Transcriptional control of cellular metabolism by mTOR signaling
    • Yecies J.L., Manning B.D. Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res. 2011, 71(8):2815-2820.
    • (2011) Cancer Res. , vol.71 , Issue.8 , pp. 2815-2820
    • Yecies, J.L.1    Manning, B.D.2
  • 22
    • 0037178786 scopus 로고    scopus 로고
    • MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim D.-H., et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110(2):163-175.
    • (2002) Cell , vol.110 , Issue.2 , pp. 163-175
    • Kim, D.-H.1
  • 23
    • 36749081539 scopus 로고    scopus 로고
    • MTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
    • Cunningham J.T., et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007, 450(7170):736-740.
    • (2007) Nature , vol.450 , Issue.7170 , pp. 736-740
    • Cunningham, J.T.1
  • 24
    • 65549130128 scopus 로고    scopus 로고
    • MTORC1 activation regulates beta-cell mass and proliferation by modulation of cyclin D2 synthesis and stability
    • Norman B., et al. mTORC1 activation regulates beta-cell mass and proliferation by modulation of cyclin D2 synthesis and stability. J. Biol. Chem. 2009, 284(12):7832-7842.
    • (2009) J. Biol. Chem. , vol.284 , Issue.12 , pp. 7832-7842
    • Norman, B.1
  • 25
    • 42449104351 scopus 로고    scopus 로고
    • MTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes
    • Fraenkel M., et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 2008, 57(4):945-957.
    • (2008) Diabetes , vol.57 , Issue.4 , pp. 945-957
    • Fraenkel, M.1
  • 26
    • 33750044112 scopus 로고    scopus 로고
    • Stress and mTORture signaling
    • Reiling J.H., Sabatini D.M. Stress and mTORture signaling. Oncogene 2006, 25(48):6373-6383.
    • (2006) Oncogene , vol.25 , Issue.48 , pp. 6373-6383
    • Reiling, J.H.1    Sabatini, D.M.2
  • 27
    • 84906672871 scopus 로고    scopus 로고
    • Pancreatic β-cell failure mediated by mTORC1 hyperactivity and autophagic impairment
    • Alberto B., et al. Pancreatic β-cell failure mediated by mTORC1 hyperactivity and autophagic impairment. Diabetes 2014, 63(9):2996-3008.
    • (2014) Diabetes , vol.63 , Issue.9 , pp. 2996-3008
    • Alberto, B.1
  • 28
    • 42349086872 scopus 로고    scopus 로고
    • Biphasic response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice
    • Shigeyama Y., et al. Biphasic response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice. Mol. Cell. Biol. 2008, 28(9):2971-2979.
    • (2008) Mol. Cell. Biol. , vol.28 , Issue.9 , pp. 2971-2979
    • Shigeyama, Y.1
  • 29
    • 48249146208 scopus 로고    scopus 로고
    • Disruption of Tsc2 in pancreatic beta cells induces beta cell mass expansion and improved glucose tolerance in a TORC1-dependent manner
    • Rachdi L., et al. Disruption of Tsc2 in pancreatic beta cells induces beta cell mass expansion and improved glucose tolerance in a TORC1-dependent manner. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(27):9250-9255.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , Issue.27 , pp. 9250-9255
    • Rachdi, L.1
  • 30
    • 77957579650 scopus 로고    scopus 로고
    • Decreased IRS signaling impairs beta-cell cycle progression and survival in transgenic mice overexpressing S6K in beta-cells
    • Lynda E., et al. Decreased IRS signaling impairs beta-cell cycle progression and survival in transgenic mice overexpressing S6K in beta-cells. Diabetes 2010, 59(10):2390-2399.
    • (2010) Diabetes , vol.59 , Issue.10 , pp. 2390-2399
    • Lynda, E.1
  • 31
    • 79952374430 scopus 로고    scopus 로고
    • Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size
    • Yanyun G., et al. Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size. Diabetes 2011, 60(3):827-837.
    • (2011) Diabetes , vol.60 , Issue.3 , pp. 827-837
    • Yanyun, G.1
  • 32
    • 84874431540 scopus 로고    scopus 로고
    • MTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells
    • Le Bacquer O., et al. mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells. J. Endocrinol. 2013, 216(1):21-29.
    • (2013) J. Endocrinol. , vol.216 , Issue.1 , pp. 21-29
    • Le Bacquer, O.1
  • 33
    • 2942593991 scopus 로고    scopus 로고
    • ROS stress in cancer cells and therapeutic implications
    • Pelicano H., Carney D., Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 2004, 7(2):97-110.
    • (2004) Drug Resist. Updat. , vol.7 , Issue.2 , pp. 97-110
    • Pelicano, H.1    Carney, D.2    Huang, P.3
  • 34
    • 33645860825 scopus 로고    scopus 로고
    • Reactive oxygen species have a causal role in multiple forms of insulin resistance
    • Houstis N., Rosen E.D., Lander E.S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006, 440(7086):944-948.
    • (2006) Nature , vol.440 , Issue.7086 , pp. 944-948
    • Houstis, N.1    Rosen, E.D.2    Lander, E.S.3
  • 35
    • 29144458899 scopus 로고    scopus 로고
    • Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production
    • Aleksandra T., et al. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc. Natl. Acad. Sci. U. S. A. 2005, 102(50):17993-17998.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , Issue.50 , pp. 17993-17998
    • Aleksandra, T.1
  • 36
    • 0036086130 scopus 로고    scopus 로고
    • Free radicals in the physiological control of cell function
    • Wulf D.G. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82(1):47-95.
    • (2002) Physiol. Rev. , vol.82 , Issue.1 , pp. 47-95
    • Wulf, D.G.1
  • 37
    • 84944683146 scopus 로고    scopus 로고
    • Reperfusion injury and reactive oxygen species: the evolution of a concept
    • Granger D.N., Kvietys P.R. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015, 6:524-551.
    • (2015) Redox Biol. , vol.6 , pp. 524-551
    • Granger, D.N.1    Kvietys, P.R.2
  • 38
    • 77953941543 scopus 로고    scopus 로고
    • Role of mitochondria in beta-cell function and dysfunction
    • Maechler P., et al. Role of mitochondria in beta-cell function and dysfunction. Adv. Exp. Med. Biol. 2010, 654:193-216.
    • (2010) Adv. Exp. Med. Biol. , vol.654 , pp. 193-216
    • Maechler, P.1
  • 39
    • 79960835049 scopus 로고    scopus 로고
    • Extramitochondrial tricarboxylic acid cycle in retinal rod outer segments
    • Panfoli I., et al. Extramitochondrial tricarboxylic acid cycle in retinal rod outer segments. Biochimie 2011, 93(9):1565-1575.
    • (2011) Biochimie , vol.93 , Issue.9 , pp. 1565-1575
    • Panfoli, I.1
  • 40
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417(1):1-13.
    • (2009) Biochem. J. , vol.417 , Issue.1 , pp. 1-13
    • Murphy, M.P.1
  • 41
    • 0034643340 scopus 로고    scopus 로고
    • Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage
    • Nishikawa T., et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000, 404(6779):787-790.
    • (2000) Nature , vol.404 , Issue.6779 , pp. 787-790
    • Nishikawa, T.1
  • 43
    • 84894572580 scopus 로고    scopus 로고
    • The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease
    • Niemann A., et al. The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease. Brain 2014, 137(Pt 3):668-682.
    • (2014) Brain , vol.137 , pp. 668-682
    • Niemann, A.1
  • 44
    • 77951953060 scopus 로고    scopus 로고
    • Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation
    • Koopman W.J., et al. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid. Redox Signal. 2010, 12(12):1431-1470.
    • (2010) Antioxid. Redox Signal. , vol.12 , Issue.12 , pp. 1431-1470
    • Koopman, W.J.1
  • 45
    • 84856556021 scopus 로고    scopus 로고
    • There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells
    • Brown G.C., Borutaite V. There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 2012, 12(1):1-4.
    • (2012) Mitochondrion , vol.12 , Issue.1 , pp. 1-4
    • Brown, G.C.1    Borutaite, V.2
  • 46
    • 84888133598 scopus 로고    scopus 로고
    • Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics
    • Mailloux R.J., McBride S.L., Harper M.E. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem. Sci. 2013, 38(12):592-602.
    • (2013) Trends Biochem. Sci. , vol.38 , Issue.12 , pp. 592-602
    • Mailloux, R.J.1    McBride, S.L.2    Harper, M.E.3
  • 47
    • 84879430920 scopus 로고    scopus 로고
    • Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
    • Quinlan C.L., et al. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 2013, 1:304-312.
    • (2013) Redox Biol. , vol.1 , pp. 304-312
    • Quinlan, C.L.1
  • 48
    • 84885857871 scopus 로고    scopus 로고
    • Recent advances in reactive oxygen species measurement in biological systems
    • Woolley J.F., Stanicka J., Cotter T.G. Recent advances in reactive oxygen species measurement in biological systems. Trends Biochem. Sci. 2013, 38(11):556-565.
    • (2013) Trends Biochem. Sci. , vol.38 , Issue.11 , pp. 556-565
    • Woolley, J.F.1    Stanicka, J.2    Cotter, T.G.3
  • 49
    • 58149525327 scopus 로고    scopus 로고
    • Molecular physiology of mammalian glucokinase
    • Iynedjian P.B. Molecular physiology of mammalian glucokinase. Cell. Mol. Life Sci. 2009, 66(1):27-42.
    • (2009) Cell. Mol. Life Sci. , vol.66 , Issue.1 , pp. 27-42
    • Iynedjian, P.B.1
  • 50
    • 33645966526 scopus 로고    scopus 로고
    • K(ATP) channels and insulin secretion: a key role in health and disease
    • Ashcroft F.M. K(ATP) channels and insulin secretion: a key role in health and disease. Biochem. Soc. Trans. 2006, 34(2):243-246.
    • (2006) Biochem. Soc. Trans. , vol.34 , Issue.2 , pp. 243-246
    • Ashcroft, F.M.1
  • 51
    • 48949120517 scopus 로고    scopus 로고
    • Novel aspects of the molecular mechanisms controlling insulin secretion
    • Eliasson L., et al. Novel aspects of the molecular mechanisms controlling insulin secretion. J. Physiol. 2008, 586(14):3313-3324.
    • (2008) J. Physiol. , vol.586 , Issue.14 , pp. 3313-3324
    • Eliasson, L.1
  • 52
    • 0033762782 scopus 로고    scopus 로고
    • Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes
    • Silva J.P., et al. Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat. Genet. 2000, 26(3):336-340.
    • (2000) Nat. Genet. , vol.26 , Issue.3 , pp. 336-340
    • Silva, J.P.1
  • 53
    • 0035406743 scopus 로고    scopus 로고
    • Diminished insulin secretory response to glucose but normal insulin and glucagon secretory responses to arginine in a family with maternally inherited diabetes and deafness caused by mitochondrial tRNA(LEU(UUR)) gene mutation
    • Brändle M., et al. Diminished insulin secretory response to glucose but normal insulin and glucagon secretory responses to arginine in a family with maternally inherited diabetes and deafness caused by mitochondrial tRNA(LEU(UUR)) gene mutation. Diabetes Care 2001, 24(7):1253-1258.
    • (2001) Diabetes Care , vol.24 , Issue.7 , pp. 1253-1258
    • Brändle, M.1
  • 54
    • 0842285626 scopus 로고    scopus 로고
    • Mitochondrial diabetes: molecular mechanisms and clinical presentation
    • Maassen J.A., et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 2004, 53(Suppl. 1):S103-S109.
    • (2004) Diabetes , vol.53 , pp. S103-S109
    • Maassen, J.A.1
  • 55
    • 76049083966 scopus 로고    scopus 로고
    • Reactive oxygen species, cellular redox systems, and apoptosis
    • Circu M.L., Aw T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010, 48(6):749-762.
    • (2010) Free Radic. Biol. Med. , vol.48 , Issue.6 , pp. 749-762
    • Circu, M.L.1    Aw, T.Y.2
  • 56
    • 80051791624 scopus 로고    scopus 로고
    • Induction of the intrinsic apoptosis pathway in insulin-secreting cells is dependent on oxidative damage of mitochondria but independent of caspase-12 activation
    • Mehmeti I., et al. Induction of the intrinsic apoptosis pathway in insulin-secreting cells is dependent on oxidative damage of mitochondria but independent of caspase-12 activation. Biochim. Biophys. Acta 2011, 1813(10):1827-1835.
    • (2011) Biochim. Biophys. Acta , vol.1813 , Issue.10 , pp. 1827-1835
    • Mehmeti, I.1
  • 57
    • 77649275621 scopus 로고    scopus 로고
    • ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function
    • Pi J., et al. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol. Appl. Pharmacol. 2010, 244(1):77-83.
    • (2010) Toxicol. Appl. Pharmacol. , vol.244 , Issue.1 , pp. 77-83
    • Pi, J.1
  • 58
    • 0033600762 scopus 로고    scopus 로고
    • Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells
    • Maechler P., Jornot L., Wollheim C.B. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J. Biol. Chem. 1999, 274(39):27905-27913.
    • (1999) J. Biol. Chem. , vol.274 , Issue.39 , pp. 27905-27913
    • Maechler, P.1    Jornot, L.2    Wollheim, C.B.3
  • 59
    • 34547830983 scopus 로고    scopus 로고
    • Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity
    • Newsholme P., Haber E.P., Hirabara S.M., Rebelato E.L.O., Procopio J., Morgan D., et al. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J. Physiol. 2007, 583(Pt 1):9-24.
    • (2007) J. Physiol. , vol.583 , pp. 9-24
    • Newsholme, P.1    Haber, E.P.2    Hirabara, S.M.3    Rebelato, E.L.O.4    Procopio, J.5    Morgan, D.6
  • 60
    • 0031871335 scopus 로고    scopus 로고
    • An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus
    • Rabinovitch A. An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes Metab. Rev. 1998, 14(2):129-151.
    • (1998) Diabetes Metab. Rev. , vol.14 , Issue.2 , pp. 129-151
    • Rabinovitch, A.1
  • 61
    • 0036796875 scopus 로고    scopus 로고
    • Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes
    • Evans J.L., et al. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr. Rev. 2002, 23(5):599-622.
    • (2002) Endocr. Rev. , vol.23 , Issue.5 , pp. 599-622
    • Evans, J.L.1
  • 62
    • 0035128723 scopus 로고    scopus 로고
    • Beta-cell apoptosis: stimuli and signaling
    • Mandrup-Poulsen T. Beta-cell apoptosis: stimuli and signaling. Diabetes 2001, 50(Suppl. 1):S58-S63.
    • (2001) Diabetes , vol.50 , pp. S58-S63
    • Mandrup-Poulsen, T.1
  • 63
    • 0037341238 scopus 로고    scopus 로고
    • Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection
    • Robertson R.P., et al. Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 2003, 52(3):581-587.
    • (2003) Diabetes , vol.52 , Issue.3 , pp. 581-587
    • Robertson, R.P.1
  • 64
    • 0037219409 scopus 로고    scopus 로고
    • Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?
    • Evans J.L., et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?. Diabetes 2003, 52(1):1-8.
    • (2003) Diabetes , vol.52 , Issue.1 , pp. 1-8
    • Evans, J.L.1
  • 65
    • 83755207504 scopus 로고    scopus 로고
    • Mitochondria-targeted antioxidants protect pancreatic β-cells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity
    • Sangbin L., et al. Mitochondria-targeted antioxidants protect pancreatic β-cells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity. Cell. Physiol. Biochem. 2011, 28(5):873-886.
    • (2011) Cell. Physiol. Biochem. , vol.28 , Issue.5 , pp. 873-886
    • Sangbin, L.1
  • 66
    • 84865001535 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species (ROS) inhibition ameliorates palmitate-induced INS-1 beta cell death
    • Lin N., et al. Mitochondrial reactive oxygen species (ROS) inhibition ameliorates palmitate-induced INS-1 beta cell death. Endocrine 2012, 42(1):107-117.
    • (2012) Endocrine , vol.42 , Issue.1 , pp. 107-117
    • Lin, N.1
  • 67
    • 0036118562 scopus 로고    scopus 로고
    • Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis
    • Shoshani T., et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol. Cell. Biol. 2002, 22(7):2283-2293.
    • (2002) Mol. Cell. Biol. , vol.22 , Issue.7 , pp. 2283-2293
    • Shoshani, T.1
  • 68
    • 34249309925 scopus 로고    scopus 로고
    • Hypoxic condition- and high cell density-induced expression of Redd1 is regulated by activation of hypoxia-inducible factor-1 alpha and Sp1 through the phosphatidylinositol 3-kinase/Akt signaling pathway
    • Jin H., et al. Hypoxic condition- and high cell density-induced expression of Redd1 is regulated by activation of hypoxia-inducible factor-1 alpha and Sp1 through the phosphatidylinositol 3-kinase/Akt signaling pathway. Cell. Signal. 2007, 19(7):1393-1403.
    • (2007) Cell. Signal. , vol.19 , Issue.7 , pp. 1393-1403
    • Jin, H.1
  • 69
    • 32444433450 scopus 로고    scopus 로고
    • Hypoxia-induced energy stress regulates mRNA translation and cell growth: molecular cell
    • Liu L., et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth: molecular cell. Mol. Cell 2006, 21(21):521-531.
    • (2006) Mol. Cell , vol.21 , Issue.21 , pp. 521-531
    • Liu, L.1
  • 70
    • 42249099251 scopus 로고    scopus 로고
    • Melatonin represses oxidative stress-induced activation of the MAP kinase and mTOR signaling pathways in H4IIE hepatoma cells through inhibition of Ras
    • Kimball S.R., Abbas A., Jefferson L.S. Melatonin represses oxidative stress-induced activation of the MAP kinase and mTOR signaling pathways in H4IIE hepatoma cells through inhibition of Ras. J. Pineal Res. 2008, 44(4):379-386.
    • (2008) J. Pineal Res. , vol.44 , Issue.4 , pp. 379-386
    • Kimball, S.R.1    Abbas, A.2    Jefferson, L.S.3
  • 71
    • 80051835640 scopus 로고    scopus 로고
    • Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1
    • Koyanagi M., et al. Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1. PLoS One 2011, 6(8).
    • (2011) PLoS One , vol.6 , Issue.8
    • Koyanagi, M.1
  • 72
    • 84877315340 scopus 로고    scopus 로고
    • Improvement of ER stress-induced diabetes by stimulating autophagy
    • Etty B.W., et al. Improvement of ER stress-induced diabetes by stimulating autophagy. Autophagy 2013, 9(4):626-628.
    • (2013) Autophagy , vol.9 , Issue.4 , pp. 626-628
    • Etty, B.W.1
  • 73
    • 84939838851 scopus 로고    scopus 로고
    • Activation of autophagic flux against xenoestrogen bisphenol-A-induced hippocampal neurodegeneration via AMP kinase (AMPK)/mammalian target of rapamycin (mTOR) pathways
    • Swati A., et al. Activation of autophagic flux against xenoestrogen bisphenol-A-induced hippocampal neurodegeneration via AMP kinase (AMPK)/mammalian target of rapamycin (mTOR) pathways. J. Biol. Chem. 2015, 290(34):21163-21184.
    • (2015) J. Biol. Chem. , vol.290 , Issue.34 , pp. 21163-21184
    • Swati, A.1
  • 74
    • 0036787462 scopus 로고    scopus 로고
    • Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic beta-cells
    • McDaniel M.L., et al. Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic beta-cells. Diabetes 2002, 51(10):2877-2885.
    • (2002) Diabetes , vol.51 , Issue.10 , pp. 2877-2885
    • McDaniel, M.L.1
  • 75
    • 52949096557 scopus 로고    scopus 로고
    • Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity
    • Zhang X., et al. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008, 135(1):61-73.
    • (2008) Cell , vol.135 , Issue.1 , pp. 61-73
    • Zhang, X.1
  • 76
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Yang L., et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010, 11(6):467-478.
    • (2010) Cell Metab. , vol.11 , Issue.6 , pp. 467-478
    • Yang, L.1
  • 77
    • 33748069813 scopus 로고    scopus 로고
    • Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes
    • Ozcan U., et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006, 313(5790):1137-1140.
    • (2006) Science , vol.313 , Issue.5790 , pp. 1137-1140
    • Ozcan, U.1
  • 78
    • 78049485910 scopus 로고    scopus 로고
    • Diabetes as a disease of endoplasmic reticulum stress
    • Thomas S.E., et al. Diabetes as a disease of endoplasmic reticulum stress. Diabetes Metab. Res. Rev. 2010, 26(8):611-621.
    • (2010) Diabetes Metab. Res. Rev. , vol.26 , Issue.8 , pp. 611-621
    • Thomas, S.E.1
  • 79
    • 0242609973 scopus 로고    scopus 로고
    • Impact of endoplasmic reticulum stress pathway on pancreatic beta-cells and diabetes mellitus
    • Araki E., Oyadomari S., Mori M. Impact of endoplasmic reticulum stress pathway on pancreatic beta-cells and diabetes mellitus. Exp. Biol. Med. (Maywood) 2003, 228(10):1213-1217.
    • (2003) Exp. Biol. Med. (Maywood) , vol.228 , Issue.10 , pp. 1213-1217
    • Araki, E.1    Oyadomari, S.2    Mori, M.3
  • 80
    • 33847677975 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes
    • Laybutt D.R., et al. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 2007, 50(4):752-763.
    • (2007) Diabetologia , vol.50 , Issue.4 , pp. 752-763
    • Laybutt, D.R.1
  • 81
    • 33845568737 scopus 로고    scopus 로고
    • Life, death, the unfolded protein response and apoptosis
    • Knowlton A.A. Life, death, the unfolded protein response and apoptosis. Cardiovasc. Res. 2007, 73(1):1-2.
    • (2007) Cardiovasc. Res. , vol.73 , Issue.1 , pp. 1-2
    • Knowlton, A.A.1
  • 82
    • 84903795970 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease
    • Cao S.S., Kaufman R.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 2014, 21(3):396-413.
    • (2014) Antioxid. Redox Signal. , vol.21 , Issue.3 , pp. 396-413
    • Cao, S.S.1    Kaufman, R.J.2
  • 83
    • 84923347695 scopus 로고    scopus 로고
    • Leptin induced GRP78 expression through the PI3K-mTOR pathway in neuronal cells
    • Thon M., et al. Leptin induced GRP78 expression through the PI3K-mTOR pathway in neuronal cells. Sci. Rep. 2013, 4:7096.
    • (2013) Sci. Rep. , vol.4 , pp. 7096
    • Thon, M.1
  • 84
    • 39149104320 scopus 로고    scopus 로고
    • The role for endoplasmic reticulum stress in diabetes mellitus
    • Eizirik D.L., Cardozo A.K., Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev. 2008, 29(1):42-61.
    • (2008) Endocr. Rev. , vol.29 , Issue.1 , pp. 42-61
    • Eizirik, D.L.1    Cardozo, A.K.2    Cnop, M.3
  • 85
    • 35848970081 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress signaling in pancreatic beta-cells
    • Fonseca S.G., Lipson K.L., Urano F. Endoplasmic reticulum stress signaling in pancreatic beta-cells. Antioxid. Redox Signal. 2007, 9(12):2335-2344.
    • (2007) Antioxid. Redox Signal. , vol.9 , Issue.12 , pp. 2335-2344
    • Fonseca, S.G.1    Lipson, K.L.2    Urano, F.3
  • 86
    • 34748865437 scopus 로고    scopus 로고
    • A busy cell-endoplasmic reticulum stress in the pancreatic beta-cell
    • Ortsater H., Sjoholm A. A busy cell-endoplasmic reticulum stress in the pancreatic beta-cell. Mol. Cell. Endocrinol. 2007, 277(1-2):1-5.
    • (2007) Mol. Cell. Endocrinol. , vol.277 , Issue.1-2 , pp. 1-5
    • Ortsater, H.1    Sjoholm, A.2
  • 87
    • 84896731193 scopus 로고    scopus 로고
    • Metformin plays a dual role in MIN6 pancreatic beta cell function through AMPK-dependent autophagy
    • Jiang Y., et al. Metformin plays a dual role in MIN6 pancreatic beta cell function through AMPK-dependent autophagy. Int. J. Biol. Sci. 2014, 10(3):268-277.
    • (2014) Int. J. Biol. Sci. , vol.10 , Issue.3 , pp. 268-277
    • Jiang, Y.1
  • 88
    • 77956404377 scopus 로고    scopus 로고
    • Eaten alive: a history of macroautophagy
    • Yang Z., Klionsky D.J. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 2010, 12(9):814-822.
    • (2010) Nat. Cell Biol. , vol.12 , Issue.9 , pp. 814-822
    • Yang, Z.1    Klionsky, D.J.2
  • 89
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • Noboru M., et al. Autophagy fights disease through cellular self-digestion. Nature 2008, 451(7182):1069-1075.
    • (2008) Nature , vol.451 , Issue.7182 , pp. 1069-1075
    • Noboru, M.1
  • 90
    • 22344444616 scopus 로고    scopus 로고
    • Does autophagy contribute to cell death?
    • Debnath J., Baehrecke E.H., Kroemer G. Does autophagy contribute to cell death?. Autophagy 2014, 1(2):66-74.
    • (2014) Autophagy , vol.1 , Issue.2 , pp. 66-74
    • Debnath, J.1    Baehrecke, E.H.2    Kroemer, G.3
  • 91
    • 56749170677 scopus 로고    scopus 로고
    • Autophagic cell death: the story of a misnomer
    • Kroemer G., Levine B. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 2008, 9(12):1004-1010.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , Issue.12 , pp. 1004-1010
    • Kroemer, G.1    Levine, B.2
  • 92
    • 79959626436 scopus 로고    scopus 로고
    • Autophagy and apoptosis: what is the connection?
    • Gump J.M., Thorburn A. Autophagy and apoptosis: what is the connection?. Trends Cell Biol. 2011, 21(7):387-392.
    • (2011) Trends Cell Biol. , vol.21 , Issue.7 , pp. 387-392
    • Gump, J.M.1    Thorburn, A.2
  • 93
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • Axe E.L., et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 2008, 182(4):685-701.
    • (2008) J. Cell Biol. , vol.182 , Issue.4 , pp. 685-701
    • Axe, E.L.1
  • 94
    • 84860468095 scopus 로고    scopus 로고
    • Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling
    • Appenzeller-Herzog C., Hall M.N. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol. 2012, 22(5):274-282.
    • (2012) Trends Cell Biol. , vol.22 , Issue.5 , pp. 274-282
    • Appenzeller-Herzog, C.1    Hall, M.N.2
  • 95
    • 33749431713 scopus 로고    scopus 로고
    • The mTOR pathway in the control of protein synthesis
    • Wang X., Proud C.G. The mTOR pathway in the control of protein synthesis. Physiology 2006, 21(4):362-369.
    • (2006) Physiology , vol.21 , Issue.4 , pp. 362-369
    • Wang, X.1    Proud, C.G.2
  • 96
    • 63349109171 scopus 로고    scopus 로고
    • Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic beta-cells via activation of mTORC1
    • Bachar E., et al. Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic beta-cells via activation of mTORC1. PLoS One 2009, 4(3).
    • (2009) PLoS One , vol.4 , Issue.3
    • Bachar, E.1
  • 97
    • 84855696465 scopus 로고    scopus 로고
    • MTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway
    • Kato H., et al. mTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway. Cell Death Differ. 2012, 19(2):310-320.
    • (2012) Cell Death Differ. , vol.19 , Issue.2 , pp. 310-320
    • Kato, H.1
  • 98
    • 40649104735 scopus 로고    scopus 로고
    • Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis
    • Ozcan U., et al. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol. Cell 2008, 29(5):541-551.
    • (2008) Mol. Cell , vol.29 , Issue.5 , pp. 541-551
    • Ozcan, U.1
  • 99
    • 80155151897 scopus 로고    scopus 로고
    • MTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome
    • Ito N., et al. mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome. Lab. Investig. 2011, 91(11):1584-1595.
    • (2011) Lab. Investig. , vol.91 , Issue.11 , pp. 1584-1595
    • Ito, N.1
  • 100
    • 79953146630 scopus 로고    scopus 로고
    • Selective abrogation of BiP/GRP78 blunts activation of NF-kappaB through the ATF6 branch of the UPR: involvement of C/EBPbeta and mTOR-dependent dephosphorylation of Akt
    • Nakajima S., et al. Selective abrogation of BiP/GRP78 blunts activation of NF-kappaB through the ATF6 branch of the UPR: involvement of C/EBPbeta and mTOR-dependent dephosphorylation of Akt. Mol. Cell. Biol. 2011, 31(8):1710-1718.
    • (2011) Mol. Cell. Biol. , vol.31 , Issue.8 , pp. 1710-1718
    • Nakajima, S.1
  • 101
    • 77953506788 scopus 로고    scopus 로고
    • ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy
    • Qin L., et al. ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy 2010, 6(2):239-247.
    • (2010) Autophagy , vol.6 , Issue.2 , pp. 239-247
    • Qin, L.1
  • 102
    • 0036342294 scopus 로고    scopus 로고
    • Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway
    • Manning B.D., et al. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell 2002, 10(1):151-162.
    • (2002) Mol. Cell , vol.10 , Issue.1 , pp. 151-162
    • Manning, B.D.1
  • 103
    • 65949106140 scopus 로고    scopus 로고
    • Tuberous sclerosis complex activity is required to control neuronal stress responses in an mTOR-dependent manner
    • Di Nardo A., et al. Tuberous sclerosis complex activity is required to control neuronal stress responses in an mTOR-dependent manner. J. Neurosci. 2009, 29(18):5926-5937.
    • (2009) J. Neurosci. , vol.29 , Issue.18 , pp. 5926-5937
    • Di Nardo, A.1
  • 104
    • 35848957485 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?
    • Malhotra J.D., Kaufman R.J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?. Antioxid. Redox Signal. 2007, 9(12):2277-2293.
    • (2007) Antioxid. Redox Signal. , vol.9 , Issue.12 , pp. 2277-2293
    • Malhotra, J.D.1    Kaufman, R.J.2
  • 105
    • 84865245211 scopus 로고    scopus 로고
    • Unfolded protein response
    • Cao S.S., Kaufman R.J. Unfolded protein response. Curr. Biol. 2012, 22(16):R622-R626.
    • (2012) Curr. Biol. , vol.22 , Issue.16 , pp. R622-R626
    • Cao, S.S.1    Kaufman, R.J.2
  • 106
    • 70349352744 scopus 로고    scopus 로고
    • Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase
    • Santos C.X.C., et al. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid. Redox Signal. 2009, 11(10):2409-2427.
    • (2009) Antioxid. Redox Signal. , vol.11 , Issue.10 , pp. 2409-2427
    • Santos, C.X.C.1
  • 107
    • 77952541558 scopus 로고    scopus 로고
    • The sites and topology of mitochondrial superoxide production
    • Brand M.D. The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 2010, 45(7-8):466-472.
    • (2010) Exp. Gerontol. , vol.45 , Issue.7-8 , pp. 466-472
    • Brand, M.D.1
  • 108
    • 0031610364 scopus 로고    scopus 로고
    • Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum
    • Pollard M.G., Travers K.J., Weissman J.S. Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol. Cell 1998, 1(2):171-182.
    • (1998) Mol. Cell , vol.1 , Issue.2 , pp. 171-182
    • Pollard, M.G.1    Travers, K.J.2    Weissman, J.S.3
  • 109
    • 84877578475 scopus 로고    scopus 로고
    • ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death
    • Han J., et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 2013, 15(5):481-490.
    • (2013) Nat. Cell Biol. , vol.15 , Issue.5 , pp. 481-490
    • Han, J.1
  • 110
    • 84964834830 scopus 로고    scopus 로고
    • Oxidative and endoplasmic reticulum stress in beta-cell dysfunction in diabetes
    • Hasnain S.Z., Prins J.B., McGuckin M.A. Oxidative and endoplasmic reticulum stress in beta-cell dysfunction in diabetes. J. Mol. Endocrinol. 2016, 56(2):R33-R54.
    • (2016) J. Mol. Endocrinol. , vol.56 , Issue.2 , pp. R33-R54
    • Hasnain, S.Z.1    Prins, J.B.2    McGuckin, M.A.3
  • 111
    • 84856951239 scopus 로고    scopus 로고
    • Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition
    • Gilkerson R.W., et al. Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Hum. Mol. Genet. 2012, 21(5):978-990.
    • (2012) Hum. Mol. Genet. , vol.21 , Issue.5 , pp. 978-990
    • Gilkerson, R.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.