-
1
-
-
0033513455
-
Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats
-
Xu G., et al. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999, 48(12):2270-2276.
-
(1999)
Diabetes
, vol.48
, Issue.12
, pp. 2270-2276
-
-
Xu, G.1
-
2
-
-
41149154404
-
Mice with beta cell overexpression of glycogen synthase kinase-3beta have reduced beta cell mass and proliferation
-
Liu Z., et al. Mice with beta cell overexpression of glycogen synthase kinase-3beta have reduced beta cell mass and proliferation. Diabetologia 2008, 51(4):623-631.
-
(2008)
Diabetologia
, vol.51
, Issue.4
, pp. 623-631
-
-
Liu, Z.1
-
3
-
-
0035210374
-
Islet β cell expression of constitutively active Akt1/PKBα induces striking hypertrophy, hyperplasia, and hyperinsulinemia
-
Ernesto Bernal-Mizrachi W.W., Stahlhut S., Welling C.M., Permutt M.A. Islet β cell expression of constitutively active Akt1/PKBα induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J. Clin. Investig. 2002, 108(11):1631-1638.
-
(2002)
J. Clin. Investig.
, vol.108
, Issue.11
, pp. 1631-1638
-
-
Ernesto Bernal-Mizrachi, W.W.1
Stahlhut, S.2
Welling, C.M.3
Permutt, M.A.4
-
4
-
-
0042822112
-
Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid
-
Butler A.E., et al. Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 2003, 52(9):2304-2314.
-
(2003)
Diabetes
, vol.52
, Issue.9
, pp. 2304-2314
-
-
Butler, A.E.1
-
5
-
-
0037219411
-
Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes
-
Butler A.E., et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003, 52(1):102-110.
-
(2003)
Diabetes
, vol.52
, Issue.1
, pp. 102-110
-
-
Butler, A.E.1
-
6
-
-
34247490186
-
Mitochondria, oxidative stress and cell death
-
Ott M., et al. Mitochondria, oxidative stress and cell death. Apoptosis 2007, 12(5):913-922.
-
(2007)
Apoptosis
, vol.12
, Issue.5
, pp. 913-922
-
-
Ott, M.1
-
7
-
-
0036895383
-
Endoplasmic reticulum stress and the development of diabetes: a review
-
Harding H.P., Ron D. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 2002, 51(Suppl. 3):S455-S461.
-
(2002)
Diabetes
, vol.51
, pp. S455-S461
-
-
Harding, H.P.1
Ron, D.2
-
8
-
-
33744505375
-
Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1
-
Um S.H., D'Alessio D., Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 2006, 3(6):393-402.
-
(2006)
Cell Metab.
, vol.3
, Issue.6
, pp. 393-402
-
-
Um, S.H.1
D'Alessio, D.2
Thomas, G.3
-
9
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger S., Loewith R., Hall M.N. TOR signaling in growth and metabolism. Cell 2006, 124(3):471-484.
-
(2006)
Cell
, vol.124
, Issue.3
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
10
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Estela J., et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 2004, 6(11):1122-1128.
-
(2004)
Nat. Cell Biol.
, vol.6
, Issue.11
, pp. 1122-1128
-
-
Estela, J.1
-
11
-
-
0037623417
-
GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
-
DH K., et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 2003, 11(4):895-904.
-
(2003)
Mol. Cell
, vol.11
, Issue.4
, pp. 895-904
-
-
Dh, K.1
-
12
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
Peterson T.R., et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009, 137(5):873-886.
-
(2009)
Cell
, vol.137
, Issue.5
, pp. 873-886
-
-
Peterson, T.R.1
-
13
-
-
77953800576
-
Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly
-
Takeshi K., et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J. Biol. Chem. 2010, 285(26):20109-20116.
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.26
, pp. 20109-20116
-
-
Takeshi, K.1
-
14
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara K., et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002, 110(2):177-189.
-
(2002)
Cell
, vol.110
, Issue.2
, pp. 177-189
-
-
Hara, K.1
-
15
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y., et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 2007, 25(6):903-915.
-
(2007)
Mol. Cell
, vol.25
, Issue.6
, pp. 903-915
-
-
Sancak, Y.1
-
16
-
-
33748471980
-
MSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s
-
Frias M.A., et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 2006, 16(18):1865-1870.
-
(2006)
Curr. Biol.
, vol.16
, Issue.18
, pp. 1865-1870
-
-
Frias, M.A.1
-
17
-
-
34347210090
-
Identification of Protor as a novel Rictor-binding component of mTOR complex-2
-
Pearce L., et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem. J. 2007, 405(Part 3):513-522.
-
(2007)
Biochem. J.
, vol.405
, pp. 513-522
-
-
Pearce, L.1
-
18
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith R., et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 2002, 10(3):457-468.
-
(2002)
Mol. Cell
, vol.10
, Issue.3
, pp. 457-468
-
-
Loewith, R.1
-
19
-
-
84862528153
-
Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2)
-
Barlow A.D., et al. Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2). Diabetologia 2012, 55(5):1355-1365.
-
(2012)
Diabetologia
, vol.55
, Issue.5
, pp. 1355-1365
-
-
Barlow, A.D.1
-
20
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov D.D., et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 2006, 22(2):159-168.
-
(2006)
Mol. Cell
, vol.22
, Issue.2
, pp. 159-168
-
-
Sarbassov, D.D.1
-
21
-
-
79954576972
-
Transcriptional control of cellular metabolism by mTOR signaling
-
Yecies J.L., Manning B.D. Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res. 2011, 71(8):2815-2820.
-
(2011)
Cancer Res.
, vol.71
, Issue.8
, pp. 2815-2820
-
-
Yecies, J.L.1
Manning, B.D.2
-
22
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim D.-H., et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110(2):163-175.
-
(2002)
Cell
, vol.110
, Issue.2
, pp. 163-175
-
-
Kim, D.-H.1
-
23
-
-
36749081539
-
MTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
-
Cunningham J.T., et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007, 450(7170):736-740.
-
(2007)
Nature
, vol.450
, Issue.7170
, pp. 736-740
-
-
Cunningham, J.T.1
-
24
-
-
65549130128
-
MTORC1 activation regulates beta-cell mass and proliferation by modulation of cyclin D2 synthesis and stability
-
Norman B., et al. mTORC1 activation regulates beta-cell mass and proliferation by modulation of cyclin D2 synthesis and stability. J. Biol. Chem. 2009, 284(12):7832-7842.
-
(2009)
J. Biol. Chem.
, vol.284
, Issue.12
, pp. 7832-7842
-
-
Norman, B.1
-
25
-
-
42449104351
-
MTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes
-
Fraenkel M., et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 2008, 57(4):945-957.
-
(2008)
Diabetes
, vol.57
, Issue.4
, pp. 945-957
-
-
Fraenkel, M.1
-
26
-
-
33750044112
-
Stress and mTORture signaling
-
Reiling J.H., Sabatini D.M. Stress and mTORture signaling. Oncogene 2006, 25(48):6373-6383.
-
(2006)
Oncogene
, vol.25
, Issue.48
, pp. 6373-6383
-
-
Reiling, J.H.1
Sabatini, D.M.2
-
27
-
-
84906672871
-
Pancreatic β-cell failure mediated by mTORC1 hyperactivity and autophagic impairment
-
Alberto B., et al. Pancreatic β-cell failure mediated by mTORC1 hyperactivity and autophagic impairment. Diabetes 2014, 63(9):2996-3008.
-
(2014)
Diabetes
, vol.63
, Issue.9
, pp. 2996-3008
-
-
Alberto, B.1
-
28
-
-
42349086872
-
Biphasic response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice
-
Shigeyama Y., et al. Biphasic response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice. Mol. Cell. Biol. 2008, 28(9):2971-2979.
-
(2008)
Mol. Cell. Biol.
, vol.28
, Issue.9
, pp. 2971-2979
-
-
Shigeyama, Y.1
-
29
-
-
48249146208
-
Disruption of Tsc2 in pancreatic beta cells induces beta cell mass expansion and improved glucose tolerance in a TORC1-dependent manner
-
Rachdi L., et al. Disruption of Tsc2 in pancreatic beta cells induces beta cell mass expansion and improved glucose tolerance in a TORC1-dependent manner. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(27):9250-9255.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, Issue.27
, pp. 9250-9255
-
-
Rachdi, L.1
-
30
-
-
77957579650
-
Decreased IRS signaling impairs beta-cell cycle progression and survival in transgenic mice overexpressing S6K in beta-cells
-
Lynda E., et al. Decreased IRS signaling impairs beta-cell cycle progression and survival in transgenic mice overexpressing S6K in beta-cells. Diabetes 2010, 59(10):2390-2399.
-
(2010)
Diabetes
, vol.59
, Issue.10
, pp. 2390-2399
-
-
Lynda, E.1
-
31
-
-
79952374430
-
Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size
-
Yanyun G., et al. Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size. Diabetes 2011, 60(3):827-837.
-
(2011)
Diabetes
, vol.60
, Issue.3
, pp. 827-837
-
-
Yanyun, G.1
-
32
-
-
84874431540
-
MTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells
-
Le Bacquer O., et al. mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells. J. Endocrinol. 2013, 216(1):21-29.
-
(2013)
J. Endocrinol.
, vol.216
, Issue.1
, pp. 21-29
-
-
Le Bacquer, O.1
-
33
-
-
2942593991
-
ROS stress in cancer cells and therapeutic implications
-
Pelicano H., Carney D., Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 2004, 7(2):97-110.
-
(2004)
Drug Resist. Updat.
, vol.7
, Issue.2
, pp. 97-110
-
-
Pelicano, H.1
Carney, D.2
Huang, P.3
-
34
-
-
33645860825
-
Reactive oxygen species have a causal role in multiple forms of insulin resistance
-
Houstis N., Rosen E.D., Lander E.S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006, 440(7086):944-948.
-
(2006)
Nature
, vol.440
, Issue.7086
, pp. 944-948
-
-
Houstis, N.1
Rosen, E.D.2
Lander, E.S.3
-
35
-
-
29144458899
-
Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production
-
Aleksandra T., et al. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc. Natl. Acad. Sci. U. S. A. 2005, 102(50):17993-17998.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, Issue.50
, pp. 17993-17998
-
-
Aleksandra, T.1
-
36
-
-
0036086130
-
Free radicals in the physiological control of cell function
-
Wulf D.G. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82(1):47-95.
-
(2002)
Physiol. Rev.
, vol.82
, Issue.1
, pp. 47-95
-
-
Wulf, D.G.1
-
37
-
-
84944683146
-
Reperfusion injury and reactive oxygen species: the evolution of a concept
-
Granger D.N., Kvietys P.R. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015, 6:524-551.
-
(2015)
Redox Biol.
, vol.6
, pp. 524-551
-
-
Granger, D.N.1
Kvietys, P.R.2
-
38
-
-
77953941543
-
Role of mitochondria in beta-cell function and dysfunction
-
Maechler P., et al. Role of mitochondria in beta-cell function and dysfunction. Adv. Exp. Med. Biol. 2010, 654:193-216.
-
(2010)
Adv. Exp. Med. Biol.
, vol.654
, pp. 193-216
-
-
Maechler, P.1
-
39
-
-
79960835049
-
Extramitochondrial tricarboxylic acid cycle in retinal rod outer segments
-
Panfoli I., et al. Extramitochondrial tricarboxylic acid cycle in retinal rod outer segments. Biochimie 2011, 93(9):1565-1575.
-
(2011)
Biochimie
, vol.93
, Issue.9
, pp. 1565-1575
-
-
Panfoli, I.1
-
40
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417(1):1-13.
-
(2009)
Biochem. J.
, vol.417
, Issue.1
, pp. 1-13
-
-
Murphy, M.P.1
-
41
-
-
0034643340
-
Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage
-
Nishikawa T., et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000, 404(6779):787-790.
-
(2000)
Nature
, vol.404
, Issue.6779
, pp. 787-790
-
-
Nishikawa, T.1
-
43
-
-
84894572580
-
The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease
-
Niemann A., et al. The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease. Brain 2014, 137(Pt 3):668-682.
-
(2014)
Brain
, vol.137
, pp. 668-682
-
-
Niemann, A.1
-
44
-
-
77951953060
-
Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation
-
Koopman W.J., et al. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid. Redox Signal. 2010, 12(12):1431-1470.
-
(2010)
Antioxid. Redox Signal.
, vol.12
, Issue.12
, pp. 1431-1470
-
-
Koopman, W.J.1
-
45
-
-
84856556021
-
There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells
-
Brown G.C., Borutaite V. There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 2012, 12(1):1-4.
-
(2012)
Mitochondrion
, vol.12
, Issue.1
, pp. 1-4
-
-
Brown, G.C.1
Borutaite, V.2
-
46
-
-
84888133598
-
Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics
-
Mailloux R.J., McBride S.L., Harper M.E. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem. Sci. 2013, 38(12):592-602.
-
(2013)
Trends Biochem. Sci.
, vol.38
, Issue.12
, pp. 592-602
-
-
Mailloux, R.J.1
McBride, S.L.2
Harper, M.E.3
-
47
-
-
84879430920
-
Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
-
Quinlan C.L., et al. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 2013, 1:304-312.
-
(2013)
Redox Biol.
, vol.1
, pp. 304-312
-
-
Quinlan, C.L.1
-
48
-
-
84885857871
-
Recent advances in reactive oxygen species measurement in biological systems
-
Woolley J.F., Stanicka J., Cotter T.G. Recent advances in reactive oxygen species measurement in biological systems. Trends Biochem. Sci. 2013, 38(11):556-565.
-
(2013)
Trends Biochem. Sci.
, vol.38
, Issue.11
, pp. 556-565
-
-
Woolley, J.F.1
Stanicka, J.2
Cotter, T.G.3
-
49
-
-
58149525327
-
Molecular physiology of mammalian glucokinase
-
Iynedjian P.B. Molecular physiology of mammalian glucokinase. Cell. Mol. Life Sci. 2009, 66(1):27-42.
-
(2009)
Cell. Mol. Life Sci.
, vol.66
, Issue.1
, pp. 27-42
-
-
Iynedjian, P.B.1
-
50
-
-
33645966526
-
K(ATP) channels and insulin secretion: a key role in health and disease
-
Ashcroft F.M. K(ATP) channels and insulin secretion: a key role in health and disease. Biochem. Soc. Trans. 2006, 34(2):243-246.
-
(2006)
Biochem. Soc. Trans.
, vol.34
, Issue.2
, pp. 243-246
-
-
Ashcroft, F.M.1
-
51
-
-
48949120517
-
Novel aspects of the molecular mechanisms controlling insulin secretion
-
Eliasson L., et al. Novel aspects of the molecular mechanisms controlling insulin secretion. J. Physiol. 2008, 586(14):3313-3324.
-
(2008)
J. Physiol.
, vol.586
, Issue.14
, pp. 3313-3324
-
-
Eliasson, L.1
-
52
-
-
0033762782
-
Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes
-
Silva J.P., et al. Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat. Genet. 2000, 26(3):336-340.
-
(2000)
Nat. Genet.
, vol.26
, Issue.3
, pp. 336-340
-
-
Silva, J.P.1
-
53
-
-
0035406743
-
Diminished insulin secretory response to glucose but normal insulin and glucagon secretory responses to arginine in a family with maternally inherited diabetes and deafness caused by mitochondrial tRNA(LEU(UUR)) gene mutation
-
Brändle M., et al. Diminished insulin secretory response to glucose but normal insulin and glucagon secretory responses to arginine in a family with maternally inherited diabetes and deafness caused by mitochondrial tRNA(LEU(UUR)) gene mutation. Diabetes Care 2001, 24(7):1253-1258.
-
(2001)
Diabetes Care
, vol.24
, Issue.7
, pp. 1253-1258
-
-
Brändle, M.1
-
54
-
-
0842285626
-
Mitochondrial diabetes: molecular mechanisms and clinical presentation
-
Maassen J.A., et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 2004, 53(Suppl. 1):S103-S109.
-
(2004)
Diabetes
, vol.53
, pp. S103-S109
-
-
Maassen, J.A.1
-
55
-
-
76049083966
-
Reactive oxygen species, cellular redox systems, and apoptosis
-
Circu M.L., Aw T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010, 48(6):749-762.
-
(2010)
Free Radic. Biol. Med.
, vol.48
, Issue.6
, pp. 749-762
-
-
Circu, M.L.1
Aw, T.Y.2
-
56
-
-
80051791624
-
Induction of the intrinsic apoptosis pathway in insulin-secreting cells is dependent on oxidative damage of mitochondria but independent of caspase-12 activation
-
Mehmeti I., et al. Induction of the intrinsic apoptosis pathway in insulin-secreting cells is dependent on oxidative damage of mitochondria but independent of caspase-12 activation. Biochim. Biophys. Acta 2011, 1813(10):1827-1835.
-
(2011)
Biochim. Biophys. Acta
, vol.1813
, Issue.10
, pp. 1827-1835
-
-
Mehmeti, I.1
-
57
-
-
77649275621
-
ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function
-
Pi J., et al. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol. Appl. Pharmacol. 2010, 244(1):77-83.
-
(2010)
Toxicol. Appl. Pharmacol.
, vol.244
, Issue.1
, pp. 77-83
-
-
Pi, J.1
-
58
-
-
0033600762
-
Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells
-
Maechler P., Jornot L., Wollheim C.B. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J. Biol. Chem. 1999, 274(39):27905-27913.
-
(1999)
J. Biol. Chem.
, vol.274
, Issue.39
, pp. 27905-27913
-
-
Maechler, P.1
Jornot, L.2
Wollheim, C.B.3
-
59
-
-
34547830983
-
Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity
-
Newsholme P., Haber E.P., Hirabara S.M., Rebelato E.L.O., Procopio J., Morgan D., et al. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J. Physiol. 2007, 583(Pt 1):9-24.
-
(2007)
J. Physiol.
, vol.583
, pp. 9-24
-
-
Newsholme, P.1
Haber, E.P.2
Hirabara, S.M.3
Rebelato, E.L.O.4
Procopio, J.5
Morgan, D.6
-
60
-
-
0031871335
-
An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus
-
Rabinovitch A. An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes Metab. Rev. 1998, 14(2):129-151.
-
(1998)
Diabetes Metab. Rev.
, vol.14
, Issue.2
, pp. 129-151
-
-
Rabinovitch, A.1
-
61
-
-
0036796875
-
Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes
-
Evans J.L., et al. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr. Rev. 2002, 23(5):599-622.
-
(2002)
Endocr. Rev.
, vol.23
, Issue.5
, pp. 599-622
-
-
Evans, J.L.1
-
62
-
-
0035128723
-
Beta-cell apoptosis: stimuli and signaling
-
Mandrup-Poulsen T. Beta-cell apoptosis: stimuli and signaling. Diabetes 2001, 50(Suppl. 1):S58-S63.
-
(2001)
Diabetes
, vol.50
, pp. S58-S63
-
-
Mandrup-Poulsen, T.1
-
63
-
-
0037341238
-
Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection
-
Robertson R.P., et al. Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 2003, 52(3):581-587.
-
(2003)
Diabetes
, vol.52
, Issue.3
, pp. 581-587
-
-
Robertson, R.P.1
-
64
-
-
0037219409
-
Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?
-
Evans J.L., et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?. Diabetes 2003, 52(1):1-8.
-
(2003)
Diabetes
, vol.52
, Issue.1
, pp. 1-8
-
-
Evans, J.L.1
-
65
-
-
83755207504
-
Mitochondria-targeted antioxidants protect pancreatic β-cells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity
-
Sangbin L., et al. Mitochondria-targeted antioxidants protect pancreatic β-cells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity. Cell. Physiol. Biochem. 2011, 28(5):873-886.
-
(2011)
Cell. Physiol. Biochem.
, vol.28
, Issue.5
, pp. 873-886
-
-
Sangbin, L.1
-
66
-
-
84865001535
-
Mitochondrial reactive oxygen species (ROS) inhibition ameliorates palmitate-induced INS-1 beta cell death
-
Lin N., et al. Mitochondrial reactive oxygen species (ROS) inhibition ameliorates palmitate-induced INS-1 beta cell death. Endocrine 2012, 42(1):107-117.
-
(2012)
Endocrine
, vol.42
, Issue.1
, pp. 107-117
-
-
Lin, N.1
-
67
-
-
0036118562
-
Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis
-
Shoshani T., et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol. Cell. Biol. 2002, 22(7):2283-2293.
-
(2002)
Mol. Cell. Biol.
, vol.22
, Issue.7
, pp. 2283-2293
-
-
Shoshani, T.1
-
68
-
-
34249309925
-
Hypoxic condition- and high cell density-induced expression of Redd1 is regulated by activation of hypoxia-inducible factor-1 alpha and Sp1 through the phosphatidylinositol 3-kinase/Akt signaling pathway
-
Jin H., et al. Hypoxic condition- and high cell density-induced expression of Redd1 is regulated by activation of hypoxia-inducible factor-1 alpha and Sp1 through the phosphatidylinositol 3-kinase/Akt signaling pathway. Cell. Signal. 2007, 19(7):1393-1403.
-
(2007)
Cell. Signal.
, vol.19
, Issue.7
, pp. 1393-1403
-
-
Jin, H.1
-
69
-
-
32444433450
-
Hypoxia-induced energy stress regulates mRNA translation and cell growth: molecular cell
-
Liu L., et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth: molecular cell. Mol. Cell 2006, 21(21):521-531.
-
(2006)
Mol. Cell
, vol.21
, Issue.21
, pp. 521-531
-
-
Liu, L.1
-
70
-
-
42249099251
-
Melatonin represses oxidative stress-induced activation of the MAP kinase and mTOR signaling pathways in H4IIE hepatoma cells through inhibition of Ras
-
Kimball S.R., Abbas A., Jefferson L.S. Melatonin represses oxidative stress-induced activation of the MAP kinase and mTOR signaling pathways in H4IIE hepatoma cells through inhibition of Ras. J. Pineal Res. 2008, 44(4):379-386.
-
(2008)
J. Pineal Res.
, vol.44
, Issue.4
, pp. 379-386
-
-
Kimball, S.R.1
Abbas, A.2
Jefferson, L.S.3
-
71
-
-
80051835640
-
Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1
-
Koyanagi M., et al. Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1. PLoS One 2011, 6(8).
-
(2011)
PLoS One
, vol.6
, Issue.8
-
-
Koyanagi, M.1
-
72
-
-
84877315340
-
Improvement of ER stress-induced diabetes by stimulating autophagy
-
Etty B.W., et al. Improvement of ER stress-induced diabetes by stimulating autophagy. Autophagy 2013, 9(4):626-628.
-
(2013)
Autophagy
, vol.9
, Issue.4
, pp. 626-628
-
-
Etty, B.W.1
-
73
-
-
84939838851
-
Activation of autophagic flux against xenoestrogen bisphenol-A-induced hippocampal neurodegeneration via AMP kinase (AMPK)/mammalian target of rapamycin (mTOR) pathways
-
Swati A., et al. Activation of autophagic flux against xenoestrogen bisphenol-A-induced hippocampal neurodegeneration via AMP kinase (AMPK)/mammalian target of rapamycin (mTOR) pathways. J. Biol. Chem. 2015, 290(34):21163-21184.
-
(2015)
J. Biol. Chem.
, vol.290
, Issue.34
, pp. 21163-21184
-
-
Swati, A.1
-
74
-
-
0036787462
-
Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic beta-cells
-
McDaniel M.L., et al. Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic beta-cells. Diabetes 2002, 51(10):2877-2885.
-
(2002)
Diabetes
, vol.51
, Issue.10
, pp. 2877-2885
-
-
McDaniel, M.L.1
-
75
-
-
52949096557
-
Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity
-
Zhang X., et al. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008, 135(1):61-73.
-
(2008)
Cell
, vol.135
, Issue.1
, pp. 61-73
-
-
Zhang, X.1
-
76
-
-
77956400005
-
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
-
Yang L., et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010, 11(6):467-478.
-
(2010)
Cell Metab.
, vol.11
, Issue.6
, pp. 467-478
-
-
Yang, L.1
-
77
-
-
33748069813
-
Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes
-
Ozcan U., et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006, 313(5790):1137-1140.
-
(2006)
Science
, vol.313
, Issue.5790
, pp. 1137-1140
-
-
Ozcan, U.1
-
78
-
-
78049485910
-
Diabetes as a disease of endoplasmic reticulum stress
-
Thomas S.E., et al. Diabetes as a disease of endoplasmic reticulum stress. Diabetes Metab. Res. Rev. 2010, 26(8):611-621.
-
(2010)
Diabetes Metab. Res. Rev.
, vol.26
, Issue.8
, pp. 611-621
-
-
Thomas, S.E.1
-
79
-
-
0242609973
-
Impact of endoplasmic reticulum stress pathway on pancreatic beta-cells and diabetes mellitus
-
Araki E., Oyadomari S., Mori M. Impact of endoplasmic reticulum stress pathway on pancreatic beta-cells and diabetes mellitus. Exp. Biol. Med. (Maywood) 2003, 228(10):1213-1217.
-
(2003)
Exp. Biol. Med. (Maywood)
, vol.228
, Issue.10
, pp. 1213-1217
-
-
Araki, E.1
Oyadomari, S.2
Mori, M.3
-
80
-
-
33847677975
-
Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes
-
Laybutt D.R., et al. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 2007, 50(4):752-763.
-
(2007)
Diabetologia
, vol.50
, Issue.4
, pp. 752-763
-
-
Laybutt, D.R.1
-
81
-
-
33845568737
-
Life, death, the unfolded protein response and apoptosis
-
Knowlton A.A. Life, death, the unfolded protein response and apoptosis. Cardiovasc. Res. 2007, 73(1):1-2.
-
(2007)
Cardiovasc. Res.
, vol.73
, Issue.1
, pp. 1-2
-
-
Knowlton, A.A.1
-
82
-
-
84903795970
-
Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease
-
Cao S.S., Kaufman R.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 2014, 21(3):396-413.
-
(2014)
Antioxid. Redox Signal.
, vol.21
, Issue.3
, pp. 396-413
-
-
Cao, S.S.1
Kaufman, R.J.2
-
83
-
-
84923347695
-
Leptin induced GRP78 expression through the PI3K-mTOR pathway in neuronal cells
-
Thon M., et al. Leptin induced GRP78 expression through the PI3K-mTOR pathway in neuronal cells. Sci. Rep. 2013, 4:7096.
-
(2013)
Sci. Rep.
, vol.4
, pp. 7096
-
-
Thon, M.1
-
84
-
-
39149104320
-
The role for endoplasmic reticulum stress in diabetes mellitus
-
Eizirik D.L., Cardozo A.K., Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev. 2008, 29(1):42-61.
-
(2008)
Endocr. Rev.
, vol.29
, Issue.1
, pp. 42-61
-
-
Eizirik, D.L.1
Cardozo, A.K.2
Cnop, M.3
-
85
-
-
35848970081
-
Endoplasmic reticulum stress signaling in pancreatic beta-cells
-
Fonseca S.G., Lipson K.L., Urano F. Endoplasmic reticulum stress signaling in pancreatic beta-cells. Antioxid. Redox Signal. 2007, 9(12):2335-2344.
-
(2007)
Antioxid. Redox Signal.
, vol.9
, Issue.12
, pp. 2335-2344
-
-
Fonseca, S.G.1
Lipson, K.L.2
Urano, F.3
-
86
-
-
34748865437
-
A busy cell-endoplasmic reticulum stress in the pancreatic beta-cell
-
Ortsater H., Sjoholm A. A busy cell-endoplasmic reticulum stress in the pancreatic beta-cell. Mol. Cell. Endocrinol. 2007, 277(1-2):1-5.
-
(2007)
Mol. Cell. Endocrinol.
, vol.277
, Issue.1-2
, pp. 1-5
-
-
Ortsater, H.1
Sjoholm, A.2
-
87
-
-
84896731193
-
Metformin plays a dual role in MIN6 pancreatic beta cell function through AMPK-dependent autophagy
-
Jiang Y., et al. Metformin plays a dual role in MIN6 pancreatic beta cell function through AMPK-dependent autophagy. Int. J. Biol. Sci. 2014, 10(3):268-277.
-
(2014)
Int. J. Biol. Sci.
, vol.10
, Issue.3
, pp. 268-277
-
-
Jiang, Y.1
-
88
-
-
77956404377
-
Eaten alive: a history of macroautophagy
-
Yang Z., Klionsky D.J. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 2010, 12(9):814-822.
-
(2010)
Nat. Cell Biol.
, vol.12
, Issue.9
, pp. 814-822
-
-
Yang, Z.1
Klionsky, D.J.2
-
89
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Noboru M., et al. Autophagy fights disease through cellular self-digestion. Nature 2008, 451(7182):1069-1075.
-
(2008)
Nature
, vol.451
, Issue.7182
, pp. 1069-1075
-
-
Noboru, M.1
-
90
-
-
22344444616
-
Does autophagy contribute to cell death?
-
Debnath J., Baehrecke E.H., Kroemer G. Does autophagy contribute to cell death?. Autophagy 2014, 1(2):66-74.
-
(2014)
Autophagy
, vol.1
, Issue.2
, pp. 66-74
-
-
Debnath, J.1
Baehrecke, E.H.2
Kroemer, G.3
-
91
-
-
56749170677
-
Autophagic cell death: the story of a misnomer
-
Kroemer G., Levine B. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 2008, 9(12):1004-1010.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, Issue.12
, pp. 1004-1010
-
-
Kroemer, G.1
Levine, B.2
-
92
-
-
79959626436
-
Autophagy and apoptosis: what is the connection?
-
Gump J.M., Thorburn A. Autophagy and apoptosis: what is the connection?. Trends Cell Biol. 2011, 21(7):387-392.
-
(2011)
Trends Cell Biol.
, vol.21
, Issue.7
, pp. 387-392
-
-
Gump, J.M.1
Thorburn, A.2
-
93
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
Axe E.L., et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 2008, 182(4):685-701.
-
(2008)
J. Cell Biol.
, vol.182
, Issue.4
, pp. 685-701
-
-
Axe, E.L.1
-
94
-
-
84860468095
-
Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling
-
Appenzeller-Herzog C., Hall M.N. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol. 2012, 22(5):274-282.
-
(2012)
Trends Cell Biol.
, vol.22
, Issue.5
, pp. 274-282
-
-
Appenzeller-Herzog, C.1
Hall, M.N.2
-
95
-
-
33749431713
-
The mTOR pathway in the control of protein synthesis
-
Wang X., Proud C.G. The mTOR pathway in the control of protein synthesis. Physiology 2006, 21(4):362-369.
-
(2006)
Physiology
, vol.21
, Issue.4
, pp. 362-369
-
-
Wang, X.1
Proud, C.G.2
-
96
-
-
63349109171
-
Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic beta-cells via activation of mTORC1
-
Bachar E., et al. Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic beta-cells via activation of mTORC1. PLoS One 2009, 4(3).
-
(2009)
PLoS One
, vol.4
, Issue.3
-
-
Bachar, E.1
-
97
-
-
84855696465
-
MTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway
-
Kato H., et al. mTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway. Cell Death Differ. 2012, 19(2):310-320.
-
(2012)
Cell Death Differ.
, vol.19
, Issue.2
, pp. 310-320
-
-
Kato, H.1
-
98
-
-
40649104735
-
Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis
-
Ozcan U., et al. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol. Cell 2008, 29(5):541-551.
-
(2008)
Mol. Cell
, vol.29
, Issue.5
, pp. 541-551
-
-
Ozcan, U.1
-
99
-
-
80155151897
-
MTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome
-
Ito N., et al. mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome. Lab. Investig. 2011, 91(11):1584-1595.
-
(2011)
Lab. Investig.
, vol.91
, Issue.11
, pp. 1584-1595
-
-
Ito, N.1
-
100
-
-
79953146630
-
Selective abrogation of BiP/GRP78 blunts activation of NF-kappaB through the ATF6 branch of the UPR: involvement of C/EBPbeta and mTOR-dependent dephosphorylation of Akt
-
Nakajima S., et al. Selective abrogation of BiP/GRP78 blunts activation of NF-kappaB through the ATF6 branch of the UPR: involvement of C/EBPbeta and mTOR-dependent dephosphorylation of Akt. Mol. Cell. Biol. 2011, 31(8):1710-1718.
-
(2011)
Mol. Cell. Biol.
, vol.31
, Issue.8
, pp. 1710-1718
-
-
Nakajima, S.1
-
101
-
-
77953506788
-
ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy
-
Qin L., et al. ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy 2010, 6(2):239-247.
-
(2010)
Autophagy
, vol.6
, Issue.2
, pp. 239-247
-
-
Qin, L.1
-
102
-
-
0036342294
-
Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway
-
Manning B.D., et al. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell 2002, 10(1):151-162.
-
(2002)
Mol. Cell
, vol.10
, Issue.1
, pp. 151-162
-
-
Manning, B.D.1
-
103
-
-
65949106140
-
Tuberous sclerosis complex activity is required to control neuronal stress responses in an mTOR-dependent manner
-
Di Nardo A., et al. Tuberous sclerosis complex activity is required to control neuronal stress responses in an mTOR-dependent manner. J. Neurosci. 2009, 29(18):5926-5937.
-
(2009)
J. Neurosci.
, vol.29
, Issue.18
, pp. 5926-5937
-
-
Di Nardo, A.1
-
104
-
-
35848957485
-
Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?
-
Malhotra J.D., Kaufman R.J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?. Antioxid. Redox Signal. 2007, 9(12):2277-2293.
-
(2007)
Antioxid. Redox Signal.
, vol.9
, Issue.12
, pp. 2277-2293
-
-
Malhotra, J.D.1
Kaufman, R.J.2
-
105
-
-
84865245211
-
Unfolded protein response
-
Cao S.S., Kaufman R.J. Unfolded protein response. Curr. Biol. 2012, 22(16):R622-R626.
-
(2012)
Curr. Biol.
, vol.22
, Issue.16
, pp. R622-R626
-
-
Cao, S.S.1
Kaufman, R.J.2
-
106
-
-
70349352744
-
Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase
-
Santos C.X.C., et al. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid. Redox Signal. 2009, 11(10):2409-2427.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, Issue.10
, pp. 2409-2427
-
-
Santos, C.X.C.1
-
107
-
-
77952541558
-
The sites and topology of mitochondrial superoxide production
-
Brand M.D. The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 2010, 45(7-8):466-472.
-
(2010)
Exp. Gerontol.
, vol.45
, Issue.7-8
, pp. 466-472
-
-
Brand, M.D.1
-
108
-
-
0031610364
-
Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum
-
Pollard M.G., Travers K.J., Weissman J.S. Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol. Cell 1998, 1(2):171-182.
-
(1998)
Mol. Cell
, vol.1
, Issue.2
, pp. 171-182
-
-
Pollard, M.G.1
Travers, K.J.2
Weissman, J.S.3
-
109
-
-
84877578475
-
ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death
-
Han J., et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 2013, 15(5):481-490.
-
(2013)
Nat. Cell Biol.
, vol.15
, Issue.5
, pp. 481-490
-
-
Han, J.1
-
110
-
-
84964834830
-
Oxidative and endoplasmic reticulum stress in beta-cell dysfunction in diabetes
-
Hasnain S.Z., Prins J.B., McGuckin M.A. Oxidative and endoplasmic reticulum stress in beta-cell dysfunction in diabetes. J. Mol. Endocrinol. 2016, 56(2):R33-R54.
-
(2016)
J. Mol. Endocrinol.
, vol.56
, Issue.2
, pp. R33-R54
-
-
Hasnain, S.Z.1
Prins, J.B.2
McGuckin, M.A.3
-
111
-
-
84856951239
-
Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition
-
Gilkerson R.W., et al. Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Hum. Mol. Genet. 2012, 21(5):978-990.
-
(2012)
Hum. Mol. Genet.
, vol.21
, Issue.5
, pp. 978-990
-
-
Gilkerson, R.W.1
|