메뉴 건너뛰기




Volumn 30, Issue 10, 2016, Pages 1138-1154

Noncanonical views of homology-directed DNA repair

Author keywords

ALT; Break induced replication; DNA repair; Homologous recombination; Telomere

Indexed keywords

RAD51 PROTEIN; SINGLE STRANDED DNA;

EID: 84969760939     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.280545.116     Document Type: Review
Times cited : (112)

References (220)
  • 1
    • 0034675930 scopus 로고    scopus 로고
    • Role of ERCC1 in removal of long non-homologous tails during targeted homologous recombination
    • Adair GM, Rolig RL, Moore-Faver D, Zabelshansky M, Wilson JH, Nairn RS. 2000. Role of ERCC1 in removal of long non-homologous tails during targeted homologous recombination. EMBO J 19: 5552-5561.
    • (2000) EMBO J , vol.19 , pp. 5552-5561
    • Adair, G.M.1    Rolig, R.L.2    Moore-Faver, D.3    Zabelshansky, M.4    Wilson, J.H.5    Nairn, R.S.6
  • 2
    • 0037428069 scopus 로고    scopus 로고
    • DrosophilaBLMin double- strand break repair by synthesis-dependent strand annealing
    • Adams MD, McVey M, Sekelsky JJ. 2003. DrosophilaBLMin double- strand break repair by synthesis-dependent strand annealing. Science 299: 265-267.
    • (2003) Science , vol.299 , pp. 265-267
    • Adams, M.D.1    McVey, M.2    Sekelsky, J.J.3
  • 3
    • 77955841934 scopus 로고    scopus 로고
    • Metabolism of postsynaptic recombination intermediates
    • Adelman CA, Boulton SJ. 2010. Metabolism of postsynaptic recombination intermediates. FEBS Lett 584: 3709-3716.
    • (2010) FEBS Lett , vol.584 , pp. 3709-3716
    • Adelman, C.A.1    Boulton, S.J.2
  • 4
    • 69849097676 scopus 로고    scopus 로고
    • Analysis of repair mechanism choice during homologous recombination
    • Agmon N, Pur S, Liefshitz B, Kupiec M. 2009. Analysis of repair mechanism choice during homologous recombination. Nucleic Acids Res 37: 5081-5092.
    • (2009) Nucleic Acids Res , vol.37 , pp. 5081-5092
    • Agmon, N.1    Pur, S.2    Liefshitz, B.3    Kupiec, M.4
  • 5
    • 0035854342 scopus 로고    scopus 로고
    • Differential timing and control of noncrossover and crossover recombination during meiosis
    • Allers T, Lichten M. 2009. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106: 47-57.
    • (2009) Cell , vol.106 , pp. 47-57
    • Allers, T.1    Lichten, M.2
  • 7
    • 39449129496 scopus 로고    scopus 로고
    • The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends
    • Aniukwu J, Glickman MS, Shuman S. 2008. The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends. Genes Dev 22: 512-527.
    • (2008) Genes Dev , vol.22 , pp. 512-527
    • Aniukwu, J.1    Glickman, M.S.2    Shuman, S.3
  • 8
    • 0027214724 scopus 로고
    • Homologous recombination- dependent initiation of DNA replication from DNA damage-inducible origins in Escherichia coli
    • Asai T, Sommer S, Bailone A, Kogoma T. 1993. Homologous recombination- dependent initiation of DNA replication from DNA damage-inducible origins in Escherichia coli. EMBO J 12: 3287-3295.
    • (1993) EMBO J , vol.12 , pp. 3287-3295
    • Asai, T.1    Sommer, S.2    Bailone, A.3    Kogoma, T.4
  • 9
    • 11244280890 scopus 로고    scopus 로고
    • Involvement of poly(ADPribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining
    • Audebert M, Salles B, Calsou P. 2004. Involvement of poly(ADPribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279: 55117-55126.
    • (2004) J Biol Chem , vol.279 , pp. 55117-55126
    • Audebert, M.1    Salles, B.2    Calsou, P.3
  • 11
    • 0029858775 scopus 로고    scopus 로고
    • A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae
    • Bai Y, Symington LS. 1996. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev 10: 2025-2037.
    • (1996) Genes Dev , vol.10 , pp. 2025-2037
    • Bai, Y.1    Symington, L.S.2
  • 13
    • 0028286906 scopus 로고
    • One-sided invasion events in homologous recombination at double-strand breaks
    • Belmaaza A, Chartrand P. 1994. One-sided invasion events in homologous recombination at double-strand breaks. Mutat Res 314: 199-208.
    • (1994) Mutat Res , vol.314 , pp. 199-208
    • Belmaaza, A.1    Chartrand, P.2
  • 14
    • 46249131123 scopus 로고    scopus 로고
    • Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair
    • Bennardo N, Cheng A, Huang N, Stark JM. 2008. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 4: e1000110.
    • (2008) Plos Genet , vol.4
    • Bennardo, N.1    Cheng, A.2    Huang, N.3    Stark, J.M.4
  • 16
    • 0031737723 scopus 로고    scopus 로고
    • Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture
    • Bosco G, Haber JE. 1998. Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 150: 1037-1047.
    • (1998) Genetics , vol.150 , pp. 1037-1047
    • Bosco, G.1    Haber, J.E.2
  • 17
    • 0029791694 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways
    • Boulton SJ, Jackson SP. 1996. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J 15: 5093-5103.
    • (1996) EMBO J , vol.15 , pp. 5093-5103
    • Boulton, S.J.1    Jackson, S.P.2
  • 18
    • 33645781346 scopus 로고    scopus 로고
    • Making ends meet: Repairing breaks in bacterial DNA by non-homologous end-joining
    • Bowater R, Doherty AJ. 2006. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet 2: e8.
    • (2006) Plos Genet , vol.2
    • Bowater, R.1    Doherty, A.J.2
  • 19
    • 0036671755 scopus 로고    scopus 로고
    • XRCC3 controls the fidelity of homologous recombination: Roles for XRCC3 in late stages of recombination
    • Brenneman MA, Wagener BM, Miller CA, Allen C, Nickoloff JA. 2002. XRCC3 controls the fidelity of homologous recombination: roles for XRCC3 in late stages of recombination. Mol Cell 10: 387-395.
    • (2002) Mol Cell , vol.10 , pp. 387-395
    • Brenneman, M.A.1    Wagener, B.M.2    Miller, C.A.3    Allen, C.4    Nickoloff, J.A.5
  • 20
    • 0029162563 scopus 로고
    • Telomere elongation in immortal human cells without detectable telomerase activity
    • Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. 1995. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14: 4240-4248.
    • (1995) EMBO J , vol.14 , pp. 4240-4248
    • Bryan, T.M.1    Englezou, A.2    Gupta, J.3    Bacchetti, S.4    Reddel, R.R.5
  • 22
    • 0028943142 scopus 로고
    • Selection of a remote cleavage site by I-tevI, the td intron-encoded endonuclease
    • Bryk M, Belisle M, Mueller JE, Belfort M. 1995. Selection of a remote cleavage site by I-tevI, the td intron-encoded endonuclease. J Mol Biol 247: 197-210.
    • (1995) J Mol Biol , vol.247 , pp. 197-210
    • Bryk, M.1    Belisle, M.2    Mueller, J.E.3    Belfort, M.4
  • 23
    • 84881101184 scopus 로고    scopus 로고
    • End-joining, translocations and cancer
    • Bunting SF, Nussenzweig A. 2013. End-joining, translocations and cancer. Nat Rev Cancer 13: 443-454.
    • (2013) Nat Rev Cancer , vol.13 , pp. 443-454
    • Bunting, S.F.1    Nussenzweig, A.2
  • 24
    • 0034967389 scopus 로고    scopus 로고
    • Evidence for two mechanisms of palindrome- stimulated deletion in Escherichia coli: Single-strand annealing and replication slipped mispairing
    • Bzymek M, Lovett ST. 2001. Evidence for two mechanisms of palindrome- stimulated deletion in Escherichia coli: single-strand annealing and replication slipped mispairing. Genetics 158: 527-540.
    • (2001) Genetics , vol.158 , pp. 527-540
    • Bzymek, M.1    Lovett, S.T.2
  • 25
    • 84908045717 scopus 로고    scopus 로고
    • Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks
    • Cannavo E, Cejka P. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514: 122-125.
    • (2014) Nature , vol.514 , pp. 122-125
    • Cannavo, E.1    Cejka, P.2
  • 26
    • 84959194281 scopus 로고    scopus 로고
    • Mechanisms underlying structural variant formation in genomic disorders
    • Carvalho CMB, Lupski JR. 2016. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet 17: 224-238.
    • (2016) Nat Rev Genet , vol.17 , pp. 224-238
    • Carvalho, C.1    Lupski, J.R.2
  • 27
    • 78651379303 scopus 로고    scopus 로고
    • Structural variation of the human genome: Mechanisms, assays, and role in male infertility
    • Carvalho CM, Zhang F, Lupski JR. 2011. Structural variation of the human genome: mechanisms, assays, and role in male infertility. Syst Biol Reprod Med 57: 3-16.
    • (2011) Syst Biol Reprod Med , vol.57 , pp. 3-16
    • Carvalho, C.M.1    Zhang, F.2    Lupski, J.R.3
  • 31
    • 84955360632 scopus 로고    scopus 로고
    • Repair pathway choices and consequences at the double-strand break
    • Ceccaldi R, Rondinelli B, D’Andrea AD. 2016. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26: 52-64.
    • (2016) Trends Cell Biol , vol.26 , pp. 52-64
    • Ceccaldi, R.1    Rondinelli, B.2    D’Andrea, A.D.3
  • 32
    • 7644237444 scopus 로고    scopus 로고
    • Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops
    • Cesare AJ, Griffith JD. 2004. Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops. Mol Cell Biol 24: 9948-9957.
    • (2004) Mol Cell Biol , vol.24 , pp. 9948-9957
    • Cesare, A.J.1    Griffith, J.D.2
  • 33
    • 77951133257 scopus 로고    scopus 로고
    • Alternative lengthening of telomeres: Models, mechanisms and implications
    • Cesare AJ, Reddel RR. 2010. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet 11: 319-330.
    • (2010) Nat Rev Genet , vol.11 , pp. 319-330
    • Cesare, A.J.1    Reddel, R.R.2
  • 35
    • 77957369329 scopus 로고    scopus 로고
    • Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila
    • Chan SH, Yu AM, McVey M. 2010. Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genet 6: e1001005.
    • (2010) Plos Genet , vol.6
    • Chan, S.H.1    Yu, A.M.2    McVey, M.3
  • 36
  • 37
    • 84865364870 scopus 로고    scopus 로고
    • Playing the end game: DNA double-strand break repair pathway choice
    • Chapman JR, Taylor MRG, Boulton SJ. 2012. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47: 497-510.
    • (2012) Mol Cell , vol.47 , pp. 497-510
    • Chapman, J.R.1    Taylor, M.2    Boulton, S.J.3
  • 39
    • 0032109778 scopus 로고    scopus 로고
    • Chromosomal rearrangements occur in S. Cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair
    • Chen C, Umezu K, Kolodner RD. 1998. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol Cell 2: 9-22.
    • (1998) Mol Cell , vol.2 , pp. 9-22
    • Chen, C.1    Umezu, K.2    Kolodner, R.D.3
  • 40
    • 0035131699 scopus 로고    scopus 로고
    • Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events
    • Chen Q, Ijpma A, Greider CW. 2001. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol Cell Biol 21: 1819-1827.
    • (2001) Mol Cell Biol , vol.21 , pp. 1819-1827
    • Chen, Q.1    Ijpma, A.2    Greider, C.W.3
  • 41
    • 84907482360 scopus 로고    scopus 로고
    • Interchromosomal homology searches drive directional ALT telomere movement and synapsis
    • Cho NW, Dilley RL, Lampson MA, Greenberg RA. 2014. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159: 108-121.
    • (2014) Cell , vol.159 , pp. 108-121
    • Cho, N.W.1    Dilley, R.L.2    Lampson, M.A.3    Greenberg, R.A.4
  • 42
    • 77953224210 scopus 로고    scopus 로고
    • Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting
    • Chung W-H, Zhu Z, Papusha A, Malkova A, Ira G. 2010. Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting. PLoS Genet 6: e1000948.
    • (2010) Plos Genet , vol.6
    • Chung, W.-H.1    Zhu, Z.2    Papusha, A.3    Malkova, A.4    Ira, G.5
  • 43
    • 33847726179 scopus 로고    scopus 로고
    • Xrcc3 and Nbs1 are required for the production of extrachromosomal telomeric circles in human alternative lengthening of telomere cells
    • Compton SA, Choi J-H, Cesare AJ, Özgür S, Griffith JD. 2007. Xrcc3 and Nbs1 are required for the production of extrachromosomal telomeric circles in human alternative lengthening of telomere cells. Cancer Res 67: 1513-1519.
    • (2007) Cancer Res , vol.67 , pp. 1513-1519
    • Compton, S.A.1    Choi, J.-H.2    Cesare, A.J.3    Özgür, S.4    Griffith, J.D.5
  • 47
    • 84962560714 scopus 로고    scopus 로고
    • SMARCAL1 resolves replication stress at ALT telomeres
    • Cox KE, Marechal A, Flynn RL. 2016. SMARCAL1 resolves replication stress at ALT telomeres. Cell Rep 14: 1032-1040.
    • (2016) Cell Rep , vol.14 , pp. 1032-1040
    • Cox, K.E.1    Marechal, A.2    Flynn, R.L.3
  • 49
    • 1542344337 scopus 로고    scopus 로고
    • RAD51-dependent break-induced replication in yeast
    • Davis AP, Symington LS. 2004. RAD51-dependent break-induced replication in yeast. Mol Cell Biol 24: 2344-2351.
    • (2004) Mol Cell Biol , vol.24 , pp. 2344-2351
    • Davis, A.P.1    Symington, L.S.2
  • 50
    • 34547132093 scopus 로고    scopus 로고
    • Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination
    • Decottignies A. 2007. Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination. Genetics 176: 1403-1415.
    • (2007) Genetics , vol.176 , pp. 1403-1415
    • Decottignies, A.1
  • 53
    • 78649705898 scopus 로고    scopus 로고
    • Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping
    • Dewar JM, Lydall D. 2010. Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping. EMBO J 29: 4020-4034.
    • (2010) EMBO J , vol.29 , pp. 4020-4034
    • Dewar, J.M.1    Lydall, D.2
  • 55
    • 84957879663 scopus 로고    scopus 로고
    • ALTernative telomere maintenance and cancer
    • Dilley RL, Greenberg RA. 2015. ALTernative telomere maintenance and cancer. Trends Cancer 1: 145-156.
    • (2015) Trends Cancer , vol.1 , pp. 145-156
    • Dilley, R.L.1    Greenberg, R.A.2
  • 57
    • 84882372684 scopus 로고    scopus 로고
    • Break-induced replication occurs by conservative DNA synthesis
    • Donnianni RA, Symington LS. 2013. Break-induced replication occurs by conservative DNA synthesis. Proc Natl Acad Sci 110: 13475-13480.
    • (2013) Proc Natl Acad Sci , vol.110 , pp. 13475-13480
    • Donnianni, R.A.1    Symington, L.S.2
  • 58
    • 84957615695 scopus 로고    scopus 로고
    • BLM helicase facilitates telomere replication during leading strand synthesis of telomeres
    • Drosopoulos WC, Kosiyatrakul ST, Schildkraut CL. 2015. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres. J Cell Biol 210: 191-208.
    • (2015) J Cell Biol , vol.210 , pp. 191-208
    • Drosopoulos, W.C.1    Kosiyatrakul, S.T.2    Schildkraut, C.L.3
  • 59
    • 13444301307 scopus 로고    scopus 로고
    • Mechanism and control of V(D)J recombination versus class switch recombination: Similarities and differences
    • Dudley DD, Chaudhuri J, Bassing CH, Alt FW. 2005. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 86: 43-112.
    • (2005) Adv Immunol , vol.86 , pp. 43-112
    • Dudley, D.D.1    Chaudhuri, J.2    Bassing, C.H.3    Alt, F.W.4
  • 61
    • 38649130654 scopus 로고    scopus 로고
    • The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: Implications for crossover incidence during mitotic recombination
    • Dupaigne P, Le Breton C, Fabre F, Gangloff S, Le Cam E, Veaute X. 2008. The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination. Mol Cell 29: 243-254.
    • (2008) Mol Cell , vol.29 , pp. 243-254
    • Dupaigne, P.1    Le Breton, C.2    Fabre, F.3    Gangloff, S.4    Le Cam, E.5    Veaute, X.6
  • 62
    • 15244361942 scopus 로고    scopus 로고
    • Chromosomal translocation mechanisms at intronic alu elements in mammalian cells
    • Elliott B, Richardson C, Jasin M. 2005. Chromosomal translocation mechanisms at intronic alu elements in mammalian cells. Mol Cell 17: 885-894.
    • (2005) Mol Cell , vol.17 , pp. 885-894
    • Elliott, B.1    Richardson, C.2    Jasin, M.3
  • 63
    • 0009461504 scopus 로고
    • Evidence that spontaneous mitotic recombination occurs at the two-strand stage
    • Esposito MS. 1978. Evidence that spontaneous mitotic recombination occurs at the two-strand stage. Proc Natl Acad Sci 75: 4436-4440.
    • (1978) Proc Natl Acad Sci , vol.75 , pp. 4436-4440
    • Esposito, M.S.1
  • 65
    • 84923838375 scopus 로고    scopus 로고
    • Top3-Rmi1 dissolve Rad51-mediated D loops by a topoisomerase-based mechanism
    • Fasching CL, Cejka P, Kowalczykowski SC, Heyer W-D. 2015. Top3-Rmi1 dissolve Rad51-mediated D loops by a topoisomerase-based mechanism. Mol Cell 57: 595-606.
    • (2015) Mol Cell , vol.57 , pp. 595-606
    • Fasching, C.L.1    Cejka, P.2    Kowalczykowski, S.C.3    Heyer, W.-D.4
  • 66
    • 0029927124 scopus 로고    scopus 로고
    • Recombinational repair of gaps inDNAis asymmetric in Ustilago maydis and can be explained by a migrating D-loop model
    • Ferguson DO, Holloman WK. 1996. Recombinational repair of gaps inDNAis asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc Natl Acad Sci 93: 5419-5424.
    • (1996) Proc Natl Acad Sci , vol.93 , pp. 5419-5424
    • Ferguson, D.O.1    Holloman, W.K.2
  • 67
    • 84873496437 scopus 로고    scopus 로고
    • Single-stranded annealing induced by re-initiation of replication origins provides a novel and efficient mechanism for generating copy number expansion via non-allelic homologous recombination
    • Finn KJ, Li JJ. 2013. Single-stranded annealing induced by re-initiation of replication origins provides a novel and efficient mechanism for generating copy number expansion via non-allelic homologous recombination. PLoS Genet 9: e1003192.
    • (2013) Plos Genet , vol.9
    • Finn, K.J.1    Li, J.J.2
  • 68
    • 0026498944 scopus 로고
    • Removal of nonhomologous DNA ends in double-strand break recombination: The role of the yeast ultraviolet repair gene RAD1
    • Fishman-Lobell J, Haber J. 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258: 480-484.
    • (1992) Science , vol.258 , pp. 480-484
    • Fishman-Lobell, J.1    Haber, J.2
  • 69
    • 0026583875 scopus 로고
    • Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated
    • Fishman-Lobell J, Rudin N, Haber JE. 1992. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol 12: 1292-1303.
    • (1992) Mol Cell Biol , vol.12 , pp. 1292-1303
    • Fishman-Lobell, J.1    Rudin, N.2    Haber, J.E.3
  • 71
    • 57749094236 scopus 로고    scopus 로고
    • Crystal structure of MutS2 endonuclease domain and the mechanism of homologous recombination suppression
    • Fukui K, Nakagawa N, Kitamura Y, Nishida Y, Masui R, Kuramitsu S. 2008. Crystal structure of MutS2 endonuclease domain and the mechanism of homologous recombination suppression. J Biol Chem 283: 33417-33427.
    • (2008) J Biol Chem , vol.283 , pp. 33417-33427
    • Fukui, K.1    Nakagawa, N.2    Kitamura, Y.3    Nishida, Y.4    Masui, R.5    Kuramitsu, S.6
  • 72
    • 76749101865 scopus 로고    scopus 로고
    • Recruitment to stalled replication forks of the PriA DNA helicase and replisome-loading activities is essential for survival
    • Gabbai CB, Marians KJ. 2010. Recruitment to stalled replication forks of the PriA DNA helicase and replisome-loading activities is essential for survival. DNA Repair (Amst) 9: 202-209.
    • (2010) DNA Repair (Amst) , vol.9 , pp. 202-209
    • Gabbai, C.B.1    Marians, K.J.2
  • 73
    • 80855144827 scopus 로고    scopus 로고
    • Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1
    • Garcia V, Phelps SEL, Gray S, Neale MJ. 2011. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479: 241-244.
    • (2011) Nature , vol.479 , pp. 241-244
    • Garcia, V.1    Phelps, S.2    Gray, S.3    Neale, M.J.4
  • 74
    • 38349050087 scopus 로고    scopus 로고
    • The Fanconi anemia protein FANCMcan promote branch migration of Holliday junctions and replication forks
    • Gari K, Décaillet C, Stasiak AZ, Stasiak A, Constantinou A. 2008. The Fanconi anemia protein FANCMcan promote branch migration of Holliday junctions and replication forks. Mol Cell 29: 141-148.
    • (2008) Mol Cell , vol.29 , pp. 141-148
    • Gari, K.1    Décaillet, C.2    Stasiak, A.Z.3    Stasiak, A.4    Constantinou, A.5
  • 76
    • 0029743354 scopus 로고    scopus 로고
    • A test of the double-strand break repair model for meiotic recombination in Saccharomyces Cerevisiae
    • Gilbertson LA, Stahl FW. 1996. A test of the double-strand break repair model for meiotic recombination in Saccharomyces Cerevisiae. Genetics 144: 27-41.
    • (1996) Genetics , vol.144 , pp. 27-41
    • Gilbertson, L.A.1    Stahl, F.W.2
  • 78
    • 78651083451 scopus 로고    scopus 로고
    • Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways
    • Gupta R, Barkan D, Redelman-Sidi G, Shuman S, Glickman MS. 2011. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways. Mol Microbiol 79: 316-330.
    • (2011) Mol Microbiol , vol.79 , pp. 316-330
    • Gupta, R.1    Barkan, D.2    Redelman-Sidi, G.3    Shuman, S.4    Glickman, M.S.5
  • 79
    • 84940838455 scopus 로고    scopus 로고
    • RecF and RecR play critical roles in the homologous recombination and singlestrand annealing pathways of mycobacteria
    • Gupta R, Shuman S, Glickman MS. 2015. RecF and RecR play critical roles in the homologous recombination and singlestrand annealing pathways of mycobacteria. J Bacteriol 197: 3121-3132.
    • (2015) J Bacteriol , vol.197 , pp. 3121-3132
    • Gupta, R.1    Shuman, S.2    Glickman, M.S.3
  • 80
    • 66149130735 scopus 로고    scopus 로고
    • Reconstitution of initial steps of dsDNA break repair by the RecF pathway of
    • Handa N, Morimatsu K, Lovett ST, Kowalczykowski SC. 2009. Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli. Genes Dev 23: 1234-1245.
    • (2009) E. Coli. Genes Dev , vol.23 , pp. 1234-1245
    • Handa, N.1    Morimatsu, K.2    Lovett, S.T.3    Kowalczykowski, S.C.4
  • 81
    • 59249105978 scopus 로고    scopus 로고
    • A microhomology-mediated break-induced replication model for the origin of human copy number variation. Ed. I
    • Hastings PJ, Ira G, Lupski JR. 2009a. A microhomology-mediated break-induced replication model for the origin of human copy number variation. ed. I. Matic. PLoS Genet 5: e1000327.
    • (2009) Matic. Plos Genet , vol.5
    • Hastings, P.J.1    Ira, G.2    Lupski, J.R.3
  • 83
    • 77955846020 scopus 로고    scopus 로고
    • Assaying and investigating alternative lengthening of telomeres activity in human cells and cancers
    • Henson JD, Reddel RR. 2010. Assaying and investigating alternative lengthening of telomeres activity in human cells and cancers. FEBS Lett 584: 3800-3811.
    • (2010) FEBS Lett , vol.584 , pp. 3800-3811
    • Henson, J.D.1    Reddel, R.R.2
  • 84
    • 71849088980 scopus 로고    scopus 로고
    • DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity
    • Henson JD, Cao Y, Huschtscha LI, Chang AC, Au AYM, Pickett HA, Reddel RR. 2009. DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat Biotech 27: 1181-1185.
    • (2009) Nat Biotech , vol.27 , pp. 1181-1185
    • Henson, J.D.1    Cao, Y.2    Huschtscha, L.I.3    Chang, A.C.4    Au, A.5    Pickett, H.A.6    Reddel, R.R.7
  • 85
    • 78149425175 scopus 로고    scopus 로고
    • Regulation of homologous recombination in eukaryotes
    • Heyer W-D, Ehmsen KT, Liu J. 2010. Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44: 113-139.
    • (2010) Annu Rev Genet , vol.44 , pp. 113-139
    • Heyer, W.-D.1    Ehmsen, K.T.2    Liu, J.3
  • 86
    • 77954328102 scopus 로고    scopus 로고
    • Increased mutagenesis and unique mutation signature associated with mitotic gene conversion
    • Hicks WM, Kim M, Haber JE. 2010. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329: 82-85.
    • (2010) Science , vol.329 , pp. 82-85
    • Hicks, W.M.1    Kim, M.2    Haber, J.E.3
  • 87
    • 84859313681 scopus 로고    scopus 로고
    • Promiscuous DNA synthesis by human DNA polymerase theta
    • Hogg M, Sauer-Eriksson AE, Johansson E. 2012. Promiscuous DNA synthesis by human DNA polymerase theta. Nucleic Acids Res 40: 2611-2622.
    • (2012) Nucleic Acids Res , vol.40 , pp. 2611-2622
    • Hogg, M.1    Sauer-Eriksson, A.E.2    Johansson, E.3
  • 88
    • 0021815877 scopus 로고
    • Identification of autonomously replicating circular subtelomeric Y' elements in Saccharomyces cerevisiae
    • Horowitz H, Haber JE. 1985. Identification of autonomously replicating circular subtelomeric Y' elements in Saccharomyces cerevisiae. Mol Cell Biol 5: 2369-2380.
    • (1985) Mol Cell Biol , vol.5 , pp. 2369-2380
    • Horowitz, H.1    Haber, J.E.2
  • 91
    • 0036723660 scopus 로고    scopus 로고
    • Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences
    • Ira G, Haber JE. 2002. Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol Cell Biol 22: 6384-6392.
    • (2002) Mol Cell Biol , vol.22 , pp. 6384-6392
    • Ira, G.1    Haber, J.E.2
  • 92
    • 0345447604 scopus 로고    scopus 로고
    • Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast
    • Ira G, Malkova A, Liberi G, Foiani M, Haber JE. 2003. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115: 401-411.
    • (2003) Cell , vol.115 , pp. 401-411
    • Ira, G.1    Malkova, A.2    Liberi, G.3    Foiani, M.4    Haber, J.E.5
  • 93
    • 84946615727 scopus 로고    scopus 로고
    • Single strand annealing plays a major role in RecA-independent recombination between repeated sequences in the radioresistant Deinococcus radiodurans bacterium
    • Ithurbide S, Bentchikou E, Coste G, Bost B, Servant P, Sommer S. 2015. Single strand annealing plays a major role in RecA-independent recombination between repeated sequences in the radioresistant Deinococcus radiodurans bacterium. PLoS Genet 11: e1005636.
    • (2015) Plos Genet , vol.11
    • Ithurbide, S.1    Bentchikou, E.2    Coste, G.3    Bost, B.4    Servant, P.5    Sommer, S.6
  • 94
    • 0028927573 scopus 로고
    • RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae
    • Ivanov EL, Haber JE. 1995. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 15: 2245-2251.
    • (1995) Mol Cell Biol , vol.15 , pp. 2245-2251
    • Ivanov, E.L.1    Haber, J.E.2
  • 95
    • 0030000946 scopus 로고    scopus 로고
    • Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae
    • Ivanov EL, Sugawara N, Fishman-Lobell J, Haber JE. 1996. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142: 693-704.
    • (1996) Genetics , vol.142 , pp. 693-704
    • Ivanov, E.L.1    Sugawara, N.2    Fishman-Lobell, J.3    Haber, J.E.4
  • 96
    • 59949092789 scopus 로고    scopus 로고
    • A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair
    • Jain S, Sugawara N, Lydeard J, Vaze M, Tanguy Le Gac N, Haber JE. 2009. A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev 23: 291-303.
    • (2009) Genes Dev , vol.23 , pp. 291-303
    • Jain, S.1    Sugawara, N.2    Lydeard, J.3    Vaze, M.4    Tanguy Le Gac, N.5    Haber, J.E.6
  • 97
    • 84937509603 scopus 로고    scopus 로고
    • Deciphering the BRCA1 tumor suppressor network
    • Jiang Q, Greenberg R. 2015. Deciphering the BRCA1 tumor suppressor network. J Biol Chem 290: 17724-17732.
    • (2015) J Biol Chem , vol.290 , pp. 17724-17732
    • Jiang, Q.1    Greenberg, R.2
  • 98
    • 15044357804 scopus 로고    scopus 로고
    • Suppression of alternative lengthening of telomeres by Sp100-mediated sequestration of the MRE11/RAD50/NBS1 complex
    • Jiang W-Q, Zhong Z-H, Henson JD, Neumann AA, Chang AC-M, Reddel RR. 2005. Suppression of alternative lengthening of telomeres by Sp100-mediated sequestration of the MRE11/RAD50/NBS1 complex. Mol Cell Biol 25: 2708-2721.
    • (2005) Mol Cell Biol , vol.25 , pp. 2708-2721
    • Jiang, W.-Q.1    Zhong, Z.-H.2    Henson, J.D.3    Neumann, A.A.4    Chang, A.-M.5    Reddel, R.R.6
  • 99
    • 0035865143 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase
    • Johnson FB, Marciniak RA, McVey M, Stewart SA, Hahn WC, Guarente L. 2001. The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J 20: 905-913.
    • (2001) EMBO J , vol.20 , pp. 905-913
    • Johnson, F.B.1    Marciniak, R.A.2    McVey, M.3    Stewart, S.A.4    Hahn, W.C.5    Guarente, L.6
  • 100
    • 0023833017 scopus 로고
    • Physical lengths of meiotic and mitotic gene conversion tracts in Saccharomyces cerevisiae
    • Judd SR, Petes TD. 1988. Physical lengths of meiotic and mitotic gene conversion tracts in Saccharomyces cerevisiae. Genetics 118: 401-410.
    • (1988) Genetics , vol.118 , pp. 401-410
    • Judd, S.R.1    Petes, T.D.2
  • 101
    • 0037180443 scopus 로고    scopus 로고
    • Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination
    • Kantake N, Madiraju MVVM, Sugiyama T, Kowalczykowski SC. 2002. Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: a common step in genetic recombination. Proc Natl Acad Sci 99: 15327-15332.
    • (2002) Proc Natl Acad Sci , vol.99 , pp. 15327-15332
    • Kantake, N.1    Madiraju, M.2    Sugiyama, T.3    Kowalczykowski, S.C.4
  • 102
    • 33747188326 scopus 로고    scopus 로고
    • Initiation of meiotic recombination by formation of DNA double-strand breaks: Mechanism and regulation
    • Keeney S, Neale MJ. 2006. Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans 34: 523-525.
    • (2006) Biochem Soc Trans , vol.34 , pp. 523-525
    • Keeney, S.1    Neale, M.J.2
  • 105
    • 0036778597 scopus 로고    scopus 로고
    • The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors
    • Kolomietz E, Meyn MS, Pandita A, Squire JA. 2002. The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 35: 97-112.
    • (2002) Genes Chromosomes Cancer , vol.35 , pp. 97-112
    • Kolomietz, E.1    Meyn, M.S.2    Pandita, A.3    Squire, J.A.4
  • 107
    • 10344263324 scopus 로고    scopus 로고
    • Recombination proteins in yeast
    • Krogh BO, Symington LS. 2004. Recombination proteins in yeast. Annu Rev Genet 38: 233-271.
    • (2004) Annu Rev Genet , vol.38 , pp. 233-271
    • Krogh, B.O.1    Symington, L.S.2
  • 109
    • 57649139149 scopus 로고    scopus 로고
    • DNA polymerase δ is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA
    • Langston LD, O’Donnell M. 2008. DNA polymerase δ is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA. J Biol Chem 283: 29522-29531.
    • (2008) J Biol Chem , vol.283 , pp. 29522-29531
    • Langston, L.D.1    O’Donnell, M.2
  • 110
    • 39549102855 scopus 로고    scopus 로고
    • Rad52 promotes postinvasion steps of meiotic double-strand-break repair
    • Lao JP, Oh SD, Shinohara M, Shinohara A, Hunter N. 2008. Rad52 promotes postinvasion steps of meiotic double-strand-break repair. Mol Cell 29: 517-524.
    • (2008) Mol Cell , vol.29 , pp. 517-524
    • Lao, J.P.1    Oh, S.D.2    Shinohara, M.3    Shinohara, A.4    Hunter, N.5
  • 111
    • 0032959506 scopus 로고    scopus 로고
    • RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase
    • Le S, Moore JK, Haber JE, Greider CW. 1999. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152: 143-152.
    • (1999) Genetics , vol.152 , pp. 143-152
    • Le, S.1    Moore, J.K.2    Haber, J.E.3    Greider, C.W.4
  • 112
    • 0026356063 scopus 로고
    • Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n′ protein
    • Lee EH, Kornberg A. 1991. Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n′ protein. Proc Natl Acad Sci 88: 3029-3032.
    • (1991) Proc Natl Acad Sci , vol.88 , pp. 3029-3032
    • Lee, E.H.1    Kornberg, A.2
  • 113
    • 37349109667 scopus 로고    scopus 로고
    • A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders
    • Lee JA, Carvalho CMB, Lupski JR. 2007. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131: 1235-1247.
    • (2007) Cell , vol.131 , pp. 1235-1247
    • Lee, J.A.1    Carvalho, C.2    Lupski, J.R.3
  • 114
    • 78650988959 scopus 로고    scopus 로고
    • CtIP promotes microhomology-mediated alternative end joining during class-switch recombination
    • Lee-Theilen M, Matthews AJ, Kelly D, Zheng S, Chaudhuri J. 2010. CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nat Struct Mol Biol 18: 75-79.
    • (2010) Nat Struct Mol Biol , vol.18 , pp. 75-79
    • Lee-Theilen, M.1    Matthews, A.J.2    Kelly, D.3    Zheng, S.4    Chaudhuri, J.5
  • 116
    • 77953229115 scopus 로고    scopus 로고
    • The mechanism of double-strand DNA break repair by the nonhomologous DNA end joining pathway
    • Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end joining pathway. Annu Rev Biochem 79: 181-211.
    • (2010) Annu Rev Biochem , vol.79 , pp. 181-211
    • Lieber, M.R.1
  • 117
    • 0021123453 scopus 로고
    • Model for homologous recombination during transfer of DNA into mouse L cells: Role for DNA ends in the recombination process
    • Lin FL, Sperle K, Sternberg N. 1984. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol Cell Biol 4: 1020-1034.
    • (1984) Mol Cell Biol , vol.4 , pp. 1020-1034
    • Lin, F.L.1    Sperle, K.2    Sternberg, N.3
  • 118
    • 13844311437 scopus 로고    scopus 로고
    • Extrachromosomal telomeric circles contribute to Rad52-, Rad50-, and polymerase δ-mediated telomere-telomere recombination in Saccharomyces cerevisiae
    • Lin C-Y, Chang H-H, Wu K-J, Tseng S-F, Lin C-C, Lin C-P, Teng SC. 2005. Extrachromosomal telomeric circles contribute to Rad52-, Rad50-, and polymerase δ-mediated telomere-telomere recombination in Saccharomyces cerevisiae. Eukaryot Cell 4: 327-336.
    • (2005) Eukaryot Cell , vol.4 , pp. 327-336
    • Lin, C.-Y.1    Chang, H.-H.2    Wu, K.-J.3    Tseng, S.-F.4    Lin, C.-C.5    Lin, C.-P.6    Teng, S.C.7
  • 119
    • 80855132890 scopus 로고    scopus 로고
    • Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation
    • Liu J, Renault L, Veaute X, Fabre F, Stahlberg H, Heyer W-D. 2011a. Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature 479: 245-248.
    • (2011) Nature , vol.479 , pp. 245-248
    • Liu, J.1    Renault, L.2    Veaute, X.3    Fabre, F.4    Stahlberg, H.5    Heyer, W.-D.6
  • 121
    • 84862491113 scopus 로고    scopus 로고
    • Mechanisms for recurrent and complex human genomic rearrangements
    • Liu P, Carvalho CMB, Hastings PJ, Lupski JR. 2012. Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev 22: 211-220.
    • (2012) Curr Opin Genet Dev , vol.22 , pp. 211-220
    • Liu, P.1    Carvalho, C.2    Hastings, P.J.3    Lupski, J.R.4
  • 122
    • 0027266758 scopus 로고
    • An alternative pathway for yeast telomere maintenance rescues est1− senescence
    • Lundblad V, Blackburn EH. 1993. An alternative pathway for yeast telomere maintenance rescues est1− senescence. Cell 73: 347-360.
    • (1993) Cell , vol.73 , pp. 347-360
    • Lundblad, V.1    Blackburn, E.H.2
  • 123
    • 34547927220 scopus 로고    scopus 로고
    • Break-induced replication and telomerase-independent telomere maintenance require Pol32
    • Lydeard JR, Jain S, Yamaguchi M, Haber JE. 2007. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448: 820-823.
    • (2007) Nature , vol.448 , pp. 820-823
    • Lydeard, J.R.1    Jain, S.2    Yamaguchi, M.3    Haber, J.E.4
  • 124
    • 77953076932 scopus 로고    scopus 로고
    • Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly
    • Lydeard JR, Lipkin-Moore Z, Sheu Y-J, Stillman B, Burgers PM, Haber JE. 2010. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev 24: 1133-1144.
    • (2010) Genes Dev , vol.24 , pp. 1133-1144
    • Lydeard, J.R.1    Lipkin-Moore, Z.2    Sheu, Y.-J.3    Stillman, B.4    Burgers, P.M.5    Haber, J.E.6
  • 125
    • 0242468933 scopus 로고    scopus 로고
    • Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double- strand breaks lacking overlapping end sequences
    • Ma J-L, Kim EM, Haber JE, Lee SE. 2003. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double- strand breaks lacking overlapping end sequences. Mol Cell Biol 23: 8820-8828.
    • (2003) Mol Cell Biol , vol.23 , pp. 8820-8828
    • Ma, J.-L.1    Kim, E.M.2    Haber, J.E.3    Lee, S.E.4
  • 126
    • 0029947714 scopus 로고    scopus 로고
    • Double-strand break repair in the absence of RAD51 in yeast: A possible role for break-induced DNA replication
    • Malkova A, Ivanov EL, Haber JE. 1996. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci 93: 7131-7136.
    • (1996) Proc Natl Acad Sci , vol.93 , pp. 7131-7136
    • Malkova, A.1    Ivanov, E.L.2    Haber, J.E.3
  • 127
    • 12844289007 scopus 로고    scopus 로고
    • RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion
    • Malkova A, Naylor ML, Yamaguchi M, Ira G, Haber JE. 2005. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol Cell Biol 25: 933-944.
    • (2005) Mol Cell Biol , vol.25 , pp. 933-944
    • Malkova, A.1    Naylor, M.L.2    Yamaguchi, M.3    Ira, G.4    Haber, J.E.5
  • 128
    • 0034177963 scopus 로고    scopus 로고
    • PriA-directed replication fork restart in Escherichia coli
    • Marians KJ. 2000. PriA-directed replication fork restart in Escherichia coli. Trends Biochem Sci 25: 185-189.
    • (2000) Trends Biochem Sci , vol.25 , pp. 185-189
    • Marians, K.J.1
  • 129
    • 77957351746 scopus 로고    scopus 로고
    • ExtensiveDNAend processing by Exo1 and Sgs1 inhibits break-induced replication
    • Marrero VA, Symington LS. 2010. ExtensiveDNAend processing by Exo1 and Sgs1 inhibits break-induced replication. PLoS Genet 6: e1001007.
    • (2010) Plos Genet , vol.6
    • Marrero, V.A.1    Symington, L.S.2
  • 133
    • 84866058758 scopus 로고    scopus 로고
    • The Rad1-Rad10 nuclease promotes chromosome translocations between dispersed repeats
    • Mazon G, Lam AF, Ho CK, Kupiec M, Symington LS. 2012. The Rad1-Rad10 nuclease promotes chromosome translocations between dispersed repeats. Nat Struct Mol Biol 19: 964-971.
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 964-971
    • Mazon, G.1    Lam, A.F.2    Ho, C.K.3    Kupiec, M.4    Symington, L.S.5
  • 135
    • 33745474120 scopus 로고    scopus 로고
    • Break-induced replication and recombinational telomere elongation in yeast
    • McEachern MJ, Haber JE. 2006. Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75: 111-135.
    • (2006) Annu Rev Biochem , vol.75 , pp. 111-135
    • McEachern, M.J.1    Haber, J.E.2
  • 136
    • 54849404458 scopus 로고    scopus 로고
    • MMEJ repair of double-strand breaks (Director’s cut): Deleted sequences and alternative endings
    • McVey M, Lee SE. 2008. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24: 529-538.
    • (2008) Trends Genet , vol.24 , pp. 529-538
    • McVey, M.1    Lee, S.E.2
  • 137
    • 84950121586 scopus 로고    scopus 로고
    • DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology- mediated end-joining in Saccharomyces cerevisiae
    • Meyer D, Fu BXH, Heyer W-D. 2015. DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology- mediated end-joining in Saccharomyces cerevisiae. Proc Natl Acad Sci 112: E6907-E6916.
    • (2015) Proc Natl Acad Sci , vol.112 , pp. E6907-E6916
    • Meyer, D.1    Fu, B.2    Heyer, W.-D.3
  • 138
    • 53649104599 scopus 로고    scopus 로고
    • Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
    • Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455: 770-774.
    • (2008) Nature , vol.455 , pp. 770-774
    • Mimitou, E.P.1    Symington, L.S.2
  • 139
    • 77950876855 scopus 로고    scopus 로고
    • Molecular structures of crossover and noncrossover intermediates during gap repair in yeast: Implications for recombination
    • Mitchel K, Zhang H, Welz-Voegele C, Jinks-Robertson S. 2010. Molecular structures of crossover and noncrossover intermediates during gap repair in yeast: implications for recombination. Mol Cell 38: 211-222.
    • (2010) Mol Cell , vol.38 , pp. 211-222
    • Mitchel, K.1    Zhang, H.2    Welz-Voegele, C.3    Jinks-Robertson, S.4
  • 140
    • 84872138637 scopus 로고    scopus 로고
    • Recombination-restarted replication makes inverted chromosome fusions at inverted repeats
    • Mizuno K, Miyabe I, Schalbetter SA, Carr AM, Murray JM. 2012. Recombination-restarted replication makes inverted chromosome fusions at inverted repeats. Nature 493: 246-249.
    • (2012) Nature , vol.493 , pp. 246-249
    • Mizuno, K.1    Miyabe, I.2    Schalbetter, S.A.3    Carr, A.M.4    Murray, J.M.5
  • 141
    • 0030760609 scopus 로고    scopus 로고
    • Break copy duplication: A model for chromosome fragment formation in Saccharomyces cerevisiae
    • Morrow DM, Connelly C, Hieter P. 1997. ‘Break copy’ duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147: 371-382.
    • (1997) Genetics , vol.147 , pp. 371-382
    • Morrow, D.M.1    Connelly, C.2    Hieter, P.3
  • 142
    • 27744527486 scopus 로고    scopus 로고
    • The first molecular details of ALT in human tumor cells
    • Muntoni A, Reddel RR. 2005. The first molecular details of ALT in human tumor cells. Hum Mol Genet 14: R191-R196.
    • (2005) Hum Mol Genet , vol.14
    • Muntoni, A.1    Reddel, R.R.2
  • 143
    • 61849103618 scopus 로고    scopus 로고
    • Telomere elongation involves intra-molecular DNA replication in cells utilizing alternative lengthening of telomeres
    • Muntoni A, Neumann AA, Hills M, Reddel RR. 2009. Telomere elongation involves intra-molecular DNA replication in cells utilizing alternative lengthening of telomeres. Hum Mol Genet 18: 1017-1027.
    • (2009) Hum Mol Genet , vol.18 , pp. 1017-1027
    • Muntoni, A.1    Neumann, A.A.2    Hills, M.3    Reddel, R.R.4
  • 144
  • 145
    • 59249090880 scopus 로고    scopus 로고
    • Unusual telomeric DNAs in human telomerase-negative immortalized cells
    • Nabetani A, Ishikawa F. 2009. Unusual telomeric DNAs in human telomerase-negative immortalized cells. Mol Cell Biol 29: 703-713.
    • (2009) Mol Cell Biol , vol.29 , pp. 703-713
    • Nabetani, A.1    Ishikawa, F.2
  • 146
    • 67651227288 scopus 로고    scopus 로고
    • XRCC2andXRCC3 regulate the balance between shortand long-tract gene conversions between sister chromatids
    • Nagaraju G, Hartlerode A, Kwok A, Chandramouly G, Scully R. 2009. XRCC2andXRCC3 regulate the balance between shortand long-tract gene conversions between sister chromatids. Mol Cell Biol 29: 4283-4294.
    • (2009) Mol Cell Biol , vol.29 , pp. 4283-4294
    • Nagaraju, G.1    Hartlerode, A.2    Kwok, A.3    Chandramouly, G.4    Scully, R.5
  • 147
    • 0028197257 scopus 로고
    • Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair
    • Nassif N, Penney J, Pal S, Engels WR, Gloor GB. 1994. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol 14: 1613-1625.
    • (1994) Mol Cell Biol , vol.14 , pp. 1613-1625
    • Nassif, N.1    Penney, J.2    Pal, S.3    Engels, W.R.4    Gloor, G.B.5
  • 148
    • 0036269549 scopus 로고    scopus 로고
    • Recombinational telomere elongation promoted by DNA circles
    • Natarajan S, McEachern MJ. 2002. Recombinational telomere elongation promoted by DNA circles. Mol Cell Biol 22: 4512-4521.
    • (2002) Mol Cell Biol , vol.22 , pp. 4512-4521
    • Natarajan, S.1    McEachern, M.J.2
  • 149
    • 84949215325 scopus 로고    scopus 로고
    • Structure of the helicase domain ofDNApolymerase theta reveals a possible role in the microhomology-mediated end-joining pathway
    • Newman JA, Cooper CDO, Aitkenhead H, Gileadi O. 2015. Structure of the helicase domain ofDNApolymerase theta reveals a possible role in the microhomology-mediated end-joining pathway. Structure 23: 2319-2330.
    • (2015) Structure , vol.23 , pp. 2319-2330
    • Newman, J.A.1    Cooper, C.2    Aitkenhead, H.3    Gileadi, O.4
  • 150
    • 0025836589 scopus 로고
    • Inactivation of the Escherichia coli priA DNA replication protein induces the SOS response
    • Nurse P, Zavitz KH, Marians KJ. 1991. Inactivation of the Escherichia coli priA DNA replication protein induces the SOS response. J Bacteriol 173: 6686-6693.
    • (1991) J Bacteriol , vol.173 , pp. 6686-6693
    • Nurse, P.1    Zavitz, K.H.2    Marians, K.J.3
  • 152
    • 0026030088 scopus 로고
    • A unique pathway of doublestrand break repair operates in tandemly repeated genes
    • Ozenberger BA, Roeder GS. 1991. A unique pathway of doublestrand break repair operates in tandemly repeated genes. Mol Cell Biol 11: 1222-1231.
    • (1991) Mol Cell Biol , vol.11 , pp. 1222-1231
    • Ozenberger, B.A.1    Roeder, G.S.2
  • 153
    • 84895828055 scopus 로고    scopus 로고
    • Human RECQ5 helicase promotes repair of DNA double- strand breaks by synthesis-dependent strand annealing
    • Paliwal S, Kanagaraj R, Sturzenegger A, Burdova K, Janscak P. 2014. Human RECQ5 helicase promotes repair of DNA double- strand breaks by synthesis-dependent strand annealing. Nucleic Acids Res 42: 2380-2390.
    • (2014) Nucleic Acids Res , vol.42 , pp. 2380-2390
    • Paliwal, S.1    Kanagaraj, R.2    Sturzenegger, A.3    Burdova, K.4    Janscak, P.5
  • 154
    • 0038799991 scopus 로고    scopus 로고
    • Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
    • Pâques F, Haber JE. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63: 349-404.
    • (1999) Microbiol Mol Biol Rev , vol.63 , pp. 349-404
    • Pâques, F.1    Haber, J.E.2
  • 155
    • 2642614786 scopus 로고    scopus 로고
    • Expansions and contractions in a tandem repeat induced by double-strand break repair
    • Pâques F, Leung W-Y, Haber JE. 1998. Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol Cell Biol 18: 2045-2054.
    • (1998) Mol Cell Biol , vol.18 , pp. 2045-2054
    • Pâques, F.1    Leung, W.-Y.2    Haber, J.E.3
  • 156
    • 52949143512 scopus 로고    scopus 로고
    • Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms
    • Payen C, Koszul R, Dujon B, Fischer G. 2008. Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet 4: e1000175.
    • (2008) Plos Genet , vol.4
    • Payen, C.1    Koszul, R.2    Dujon, B.3    Fischer, G.4
  • 157
    • 0027286521 scopus 로고
    • Genetic evidence that the meiotic recombination hotspot at the His4 locus of Saccharomyces cerevisiae does not represent a site for a symmetrically processed double-strand break
    • Porter SE, White MA, Petes TD. 1993. Genetic evidence that the meiotic recombination hotspot at the His4 locus of Saccharomyces cerevisiae does not represent a site for a symmetrically processed double-strand break. Genetics 134: 5-19.
    • (1993) Genetics , vol.134 , pp. 5-19
    • Porter, S.E.1    White, M.A.2    Petes, T.D.3
  • 158
    • 34447129654 scopus 로고    scopus 로고
    • The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomerebinding proteins
    • Potts PR, Yu H. 2007. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomerebinding proteins. Nat Struct Mol Biol 14: 581-590.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 581-590
    • Potts, P.R.1    Yu, H.2
  • 160
    • 84926432359 scopus 로고    scopus 로고
    • Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins
    • Prakash R, Zhang Y, Feng W, Jasin M. 2015. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 7: a016600.
    • (2015) Cold Spring Harb Perspect Biol , vol.7
    • Prakash, R.1    Zhang, Y.2    Feng, W.3    Jasin, M.4
  • 162
    • 0017119079 scopus 로고
    • The repair of double-strand breaks in DNA: A model involving recombination
    • Resnick MA. 1976. The repair of double-strand breaks in DNA: a model involving recombination. J Theor Biol 59: 97-106.
    • (1976) J Theor Biol , vol.59 , pp. 97-106
    • Resnick, M.A.1
  • 163
    • 0032535036 scopus 로고    scopus 로고
    • Double-strand break repair by interchromosomal recombination: Suppression of chromosomal translocations
    • Richardson C, Moynahan ME, Jasin M. 1998. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev 12: 3831-3842.
    • (1998) Genes Dev , vol.12 , pp. 3831-3842
    • Richardson, C.1    Moynahan, M.E.2    Jasin, M.3
  • 164
    • 55449115425 scopus 로고    scopus 로고
    • Comparative and evolutionary analysis of the bacterial homologous recombination systems
    • Rocha EPC, Cornet E, Michel B. 2005. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 1: e15.
    • (2005) Plos Genet , vol.1
    • Rocha, E.1    Cornet, E.2    Michel, B.3
  • 165
    • 84942345939 scopus 로고    scopus 로고
    • Error-prone repair of DNA doublestrand breaks
    • Rodgers K, McVey M. 2015. Error-prone repair of DNA doublestrand breaks. J Cell Physiol 231: 15-24.
    • (2015) J Cell Physiol , vol.231 , pp. 15-24
    • Rodgers, K.1    McVey, M.2
  • 167
    • 84953374838 scopus 로고    scopus 로고
    • Translesion polymerases drive microhomology-mediated break-induced replication leading to complex chromosomal rearrangements
    • Sakofsky CJ, Ayyar S, Deem AK, Chung W-H, Ira G, Malkova A. 2015. Translesion polymerases drive microhomology-mediated break-induced replication leading to complex chromosomal rearrangements. Mol Cell 60: 860-872.
    • (2015) Mol Cell , vol.60 , pp. 860-872
    • Sakofsky, C.J.1    Ayyar, S.2    Deem, A.K.3    Chung, W.-H.4    Ira, G.5    Malkova, A.6
  • 168
    • 0029896663 scopus 로고    scopus 로고
    • Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae
    • Saparbaev M, Prakash L, Prakash S. 1996. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics 142: 727-736.
    • (1996) Genetics , vol.142 , pp. 727-736
    • Saparbaev, M.1    Prakash, L.2    Prakash, S.3
  • 169
    • 77649191573 scopus 로고    scopus 로고
    • Genome destabilization by homologous recombination in the germ line
    • Sasaki M, Lange J, Keeney S. 2010. Genome destabilization by homologous recombination in the germ line. Nat Rev Mol Cell Biol 11: 182-195.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 182-195
    • Sasaki, M.1    Lange, J.2    Keeney, S.3
  • 170
    • 33745872612 scopus 로고    scopus 로고
    • Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom’s syndrome protein
    • Schmidt KH, Wu J, Kolodner RD. 2006. Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom’s syndrome protein. Mol Cell Biol 26: 5406-5420.
    • (2006) Mol Cell Biol , vol.26 , pp. 5406-5420
    • Schmidt, K.H.1    Wu, J.2    Kolodner, R.D.3
  • 171
    • 84860456242 scopus 로고    scopus 로고
    • Removal of shelterin reveals the telomere end-protection problem
    • Sfeir A, de Lange T. 2012. Removal of shelterin reveals the telomere end-protection problem. Science 336: 593-597.
    • (2012) Science , vol.336 , pp. 593-597
    • Sfeir, A.1    De Lange, T.2
  • 172
    • 84945916597 scopus 로고    scopus 로고
    • Microhomology-mediated end joining: A back-up survival mechanism or dedicated pathway?
    • Sfeir A, Symington LS. 2015. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem Sci 40: 701-714.
    • (2015) Trends Biochem Sci , vol.40 , pp. 701-714
    • Sfeir, A.1    Symington, L.S.2
  • 173
    • 0031010342 scopus 로고    scopus 로고
    • A survey of telomerase activity in human cancer
    • Shay JW, Bacchetti S. 1997. A survey of telomerase activity in human cancer. Eur J Cancer 33: 787-791.
    • (1997) Eur J Cancer , vol.33 , pp. 787-791
    • Shay, J.W.1    Bacchetti, S.2
  • 174
    • 0035000154 scopus 로고    scopus 로고
    • Genetic requirements for RAD51- and RAD54-independent breakinduced replication repair of a chromosomal double-strand break
    • Signon L, Malkova A, Naylor ML, Klein H, Haber JE. 2001. Genetic requirements for RAD51- and RAD54-independent breakinduced replication repair of a chromosomal double-strand break. Mol Cell Biol 21: 2048-2056.
    • (2001) Mol Cell Biol , vol.21 , pp. 2048-2056
    • Signon, L.1    Malkova, A.2    Naylor, M.L.3    Klein, H.4    Haber, J.E.5
  • 175
    • 77950462986 scopus 로고    scopus 로고
    • Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation
    • Simsek D, Jasin M. 2010. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat Struct Mol Biol 17: 410-416.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 410-416
    • Simsek, D.1    Jasin, M.2
  • 178
    • 34247611513 scopus 로고    scopus 로고
    • Template switching during break-induced replication
    • Smith CE, Llorente B, Symington LS. 2007. Template switching during break-induced replication. Nature 447: 102-105.
    • (2007) Nature , vol.447 , pp. 102-105
    • Smith, C.E.1    Llorente, B.2    Symington, L.S.3
  • 180
    • 6344234817 scopus 로고    scopus 로고
    • Genetic steps of mammalian homologous repair with distinct mutagenic consequences
    • Stark JM, Pierce AJ, Oh J, Pastink A, Jasin M. 2004. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol 24: 9305-9316.
    • (2004) Mol Cell Biol , vol.24 , pp. 9305-9316
    • Stark, J.M.1    Pierce, A.J.2    Oh, J.3    Pastink, A.4    Jasin, M.5
  • 181
    • 0020213475 scopus 로고
    • Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus
    • Strathern JN, Klar AJ, Hicks JB, Abraham JA, Ivy JM, Nasmyth KA, McGill C. 1982. Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31: 183-192.
    • (1982) Cell , vol.31 , pp. 183-192
    • Strathern, J.N.1    Klar, A.J.2    Hicks, J.B.3    Abraham, J.A.4    Ivy, J.M.5    Nasmyth, K.A.6    McGill, C.7
  • 182
    • 0030834260 scopus 로고    scopus 로고
    • Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double- strand break-induced recombination
    • Sugawara N, Pâques F, Colaiácovo M, Haber JE. 1997. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double- strand break-induced recombination. Proc Natl Acad Sci 94: 9214-9219.
    • (1997) Proc Natl Acad Sci , vol.94 , pp. 9214-9219
    • Sugawara, N.1    Pâques, F.2    Colaiácovo, M.3    Haber, J.E.4
  • 183
    • 0033946617 scopus 로고    scopus 로고
    • DNAlength dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair
    • Sugawara N, Ira G, Haber JE. 2000.DNAlength dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20: 5300-5309.
    • (2000) Mol Cell Biol , vol.20 , pp. 5300-5309
    • Sugawara, N.1    Ira, G.2    Haber, J.E.3
  • 184
    • 0037199924 scopus 로고    scopus 로고
    • Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation
    • Sugiyama T, Kowalczykowski SC. 2002. Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation. J Biol Chem 277: 31663-31672.
    • (2002) J Biol Chem , vol.277 , pp. 31663-31672
    • Sugiyama, T.1    Kowalczykowski, S.C.2
  • 185
    • 33749037701 scopus 로고    scopus 로고
    • Mechanism of homologous recombination: Mediators and helicases take on regulatory functions
    • Sung P, Klein H. 2006. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7: 739-750.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 739-750
    • Sung, P.1    Klein, H.2
  • 186
    • 0025169496 scopus 로고
    • Repair and recombination of X-irradiated plasmids in Xenopus laevis oocytes
    • Sweigert SE, Carroll D. 1990. Repair and recombination of X-irradiated plasmids in Xenopus laevis oocytes. Mol Cell Biol 10: 5849-5856.
    • (1990) Mol Cell Biol , vol.10 , pp. 5849-5856
    • Sweigert, S.E.1    Carroll, D.2
  • 187
    • 0036900120 scopus 로고    scopus 로고
    • Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair
    • Symington LS. 2002. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66: 630-670.
    • (2002) Microbiol Mol Biol Rev , vol.66 , pp. 630-670
    • Symington, L.S.1
  • 188
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu Rev Genet 45: 247-271.
    • (2011) Annu Rev Genet , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 189
    • 84908612861 scopus 로고    scopus 로고
    • Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae
    • Symington LS, Rothstein R, Lisby M. 2014. Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae. Genetics 198: 795-835.
    • (2014) Genetics , vol.198 , pp. 795-835
    • Symington, L.S.1    Rothstein, R.2    Lisby, M.3
  • 190
    • 0033513079 scopus 로고    scopus 로고
    • Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae
    • Teng SC, Zakian VA. 1999. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19: 8083-8093.
    • (1999) Mol Cell Biol , vol.19 , pp. 8083-8093
    • Teng, S.C.1    Zakian, V.A.2
  • 191
    • 0033636907 scopus 로고    scopus 로고
    • Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process
    • Teng SC, Chang J, McCowan B, Zakian VA. 2000. Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell 6: 947-952.
    • (2000) Mol Cell , vol.6 , pp. 947-952
    • Teng, S.C.1    Chang, J.2    McCowan, B.3    Zakian, V.A.4
  • 193
    • 84877321963 scopus 로고    scopus 로고
    • Microhomology-mediated end joining and homologous recombination share the initial end resection step to repairDNAdouble-strand breaks in mammalian cells
    • Truong LN, Li Y, Shi LZ, Hwang PY-H, He J, Wang H, Razavian N, Berns MW, Wu X. 2013. Microhomology-mediated end joining and homologous recombination share the initial end resection step to repairDNAdouble-strand breaks in mammalian cells. Proc Natl Acad Sci 110: 7720-7725.
    • (2013) Proc Natl Acad Sci , vol.110 , pp. 7720-7725
    • Truong, L.N.1    Li, Y.2    Shi, L.Z.3    Hwang, P.-H.4    He, J.5    Wang, H.6    Razavian, N.7    Berns, M.W.8    Wu, X.9
  • 194
    • 0035806977 scopus 로고    scopus 로고
    • The role of the Mre11-Rad50-Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres
    • Tsukamoto Y, Taggart AK, Zakian VA. 2001. The role of the Mre11-Rad50-Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres. Curr Biol 11: 1328-1335.
    • (2001) Curr Biol , vol.11 , pp. 1328-1335
    • Tsukamoto, Y.1    Taggart, A.K.2    Zakian, V.A.3
  • 195
    • 0347992014 scopus 로고    scopus 로고
    • The N-terminal DNA-binding domain of Rad52 promotes RAD51-independent recombination in Saccharomyces cerevisiae
    • Tsukamoto M, Yamashita K, Miyazaki T, Shinohara M, Shinohara A. 2003. The N-terminal DNA-binding domain of Rad52 promotes RAD51-independent recombination in Saccharomyces cerevisiae. Genetics 165: 1703-1715.
    • (2003) Genetics , vol.165 , pp. 1703-1715
    • Tsukamoto, M.1    Yamashita, K.2    Miyazaki, T.3    Shinohara, M.4    Shinohara, A.5
  • 196
  • 197
    • 13244252309 scopus 로고    scopus 로고
    • UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli
    • Veaute X, Delmas S, Selva M, Jeusset J, LeCam E, Matic I, Fabre F, Petit M-A. 2005. UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24: 180-189.
    • (2005) EMBO J , vol.24 , pp. 180-189
    • Veaute, X.1    Delmas, S.2    Selva, M.3    Jeusset, J.4    Lecam, E.5    Matic, I.6    Fabre, F.7    Petit, M.-A.8
  • 198
    • 84870720807 scopus 로고    scopus 로고
    • Microhomology directs diverse DNA break repair pathways and chromosomal translocations
    • Villarreal DD, Lee K, Deem A, Shim EY, Malkova A, Lee SE. 2012. Microhomology directs diverse DNA break repair pathways and chromosomal translocations. PLoS Genet 8: e1003026.
    • (2012) Plos Genet , vol.8
    • Villarreal, D.D.1    Lee, K.2    Deem, A.3    Shim, E.Y.4    Malkova, A.5    Lee, S.E.6
  • 199
    • 0025237488 scopus 로고
    • A chromosome containing HOT1 preferentially receives information during mitotic interchromosomal gene conversion
    • Voelkel-Meiman K, Roeder GS. 1990. A chromosome containing HOT1 preferentially receives information during mitotic interchromosomal gene conversion. Genetics 124: 561-572.
    • (1990) Genetics , vol.124 , pp. 561-572
    • Voelkel-Meiman, K.1    Roeder, G.S.2
  • 200
    • 0021239734 scopus 로고
    • Unusual DNA sequences associated with the ends of yeast chromosomes
    • Walmsley RW, Chan CSM, Tye B-K, Petes TD. 1984. Unusual DNA sequences associated with the ends of yeast chromosomes. Nature 310: 157-160.
    • (1984) Nature , vol.310 , pp. 157-160
    • Walmsley, R.W.1    Chan, C.2    Tye, B.-K.3    Petes, T.D.4
  • 201
    • 7044232011 scopus 로고    scopus 로고
    • Homologous recombination generates T-loop-sized deletions at human telomeres
    • Wang RC, Smogorzewska A, de Lange T. 2004. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119: 355-368.
    • (2004) Cell , vol.119 , pp. 355-368
    • Wang, R.C.1    Smogorzewska, A.2    De Lange, T.3
  • 202
    • 20144363082 scopus 로고    scopus 로고
    • DNA ligase III as a candidate component of backup pathways of nonhomologous end joining
    • Wang H, Rosidi B, Perrault R, Wang M, Zhang L, Windhofer F, Iliakis G. 2005. DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res 65: 4020-4030.
    • (2005) Cancer Res , vol.65 , pp. 4020-4030
    • Wang, H.1    Rosidi, B.2    Perrault, R.3    Wang, M.4    Zhang, L.5    Windhofer, F.6    Iliakis, G.7
  • 203
    • 33747888634 scopus 로고    scopus 로고
    • Modeling oncogenic translocations: Distinct roles for double-strand break repair pathways in translocation formation in mammalian cells
    • Weinstock DM, Richardson CA, Elliott B, Jasin M. 2006. Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells. DNA Repair (Amst) 5: 1065-1074.
    • (2006) DNA Repair (Amst) , vol.5 , pp. 1065-1074
    • Weinstock, D.M.1    Richardson, C.A.2    Elliott, B.3    Jasin, M.4
  • 204
  • 205
    • 84957810275 scopus 로고    scopus 로고
    • Deciphering the code of the cancer genome: Mechanisms of chromosome rearrangement
    • Willis NA, Rass E, Scully R. 2015. Deciphering the code of the cancer genome: mechanisms of chromosome rearrangement. Trends Cancer 1: 217-230.
    • (2015) Trends Cancer , vol.1 , pp. 217-230
    • Willis, N.A.1    Rass, E.2    Scully, R.3
  • 207
    • 0347987856 scopus 로고    scopus 로고
    • The Bloom’s syndrome helicase suppresses crossing over during homologous recombination
    • Wu L, Hickson ID. 2003. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426: 870-874.
    • (2003) Nature , vol.426 , pp. 870-874
    • Wu, L.1    Hickson, I.D.2
  • 208
  • 209
    • 68249146431 scopus 로고    scopus 로고
    • Role of mammalian Mre11 in classical and alternative nonhomologous end joining
    • Xie A, Kwok A, Scully R. 2009. Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nat Struct Mol Biol 16: 814-818.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 814-818
    • Xie, A.1    Kwok, A.2    Scully, R.3
  • 210
    • 0037352498 scopus 로고    scopus 로고
    • PriA mediates DNA replication pathway choice at recombination intermediates
    • Xu L, Marians KJ. 2003. PriA mediates DNA replication pathway choice at recombination intermediates. Mol Cell 11: 817-826.
    • (2003) Mol Cell , vol.11 , pp. 817-826
    • Xu, L.1    Marians, K.J.2
  • 214
    • 77957235402 scopus 로고    scopus 로고
    • Synthesis-dependent microhomologymediated end joining accounts for multiple types of repair junctions
    • Yu AM, McVey M. 2010. Synthesis-dependent microhomologymediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res 38: 5706-5717.
    • (2010) Nucleic Acids Res , vol.38 , pp. 5706-5717
    • Yu, A.M.1    McVey, M.2
  • 215
  • 217
    • 78650995499 scopus 로고    scopus 로고
    • An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway
    • Zhang Y, Jasin M. 2011. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol 18: 80-84.
    • (2011) Nat Struct Mol Biol , vol.18 , pp. 80-84
    • Zhang, Y.1    Jasin, M.2
  • 219
    • 0037188898 scopus 로고    scopus 로고
    • Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations
    • Zhu C, Mills KD, Ferguson DO, Lee C, Manis J, Fleming J, Gao Y, Morton CC, Alt FW. 2002. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109: 811-821.
    • (2002) Cell , vol.109 , pp. 811-821
    • Zhu, C.1    Mills, K.D.2    Ferguson, D.O.3    Lee, C.4    Manis, J.5    Fleming, J.6    Gao, Y.7    Morton, C.C.8    Alt, F.W.9
  • 220
    • 51549095956 scopus 로고    scopus 로고
    • Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double strand break ends
    • Zhu Z, Chung W-H, Shim EY, Lee SE, Ira G. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double strand break ends. Cell 134: 981-994.
    • (2008) Cell , vol.134 , pp. 981-994
    • Zhu, Z.1    Chung, W.-H.2    Shim, E.Y.3    Lee, S.E.4    Ira, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.