메뉴 건너뛰기




Volumn 9, Issue 1, 2013, Pages

Telomerase-Null Survivor Screening Identifies Novel Telomere Recombination Regulators

Author keywords

[No Author keywords available]

Indexed keywords

HELICASE; MITOCHONDRIAL DNA; PIF1 HELICASE; TELOMERASE; UNCLASSIFIED DRUG;

EID: 84873489709     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1003208     Document Type: Article
Times cited : (49)

References (79)
  • 2
    • 0027509950 scopus 로고
    • Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase
    • Wellinger RJ, Wolf AJ, Zakian VA, (1993) Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell 72: 51-60.
    • (1993) Cell , vol.72 , pp. 51-60
    • Wellinger, R.J.1    Wolf, A.J.2    Zakian, V.A.3
  • 3
    • 0022402513 scopus 로고
    • Identification of a specific telomere terminal transferase activity in Tetrahymena extracts
    • Greider CW, Blackburn EH, (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43: 405-413.
    • (1985) Cell , vol.43 , pp. 405-413
    • Greider, C.W.1    Blackburn, E.H.2
  • 4
    • 0027266758 scopus 로고
    • An alternative pathway for yeast telomere maintenance rescues est1- senescence
    • Lundblad V, Blackburn EH, (1993) An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73: 347-360.
    • (1993) Cell , vol.73 , pp. 347-360
    • Lundblad, V.1    Blackburn, E.H.2
  • 5
    • 0033513079 scopus 로고    scopus 로고
    • Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae
    • Teng SC, Zakian VA, (1999) Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19: 8083-8093.
    • (1999) Mol Cell Biol , vol.19 , pp. 8083-8093
    • Teng, S.C.1    Zakian, V.A.2
  • 6
    • 0030881688 scopus 로고    scopus 로고
    • Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity
    • Lingner J, Cech TR, Hughes TR, Lundblad V, (1997) Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc Natl Acad Sci U S A 94: 11190-11195.
    • (1997) Proc Natl Acad Sci U S A , vol.94 , pp. 11190-11195
    • Lingner, J.1    Cech, T.R.2    Hughes, T.R.3    Lundblad, V.4
  • 7
    • 0027944347 scopus 로고
    • TLC1: template RNA component of Saccharomyces cerevisiae telomerase
    • Singer MS, Gottschling DE, (1994) TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266: 404-409.
    • (1994) Science , vol.266 , pp. 404-409
    • Singer, M.S.1    Gottschling, D.E.2
  • 8
    • 67651238707 scopus 로고    scopus 로고
    • Telomere recombination accelerates cellular aging in Saccharomyces cerevisiae
    • doi:10.1371/journal.pgen.1000535
    • Chen XF, Meng FL, Zhou JQ, (2009) Telomere recombination accelerates cellular aging in Saccharomyces cerevisiae. PLoS Genet 5: e1000535 doi:10.1371/journal.pgen.1000535.
    • (2009) PLoS Genet , vol.5
    • Chen, X.F.1    Meng, F.L.2    Zhou, J.Q.3
  • 9
    • 69249229528 scopus 로고    scopus 로고
    • Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase
    • Shore D, Bianchi A, (2009) Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase. EMBO J 28: 2309-2322.
    • (2009) EMBO J , vol.28 , pp. 2309-2322
    • Shore, D.1    Bianchi, A.2
  • 10
    • 0030990049 scopus 로고    scopus 로고
    • Telomere dynamics and telomerase activity in in vitro immortalised human cells
    • Bryan TM, Reddel RR, (1997) Telomere dynamics and telomerase activity in in vitro immortalised human cells. Eur J Cancer 33: 767-773.
    • (1997) Eur J Cancer , vol.33 , pp. 767-773
    • Bryan, T.M.1    Reddel, R.R.2
  • 11
    • 0036832737 scopus 로고    scopus 로고
    • Telomere maintenance and cancer - look, no telomerase
    • Neumann AA, Reddel RR, (2002) Telomere maintenance and cancer - look, no telomerase. Nat Rev Cancer 2: 879-884.
    • (2002) Nat Rev Cancer , vol.2 , pp. 879-884
    • Neumann, A.A.1    Reddel, R.R.2
  • 12
    • 0024973811 scopus 로고
    • A mutant with a defect in telomere elongation leads to senescence in yeast
    • Lundblad V, Szostak JW, (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57: 633-643.
    • (1989) Cell , vol.57 , pp. 633-643
    • Lundblad, V.1    Szostak, J.W.2
  • 13
    • 0030455861 scopus 로고    scopus 로고
    • Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes
    • Lendvay TS, Morris DK, Sah J, Balasubramanian B, Lundblad V, (1996) Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144: 1399-1412.
    • (1996) Genetics , vol.144 , pp. 1399-1412
    • Lendvay, T.S.1    Morris, D.K.2    Sah, J.3    Balasubramanian, B.4    Lundblad, V.5
  • 14
    • 33745474120 scopus 로고    scopus 로고
    • Break-induced replication and recombinational telomere elongation in yeast
    • McEachern MJ, Haber JE, (2006) Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75: 111-135.
    • (2006) Annu Rev Biochem , vol.75 , pp. 111-135
    • McEachern, M.J.1    Haber, J.E.2
  • 15
    • 0032959506 scopus 로고    scopus 로고
    • RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase
    • Le S, Moore JK, Haber JE, Greider CW, (1999) RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152: 143-152.
    • (1999) Genetics , vol.152 , pp. 143-152
    • Le, S.1    Moore, J.K.2    Haber, J.E.3    Greider, C.W.4
  • 16
    • 21644449682 scopus 로고    scopus 로고
    • Def1p is involved in telomere maintenance in budding yeast
    • Chen YB, Yang CP, Li RX, Zeng R, Zhou JQ, (2005) Def1p is involved in telomere maintenance in budding yeast. J Biol Chem 280: 24784-24791.
    • (2005) J Biol Chem , vol.280 , pp. 24784-24791
    • Chen, Y.B.1    Yang, C.P.2    Li, R.X.3    Zeng, R.4    Zhou, J.Q.5
  • 17
    • 0344197749 scopus 로고    scopus 로고
    • Mitotic cyclins regulate telomeric recombination in telomerase-deficient yeast cells
    • Grandin N, Charbonneau M, (2003) Mitotic cyclins regulate telomeric recombination in telomerase-deficient yeast cells. Mol Cell Biol 23: 9162-9177.
    • (2003) Mol Cell Biol , vol.23 , pp. 9162-9177
    • Grandin, N.1    Charbonneau, M.2
  • 18
    • 77950543877 scopus 로고    scopus 로고
    • Sua5p is required for telomere recombination in Saccharomyces cerevisiae
    • Meng FL, Chen XF, Hu Y, Tang HB, Dang W, et al. (2010) Sua5p is required for telomere recombination in Saccharomyces cerevisiae. Cell Res 20: 495-498.
    • (2010) Cell Res , vol.20 , pp. 495-498
    • Meng, F.L.1    Chen, X.F.2    Hu, Y.3    Tang, H.B.4    Dang, W.5
  • 19
    • 57649223719 scopus 로고    scopus 로고
    • Sgs1 RecQ helicase inhibits survival of Saccharomyces cerevisiae cells lacking telomerase and homologous recombination
    • Lee JY, Mogen JL, Chavez A, Johnson FB, (2008) Sgs1 RecQ helicase inhibits survival of Saccharomyces cerevisiae cells lacking telomerase and homologous recombination. J Biol Chem 283: 29847-29858.
    • (2008) J Biol Chem , vol.283 , pp. 29847-29858
    • Lee, J.Y.1    Mogen, J.L.2    Chavez, A.3    Johnson, F.B.4
  • 20
    • 34548798676 scopus 로고    scopus 로고
    • Mdt1 facilitates efficient repair of blocked DNA double-strand breaks and recombinational maintenance of telomeres
    • Pike BL, Heierhorst J, (2007) Mdt1 facilitates efficient repair of blocked DNA double-strand breaks and recombinational maintenance of telomeres. Mol Cell Biol 27: 6532-6545.
    • (2007) Mol Cell Biol , vol.27 , pp. 6532-6545
    • Pike, B.L.1    Heierhorst, J.2
  • 21
    • 0036311563 scopus 로고    scopus 로고
    • Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination
    • Tsai YL, Tseng SF, Chang SH, Lin CC, Teng SC, (2002) Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination. Mol Cell Biol 22: 5679-5687.
    • (2002) Mol Cell Biol , vol.22 , pp. 5679-5687
    • Tsai, Y.L.1    Tseng, S.F.2    Chang, S.H.3    Lin, C.C.4    Teng, S.C.5
  • 22
    • 0033636907 scopus 로고    scopus 로고
    • Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process
    • Teng SC, Chang J, McCowan B, Zakian VA, (2000) Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell 6: 947-952.
    • (2000) Mol Cell , vol.6 , pp. 947-952
    • Teng, S.C.1    Chang, J.2    McCowan, B.3    Zakian, V.A.4
  • 23
    • 33645793749 scopus 로고    scopus 로고
    • Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast
    • doi:10.1371/journal.pgen.0020035
    • Gatbonton T, Imbesi M, Nelson M, Akey JM, Ruderfer DM, et al. (2006) Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet 2: e35 doi:10.1371/journal.pgen.0020035.
    • (2006) PLoS Genet , vol.2
    • Gatbonton, T.1    Imbesi, M.2    Nelson, M.3    Akey, J.M.4    Ruderfer, D.M.5
  • 24
    • 67349168741 scopus 로고    scopus 로고
    • Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication
    • Meng FL, Hu Y, Shen N, Tong XJ, Wang J, et al. (2009) Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication. Embo J 28: 1466-1478.
    • (2009) Embo J , vol.28 , pp. 1466-1478
    • Meng, F.L.1    Hu, Y.2    Shen, N.3    Tong, X.J.4    Wang, J.5
  • 25
    • 12844271048 scopus 로고    scopus 로고
    • Xrs2p regulates Mre11p translocation to the nucleus and plays a role in telomere elongation and meiotic recombination
    • Tsukamoto Y, Mitsuoka C, Terasawa M, Ogawa H, Ogawa T, (2005) Xrs2p regulates Mre11p translocation to the nucleus and plays a role in telomere elongation and meiotic recombination. Mol Biol Cell 16: 597-608.
    • (2005) Mol Biol Cell , vol.16 , pp. 597-608
    • Tsukamoto, Y.1    Mitsuoka, C.2    Terasawa, M.3    Ogawa, H.4    Ogawa, T.5
  • 26
    • 2942532256 scopus 로고    scopus 로고
    • A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length
    • Askree SH, Yehuda T, Smolikov S, Gurevich R, Hawk J, et al. (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci U S A 101: 8658-8663.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 8658-8663
    • Askree, S.H.1    Yehuda, T.2    Smolikov, S.3    Gurevich, R.4    Hawk, J.5
  • 27
    • 32644444037 scopus 로고    scopus 로고
    • Evidence that the S.cerevisiae Sgs1 protein facilitates recombinational repair of telomeres during senescence
    • Azam M, Lee JY, Abraham V, Chanoux R, Schoenly KA, et al. (2006) Evidence that the S.cerevisiae Sgs1 protein facilitates recombinational repair of telomeres during senescence. Nucleic Acids Res 34: 506-516.
    • (2006) Nucleic Acids Res , vol.34 , pp. 506-516
    • Azam, M.1    Lee, J.Y.2    Abraham, V.3    Chanoux, R.4    Schoenly, K.A.5
  • 28
    • 2442520305 scopus 로고    scopus 로고
    • EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae
    • Bertuch AA, Lundblad V, (2004) EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae. Genetics 166: 1651-1659.
    • (2004) Genetics , vol.166 , pp. 1651-1659
    • Bertuch, A.A.1    Lundblad, V.2
  • 29
    • 33646178457 scopus 로고    scopus 로고
    • A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator
    • Downey M, Houlsworth R, Maringele L, Rollie A, Brehme M, et al. (2006) A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator. Cell 124: 1155-1168.
    • (2006) Cell , vol.124 , pp. 1155-1168
    • Downey, M.1    Houlsworth, R.2    Maringele, L.3    Rollie, A.4    Brehme, M.5
  • 30
    • 0036042588 scopus 로고    scopus 로고
    • STM1, a gene which encodes a guanine quadruplex binding protein, interacts with CDC13 in Saccharomyces cerevisiae
    • Hayashi N, Murakami S, (2002) STM1, a gene which encodes a guanine quadruplex binding protein, interacts with CDC13 in Saccharomyces cerevisiae. Mol Genet Genomics 267: 806-813.
    • (2002) Mol Genet Genomics , vol.267 , pp. 806-813
    • Hayashi, N.1    Murakami, S.2
  • 31
    • 0037984352 scopus 로고    scopus 로고
    • Exposure of Single-stranded Telomeric DNA Causes G2/M Cell Cycle Arrest in Saccharomyces cerevisiae
    • Pang TL, Wang CY, Hsu CL, Chen MY, Lin JJ, (2003) Exposure of Single-stranded Telomeric DNA Causes G2/M Cell Cycle Arrest in Saccharomyces cerevisiae. J Biol Chem 278: 9318-9321.
    • (2003) J Biol Chem , vol.278 , pp. 9318-9321
    • Pang, T.L.1    Wang, C.Y.2    Hsu, C.L.3    Chen, M.Y.4    Lin, J.J.5
  • 32
    • 37549046440 scopus 로고    scopus 로고
    • The hsp90 molecular chaperone modulates multiple telomerase activities
    • Toogun OA, Dezwaan DC, Freeman BC, (2008) The hsp90 molecular chaperone modulates multiple telomerase activities. Mol Cell Biol 28: 457-467.
    • (2008) Mol Cell Biol , vol.28 , pp. 457-467
    • Toogun, O.A.1    Dezwaan, D.C.2    Freeman, B.C.3
  • 34
    • 34547912119 scopus 로고    scopus 로고
    • Regulation of telomere structure and functions by subunits of the INO80 chromatin remodeling complex
    • Yu EY, Steinberg-Neifach O, Dandjinou AT, Kang F, Morrison AJ, et al. (2007) Regulation of telomere structure and functions by subunits of the INO80 chromatin remodeling complex. Mol Cell Biol 27: 5639-5649.
    • (2007) Mol Cell Biol , vol.27 , pp. 5639-5649
    • Yu, E.Y.1    Steinberg-Neifach, O.2    Dandjinou, A.T.3    Kang, F.4    Morrison, A.J.5
  • 35
    • 0034604503 scopus 로고    scopus 로고
    • Pif1p helicase, a catalytic inhibitor of telomerase in yeast
    • Zhou J, Monson EK, Teng SC, Schulz VP, Zakian VA, (2000) Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science 289: 771-774.
    • (2000) Science , vol.289 , pp. 771-774
    • Zhou, J.1    Monson, E.K.2    Teng, S.C.3    Schulz, V.P.4    Zakian, V.A.5
  • 37
    • 79953785558 scopus 로고    scopus 로고
    • Long telomeres are preferentially extended during recombination-mediated telomere maintenance
    • Chang M, Dittmar JC, Rothstein R, (2011) Long telomeres are preferentially extended during recombination-mediated telomere maintenance. Nat Struct Mol Biol 18: 451-456.
    • (2011) Nat Struct Mol Biol , vol.18 , pp. 451-456
    • Chang, M.1    Dittmar, J.C.2    Rothstein, R.3
  • 38
    • 79952134583 scopus 로고    scopus 로고
    • SnapShot: Chromatin remodeling: INO80 and SWR1
    • Bao Y, Shen X, (2011) SnapShot: Chromatin remodeling: INO80 and SWR1. Cell 144: 158-e152, 158-158, e152.
    • (2011) Cell , vol.144
    • Bao, Y.1    Shen, X.2
  • 39
    • 34848908787 scopus 로고    scopus 로고
    • The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates
    • Boule JB, Zakian VA, (2007) The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates. Nucleic Acids Res 35: 5809-5818.
    • (2007) Nucleic Acids Res , vol.35 , pp. 5809-5818
    • Boule, J.B.1    Zakian, V.A.2
  • 40
    • 0028178792 scopus 로고
    • The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation
    • Schulz VP, Zakian VA, (1994) The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76: 145-155.
    • (1994) Cell , vol.76 , pp. 145-155
    • Schulz, V.P.1    Zakian, V.A.2
  • 41
    • 33947137756 scopus 로고    scopus 로고
    • The role of Pif1p, a DNA helicase in Saccharomyces cerevisiae, in maintaining mitochondrial DNA
    • Cheng X, Dunaway S, Ivessa AS, (2007) The role of Pif1p, a DNA helicase in Saccharomyces cerevisiae, in maintaining mitochondrial DNA. Mitochondrion 7: 211-222.
    • (2007) Mitochondrion , vol.7 , pp. 211-222
    • Cheng, X.1    Dunaway, S.2    Ivessa, A.S.3
  • 42
    • 0342527473 scopus 로고
    • A PIF-dependent recombinogenic signal in the mitochondrial DNA of yeast
    • Foury F, Dyck EV, (1985) A PIF-dependent recombinogenic signal in the mitochondrial DNA of yeast. Embo J 4: 3525-3530.
    • (1985) Embo J , vol.4 , pp. 3525-3530
    • Foury, F.1    Dyck, E.V.2
  • 43
    • 0026784158 scopus 로고
    • A single-stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB
    • Van Dyck E, Foury F, Stillman B, Brill SJ, (1992) A single-stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB. Embo J 11: 3421-3430.
    • (1992) Embo J , vol.11 , pp. 3421-3430
    • Van Dyck, E.1    Foury, F.2    Stillman, B.3    Brill, S.J.4
  • 44
    • 27744445335 scopus 로고    scopus 로고
    • The yeast Pif1p helicase removes telomerase from telomeric DNA
    • Boule JB, Vega LR, Zakian VA, (2005) The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature 438: 57-61.
    • (2005) Nature , vol.438 , pp. 57-61
    • Boule, J.B.1    Vega, L.R.2    Zakian, V.A.3
  • 45
    • 33645215616 scopus 로고    scopus 로고
    • Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta
    • Budd ME, Reis CC, Smith S, Myung K, Campbell JL, (2006) Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol Cell Biol 26: 2490-2500.
    • (2006) Mol Cell Biol , vol.26 , pp. 2490-2500
    • Budd, M.E.1    Reis, C.C.2    Smith, S.3    Myung, K.4    Campbell, J.L.5
  • 46
    • 69949122831 scopus 로고    scopus 로고
    • Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway
    • Pike JE, Burgers PM, Campbell JL, Bambara RA, (2009) Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway. J Biol Chem 284: 25170-25180.
    • (2009) J Biol Chem , vol.284 , pp. 25170-25180
    • Pike, J.E.1    Burgers, P.M.2    Campbell, J.L.3    Bambara, R.A.4
  • 47
    • 0034681257 scopus 로고    scopus 로고
    • The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA
    • Ivessa AS, Zhou JQ, Zakian VA, (2000) The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100: 479-489.
    • (2000) Cell , vol.100 , pp. 479-489
    • Ivessa, A.S.1    Zhou, J.Q.2    Zakian, V.A.3
  • 48
    • 67149126812 scopus 로고    scopus 로고
    • The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo
    • doi:10.1371/journal.pgen.1000475
    • Ribeyre C, Lopes J, Boule JB, Piazza A, Guedin A, et al. (2009) The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 5: e1000475 doi:10.1371/journal.pgen.1000475.
    • (2009) PLoS Genet , vol.5
    • Ribeyre, C.1    Lopes, J.2    Boule, J.B.3    Piazza, A.4    Guedin, A.5
  • 49
    • 79957556530 scopus 로고    scopus 로고
    • DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase
    • Paeschke K, Capra JA, Zakian VA, (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145: 678-691.
    • (2011) Cell , vol.145 , pp. 678-691
    • Paeschke, K.1    Capra, J.A.2    Zakian, V.A.3
  • 50
    • 78649705898 scopus 로고    scopus 로고
    • Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping
    • Dewar JM, Lydall D, (2010) Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping. EMBO J 29: 4020-4034.
    • (2010) EMBO J , vol.29 , pp. 4020-4034
    • Dewar, J.M.1    Lydall, D.2
  • 51
    • 34548638261 scopus 로고    scopus 로고
    • Structure and mechanism of helicases and nucleic acid translocases
    • Singleton MR, Dillingham MS, Wigley DB, (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76: 23-50.
    • (2007) Annu Rev Biochem , vol.76 , pp. 23-50
    • Singleton, M.R.1    Dillingham, M.S.2    Wigley, D.B.3
  • 52
    • 0032942212 scopus 로고    scopus 로고
    • Systematic identification, classification, and characterization of the open reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and Northern analysis
    • Shiratori A, Shibata T, Arisawa M, Hanaoka F, Murakami Y, et al. (1999) Systematic identification, classification, and characterization of the open reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and Northern analysis. Yeast 15: 219-253.
    • (1999) Yeast , vol.15 , pp. 219-253
    • Shiratori, A.1    Shibata, T.2    Arisawa, M.3    Hanaoka, F.4    Murakami, Y.5
  • 53
    • 0035936559 scopus 로고    scopus 로고
    • SGS1 is required for telomere elongation in the absence of telomerase
    • Huang P, Pryde FE, Lester D, Maddison RL, Borts RH, et al. (2001) SGS1 is required for telomere elongation in the absence of telomerase. Curr Biol 11: 125-129.
    • (2001) Curr Biol , vol.11 , pp. 125-129
    • Huang, P.1    Pryde, F.E.2    Lester, D.3    Maddison, R.L.4    Borts, R.H.5
  • 54
    • 0038246291 scopus 로고    scopus 로고
    • The Rad51 pathway of telomerase-independent maintenance of telomeres can amplify TG1-3 sequences in yku and cdc13 mutants of Saccharomyces cerevisiae
    • Grandin N, Charbonneau M, (2003) The Rad51 pathway of telomerase-independent maintenance of telomeres can amplify TG1-3 sequences in yku and cdc13 mutants of Saccharomyces cerevisiae. Mol Cell Biol 23: 3721-3734.
    • (2003) Mol Cell Biol , vol.23 , pp. 3721-3734
    • Grandin, N.1    Charbonneau, M.2
  • 55
    • 0032554797 scopus 로고    scopus 로고
    • Telomere maintenance is dependent on activities required for end repair of double-strand breaks
    • Nugent CI, Bosco G, Ross LO, Evans SK, Salinger AP, et al. (1998) Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr Biol 8: 657-660.
    • (1998) Curr Biol , vol.8 , pp. 657-660
    • Nugent, C.I.1    Bosco, G.2    Ross, L.O.3    Evans, S.K.4    Salinger, A.P.5
  • 56
    • 79952261364 scopus 로고    scopus 로고
    • Est1 protects telomeres and inhibits subtelomeric y'-element recombination
    • Tong XJ, Li QJ, Duan YM, Liu NN, Zhang ML, et al. (2011) Est1 protects telomeres and inhibits subtelomeric y'-element recombination. Mol Cell Biol 31: 1263-1274.
    • (2011) Mol Cell Biol , vol.31 , pp. 1263-1274
    • Tong, X.J.1    Li, Q.J.2    Duan, Y.M.3    Liu, N.N.4    Zhang, M.L.5
  • 57
    • 63049135667 scopus 로고    scopus 로고
    • The role of RAD6 in recombinational repair, checkpoints and meiosis via histone modification
    • Game JC, Chernikova SB, (2009) The role of RAD6 in recombinational repair, checkpoints and meiosis via histone modification. DNA Repair (Amst) 8: 470-482.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 470-482
    • Game, J.C.1    Chernikova, S.B.2
  • 58
    • 0034695456 scopus 로고    scopus 로고
    • Rad6-dependent ubiquitination of histone H2B in yeast
    • Robzyk K, Recht J, Osley MA, (2000) Rad6-dependent ubiquitination of histone H2B in yeast. Science 287: 501-504.
    • (2000) Science , vol.287 , pp. 501-504
    • Robzyk, K.1    Recht, J.2    Osley, M.A.3
  • 59
    • 0037248593 scopus 로고    scopus 로고
    • A conserved RING finger protein required for histone H2B monoubiquitination and cell size control
    • Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, Tong A, Boone C, et al. (2003) A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 11: 261-266.
    • (2003) Mol Cell , vol.11 , pp. 261-266
    • Hwang, W.W.1    Venkatasubrahmanyam, S.2    Ianculescu, A.G.3    Tong, A.4    Boone, C.5
  • 60
    • 0037192780 scopus 로고    scopus 로고
    • COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression
    • Krogan NJ, Dover J, Khorrami S, Greenblatt JF, Schneider J, et al. (2002) COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 277: 10753-10755.
    • (2002) J Biol Chem , vol.277 , pp. 10753-10755
    • Krogan, N.J.1    Dover, J.2    Khorrami, S.3    Greenblatt, J.F.4    Schneider, J.5
  • 61
    • 0037068455 scopus 로고    scopus 로고
    • RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
    • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S, (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135-141.
    • (2002) Nature , vol.419 , pp. 135-141
    • Hoege, C.1    Pfander, B.2    Moldovan, G.L.3    Pyrowolakis, G.4    Jentsch, S.5
  • 62
    • 0035912183 scopus 로고    scopus 로고
    • Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability
    • Rao H, Uhlmann F, Nasmyth K, Varshavsky A, (2001) Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410: 955-959.
    • (2001) Nature , vol.410 , pp. 955-959
    • Rao, H.1    Uhlmann, F.2    Nasmyth, K.3    Varshavsky, A.4
  • 63
    • 54049140483 scopus 로고    scopus 로고
    • Atomic structure of the KEOPS complex: an ancient protein kinase-containing molecular machine
    • Mao DY, Neculai D, Downey M, Orlicky S, Haffani YZ, et al. (2008) Atomic structure of the KEOPS complex: an ancient protein kinase-containing molecular machine. Mol Cell 32: 259-275.
    • (2008) Mol Cell , vol.32 , pp. 259-275
    • Mao, D.Y.1    Neculai, D.2    Downey, M.3    Orlicky, S.4    Haffani, Y.Z.5
  • 64
    • 43049146539 scopus 로고    scopus 로고
    • Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae
    • Ben-Aroya S, Coombes C, Kwok T, O'Donnell KA, Boeke JD, et al. (2008) Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. Mol Cell 30: 248-258.
    • (2008) Mol Cell , vol.30 , pp. 248-258
    • Ben-Aroya, S.1    Coombes, C.2    Kwok, T.3    O'Donnell, K.A.4    Boeke, J.D.5
  • 66
    • 79952280840 scopus 로고    scopus 로고
    • The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A
    • Srinivasan M, Mehta P, Yu Y, Prugar E, Koonin EV, et al. (2011) The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A. Embo J 30: 873-881.
    • (2011) Embo J , vol.30 , pp. 873-881
    • Srinivasan, M.1    Mehta, P.2    Yu, Y.3    Prugar, E.4    Koonin, E.V.5
  • 67
    • 51049107924 scopus 로고    scopus 로고
    • Structure of the archaeal Kae1/Bud32 fusion protein MJ1130: a model for the eukaryotic EKC/KEOPS subcomplex
    • Hecker A, Lopreiato R, Graille M, Collinet B, Forterre P, et al. (2008) Structure of the archaeal Kae1/Bud32 fusion protein MJ1130: a model for the eukaryotic EKC/KEOPS subcomplex. Embo J 27: 2340-2351.
    • (2008) Embo J , vol.27 , pp. 2340-2351
    • Hecker, A.1    Lopreiato, R.2    Graille, M.3    Collinet, B.4    Forterre, P.5
  • 68
    • 0035940494 scopus 로고    scopus 로고
    • A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity
    • Birrell GW, Giaever G, Chu AM, Davis RW, Brown JM, (2001) A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity. Proc Natl Acad Sci U S A 98: 12608-12613.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 12608-12613
    • Birrell, G.W.1    Giaever, G.2    Chu, A.M.3    Davis, R.W.4    Brown, J.M.5
  • 69
    • 52049083189 scopus 로고    scopus 로고
    • A genetic screen for increased loss of heterozygosity in Saccharomyces cerevisiae
    • Andersen MP, Nelson ZW, Hetrick ED, Gottschling DE, (2008) A genetic screen for increased loss of heterozygosity in Saccharomyces cerevisiae. Genetics 179: 1179-1195.
    • (2008) Genetics , vol.179 , pp. 1179-1195
    • Andersen, M.P.1    Nelson, Z.W.2    Hetrick, E.D.3    Gottschling, D.E.4
  • 70
    • 43049111100 scopus 로고    scopus 로고
    • Microarray-based genetic screen defines SAW1, a gene required for Rad1/Rad10-dependent processing of recombination intermediates
    • Li F, Dong J, Pan X, Oum JH, Boeke JD, et al. (2008) Microarray-based genetic screen defines SAW1, a gene required for Rad1/Rad10-dependent processing of recombination intermediates. Mol Cell 30: 325-335.
    • (2008) Mol Cell , vol.30 , pp. 325-335
    • Li, F.1    Dong, J.2    Pan, X.3    Oum, J.H.4    Boeke, J.D.5
  • 71
    • 67149107074 scopus 로고    scopus 로고
    • Comparative genome-wide screening identifies a conserved doxorubicin repair network that is diploid specific in Saccharomyces cerevisiae
    • doi:10.1371/journal.pone.0005830
    • Westmoreland TJ, Wickramasekara SM, Guo AY, Selim AL, Winsor TS, et al. (2009) Comparative genome-wide screening identifies a conserved doxorubicin repair network that is diploid specific in Saccharomyces cerevisiae. PLoS ONE 4: e5830 doi:10.1371/journal.pone.0005830.
    • (2009) PLoS ONE , vol.4
    • Westmoreland, T.J.1    Wickramasekara, S.M.2    Guo, A.Y.3    Selim, A.L.4    Winsor, T.S.5
  • 72
    • 0030778197 scopus 로고    scopus 로고
    • RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis
    • Klein HL, (1997) RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147: 1533-1543.
    • (1997) Genetics , vol.147 , pp. 1533-1543
    • Klein, H.L.1
  • 73
    • 0024058351 scopus 로고
    • Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations
    • Aguilera A, Klein HL, (1988) Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119: 779-790.
    • (1988) Genetics , vol.119 , pp. 779-790
    • Aguilera, A.1    Klein, H.L.2
  • 74
    • 34547927220 scopus 로고    scopus 로고
    • Break-induced replication and telomerase-independent telomere maintenance require Pol32
    • Lydeard JR, Jain S, Yamaguchi M, Haber JE, (2007) Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448: 820-823.
    • (2007) Nature , vol.448 , pp. 820-823
    • Lydeard, J.R.1    Jain, S.2    Yamaguchi, M.3    Haber, J.E.4
  • 75
    • 0345169051 scopus 로고    scopus 로고
    • Getting to the end: telomerase access in yeast and humans
    • Vega LR, Mateyak MK, Zakian VA, (2003) Getting to the end: telomerase access in yeast and humans. Nat Rev Mol Cell Biol 4: 948-959.
    • (2003) Nat Rev Mol Cell Biol , vol.4 , pp. 948-959
    • Vega, L.R.1    Mateyak, M.K.2    Zakian, V.A.3
  • 76
    • 78349259719 scopus 로고    scopus 로고
    • An mre11 mutation that promotes telomere recombination and an efficient bypass of senescence
    • Joseph IS, Kumari A, Bhattacharyya MK, Gao H, Li B, et al. (2010) An mre11 mutation that promotes telomere recombination and an efficient bypass of senescence. Genetics 185: 761-770.
    • (2010) Genetics , vol.185 , pp. 761-770
    • Joseph, I.S.1    Kumari, A.2    Bhattacharyya, M.K.3    Gao, H.4    Li, B.5
  • 77
    • 0344198456 scopus 로고    scopus 로고
    • Chromatin remodeling by ATP-dependent molecular machines
    • Lusser A, Kadonaga JT, (2003) Chromatin remodeling by ATP-dependent molecular machines. Bioessays 25: 1192-1200.
    • (2003) Bioessays , vol.25 , pp. 1192-1200
    • Lusser, A.1    Kadonaga, J.T.2
  • 78
    • 80051536629 scopus 로고    scopus 로고
    • Cell polarity in Saccharomyces cerevisiae depends on proper localization of the Bud9 landmark protein by the EKC/KEOPS complex
    • Kato Y, Kawasaki H, Ohyama Y, Morishita T, Iwasaki H, et al. (2011) Cell polarity in Saccharomyces cerevisiae depends on proper localization of the Bud9 landmark protein by the EKC/KEOPS complex. Genetics 188: 871-882.
    • (2011) Genetics , vol.188 , pp. 871-882
    • Kato, Y.1    Kawasaki, H.2    Ohyama, Y.3    Morishita, T.4    Iwasaki, H.5
  • 79
    • 66249095330 scopus 로고    scopus 로고
    • The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA
    • El Yacoubi B, Lyons B, Cruz Y, Reddy R, Nordin B, et al. (2009) The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA. Nucleic Acids Res 37: 2894-2909.
    • (2009) Nucleic Acids Res , vol.37 , pp. 2894-2909
    • El Yacoubi, B.1    Lyons, B.2    Cruz, Y.3    Reddy, R.4    Nordin, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.