메뉴 건너뛰기




Volumn 22, Issue 3, 2015, Pages 192-198

A global profile of replicative polymerase usage

Author keywords

[No Author keywords available]

Indexed keywords

DNA POLYMERASE; DOUBLE STRANDED DNA; FUNGAL DNA; FUNGAL ENZYME; RIBONUCLEASE; RIBONUCLEOTIDE; SINGLE STRANDED DNA; DNA; DNA DIRECTED DNA POLYMERASE ALPHA; DNA DIRECTED DNA POLYMERASE BETA; DNA DIRECTED DNA POLYMERASE GAMMA;

EID: 84924198688     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.2962     Document Type: Article
Times cited : (123)

References (42)
  • 1
    • 17244367849 scopus 로고    scopus 로고
    • Dna damage response as a candidate anti-cancer barrier in early human tumorigenesis
    • Bartkova, J., et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-870 (2005
    • (2005) Nature , vol.434 , pp. 864-870
    • Bartkova, J.1
  • 2
    • 17244366865 scopus 로고    scopus 로고
    • Activation of the dna damage checkpoint and genomic instability in human precancerous lesions
    • Gorgoulis, V.G., et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907-913 (2005
    • (2005) Nature , vol.434 , pp. 907-913
    • Gorgoulis, V.G.1
  • 4
    • 14544277626 scopus 로고    scopus 로고
    • Origin recognition and the chromosome cycle
    • Stillman, B. Origin recognition and the chromosome cycle. FEBS Lett. 579, 877-884 (2005
    • (2005) FEBS Lett , vol.579 , pp. 877-884
    • Stillman, B.1
  • 5
    • 84888432841 scopus 로고    scopus 로고
    • High-resolution replication profiles define the stochastic nature of genome replication initiation and termination
    • Hawkins, M., et al. High-resolution replication profiles define the stochastic nature of genome replication initiation and termination. Cell Reports 5, 1132-1141 (2013
    • (2013) Cell Reports , vol.5 , pp. 1132-1141
    • Hawkins, M.1
  • 6
    • 77952994784 scopus 로고    scopus 로고
    • Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types
    • Ryba, T., et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 20, 761-770 (2010
    • (2010) Genome Res , vol.20 , pp. 761-770
    • Ryba, T.1
  • 7
    • 84879750259 scopus 로고    scopus 로고
    • Principles and concepts of dna replication in bacteria, archaea, and eukarya
    • ODonnell, M., Langston, L. & Stillman, B. Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb. Perspect. Biol. 5, a010108 (2013
    • (2013) Cold Spring Harb. Perspect. Biol , vol.5 , pp. a010108
    • Odonnell, M.1    Langston, L.2    Stillman, B.3
  • 8
    • 33745925880 scopus 로고    scopus 로고
    • Isolation of the cdc45/mcm2-7/gins (cmg) complex, a candidate for the eukaryotic dna replication fork helicase
    • Moyer, S.E., Lewis, P.W. & Botchan, M.R. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. USA 103, 10236-10241 (2006
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 10236-10241
    • Moyer, S.E.1    Lewis, P.W.2    Botchan, M.R.3
  • 9
    • 70350572751 scopus 로고    scopus 로고
    • A key role for ctf4 in coupling the mcm2-7 helicase to dna polymerase alpha within the eukaryotic replisome
    • Gambus, A., et al. A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J. 28, 2992-3004 (2009
    • (2009) EMBO J. , vol.28 , pp. 2992-3004
    • Gambus, A.1
  • 10
    • 84902304914 scopus 로고    scopus 로고
    • A ctf4 trimer couples the cmg helicase to dna polymerase α in the eukaryotic replisome
    • Simon, A.C., et al. A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome. Nature 510, 293-297 (2014
    • (2014) Nature , vol.510 , pp. 293-297
    • Simon, A.C.1
  • 11
    • 84876108565 scopus 로고    scopus 로고
    • Dpb2 integrates the leading-strand dna polymerase into the eukaryotic replisome
    • Sengupta, S., van Deursen, F., de Piccoli, G. & Labib, K. Dpb2 integrates the leading-strand DNA polymerase into the eukaryotic replisome. Curr. Biol. 23, 543-552 (2013
    • (2013) Curr. Biol , vol.23 , pp. 543-552
    • Sengupta, S.1    Van Deursen, F.2    De Piccoli, G.3    Labib, K.4
  • 12
    • 84871181366 scopus 로고    scopus 로고
    • Dna polymerization-independent functions of dna polymerase epsilon in assembly and progression of the replisome in fission yeast
    • Handa, T., Kanke, M., Takahashi, T.S., Nakagawa, T. & Masukata, H. DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast. Mol. Biol. Cell 23, 3240-3253 (2012
    • (2012) Mol. Biol. Cell , vol.23 , pp. 3240-3253
    • Handa, T.1    Kanke, M.2    Takahashi, T.S.3    Nakagawa, T.4    Masukata, H.5
  • 13
    • 77949354732 scopus 로고    scopus 로고
    • Cdk-dependent complex formation between replication proteins dpb11, sld2, pol ε, and gins in budding yeast
    • Muramatsu, S., Hirai, K., Tak, Y.S., Kamimura, Y. & Araki, H. CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol Ε, and GINS in budding yeast. Genes Dev. 24, 602-612 (2010
    • (2010) Genes Dev , vol.24 , pp. 602-612
    • Muramatsu, S.1    Hirai, K.2    Tak, Y.S.3    Kamimura, Y.4    Araki, H.5
  • 14
    • 34447336941 scopus 로고    scopus 로고
    • Yeast dna polymerase epsilon participates in leading-strand dna replication
    • Pursell, Z.F., Isoz, I., Lundstrom, E.B., Johansson, E. & Kunkel, T.A. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317, 127-130 (2007
    • (2007) Science , vol.317 , pp. 127-130
    • Pursell, Z.F.1    Isoz, I.2    Lundstrom, E.B.3    Johansson, E.4    Kunkel, T.A.5
  • 16
    • 84855267435 scopus 로고    scopus 로고
    • The major roles of dna polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved
    • Miyabe, I., Kunkel, T.A. & Carr, A.M. The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet. 7, e1002407 (2011
    • (2011) PLoS Genet , vol.7 , pp. e1002407
    • Miyabe, I.1    Kunkel, T.A.2    Carr, A.M.3
  • 17
    • 77950406088 scopus 로고    scopus 로고
    • Abundant ribonucleotide incorporation into dna by yeast replicative polymerases
    • Nick McElhinny, S.A., et al. Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc. Natl. Acad. Sci. USA 107, 4949-4954 (2010
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 4949-4954
    • Nick McElhinny, S.A.1
  • 18
    • 84866851215 scopus 로고    scopus 로고
    • Rnase h2-initiated ribonucleotide excision repair
    • Sparks, J.L., et al. RNase H2-initiated ribonucleotide excision repair. Mol. Cell 47, 980-986 (2012
    • (2012) Mol. Cell , vol.47 , pp. 980-986
    • Sparks, J.L.1
  • 19
    • 79959504063 scopus 로고    scopus 로고
    • Mutagenic processing of ribonucleotides in dna by yeast topoisomerase i
    • Kim, N., et alMutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 332, 1561-1564 (2011
    • (2011) Science , vol.332 , pp. 1561-1564
    • Kim, N.1
  • 20
    • 84876829295 scopus 로고    scopus 로고
    • Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand dna
    • Williams, J.S., et al. Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA. Mol. Cell 49, 1010-1015 (2013
    • (2013) Mol. Cell , vol.49 , pp. 1010-1015
    • Williams, J.S.1
  • 21
    • 0031310666 scopus 로고    scopus 로고
    • Site-specific ribonuclease activity of eukaryotic dna topoisomerase i
    • Sekiguchi, J. & Shuman, S. Site-specific ribonuclease activity of eukaryotic DNA topoisomerase I. Mol. Cell 1, 89-97 (1997
    • (1997) Mol Cell , vol.1 , pp. 89-97
    • Sekiguchi, J.1    Shuman, S.2
  • 22
    • 79960698210 scopus 로고    scopus 로고
    • Replication of ribonucleotide-containing dna templates by yeast replicative polymerases
    • Watt, D.L., Johansson, E., Burgers, P.M. & Kunkel, T.A. Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases. DNA Repair (Amst.) 10, 897-902 (2011
    • (2011) DNA Repair (Amst , vol.10 , pp. 897-902
    • Watt, D.L.1    Johansson, E.2    Burgers, P.M.3    Kunkel, T.A.4
  • 23
    • 84902074659 scopus 로고    scopus 로고
    • Ribonucleotides in dna: Origins, repair and consequences
    • Williams, J.S. & Kunkel, T.A. Ribonucleotides in DNA: origins, repair and consequences. DNA Repair (Amst.) 19, 27-37 (2014
    • (2014) DNA Repair (Amst , vol.19 , pp. 27-37
    • Williams, J.S.1    Kunkel, T.A.2
  • 24
    • 84887156806 scopus 로고    scopus 로고
    • Ribonucleotides are signals for mismatch repair of leading-strand replication errors
    • Lujan, S.A., Williams, J.S., Clausen, A.R., Clark, A.B. & Kunkel, T.A. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol. Cell 50, 437-443 (2013
    • (2013) Mol. Cell , vol.50 , pp. 437-443
    • Lujan, S.A.1    Williams, J.S.2    Clausen, A.R.3    Clark, A.B.4    Kunkel, T.A.5
  • 25
    • 84859927986 scopus 로고    scopus 로고
    • Genome-wide identification and characterization of replication origins by deep sequencing
    • Xu, J., et al. Genome-wide identification and characterization of replication origins by deep sequencing. Genome Biol. 13, R27 (2012
    • (2012) Genome Biol , vol.13 , pp. R27
    • Xu, J.1
  • 26
    • 0031844293 scopus 로고    scopus 로고
    • Heat stress activates fission yeast spc1/styi mapk by a mekk-independent mechanism
    • Shiozaki, K., Shiozaki, M. & Russell, P. Heat stress activates fission yeast Spc1/StyI MAPK by a MEKK-independent mechanism. Mol. Biol. Cell 9, 1339-1349 (1998
    • (1998) Mol. Biol. Cell , vol.9 , pp. 1339-1349
    • Shiozaki, K.1    Shiozaki, M.2    Russell, P.3
  • 27
    • 84891823877 scopus 로고    scopus 로고
    • The dynamics of genome replication using deep sequencing
    • Müller, C.A., et al. The dynamics of genome replication using deep sequencing. Nucleic Acids Res. 42, e3 (2014
    • (2014) Nucleic Acids Res , vol.42 , pp. e3
    • Müller, C.A.1
  • 28
    • 84866915158 scopus 로고    scopus 로고
    • Mathematical modeling of genome replication
    • Retkute, R., Nieduszynski, C.A. & de Moura, A. Mathematical modeling of genome replication. Phys. Rev. E 86, 031916 (2012
    • (2012) Phys. Rev , vol.E86 , pp. 031916
    • Retkute, R.1    Nieduszynski, C.A.2    De Moura, A.3
  • 29
    • 84924180985 scopus 로고    scopus 로고
    • Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation
    • 26 January 2015
    • Clausen, A.R., et al. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2957 (26 January 2015
    • Nat. Struct. Mol. Biol
    • Clausen, A.R.1
  • 30
    • 84923844518 scopus 로고    scopus 로고
    • Ribose-seq: Global mapping of ribonucleotides embedded in genomic dna
    • 26 January 2015
    • Koh, K.D., Balachander, S., Hesselberth, J.R. & Storici, F. Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nat. Methods doi: 10.1038/nmeth.3259 (26 January 2015
    • Nat. Methods
    • Koh, K.D.1    Balachander, S.2    Hesselberth, J.R.3    Storici, F.4
  • 31
    • 84924072858 scopus 로고    scopus 로고
    • Lagging strand replication shapes the mutational landscape of the genome
    • 26 January 2015
    • Reijns, M.A.M., et al. Lagging strand replication shapes the mutational landscape of the genome. Nature doi: 10.1038/nature14183 (26 January 2015
    • Nature
    • Reijns, M.A.M.1
  • 33
    • 77955997707 scopus 로고    scopus 로고
    • Replication termination at eukaryotic chromosomes is mediated by top2 and occurs at genomic loci containing pausing elements
    • Fachinetti, D., et al. Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. Mol. Cell 39, 595-605 (2010
    • (2010) Mol. Cell , vol.39 , pp. 595-605
    • Fachinetti, D.1
  • 34
    • 80052919408 scopus 로고    scopus 로고
    • Mutation rates across budding yeast chromosome vi are correlated with replication timing
    • Lang, G.I. & Murray, A.W. Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol. Evol. 3, 799-811 (2011
    • (2011) Genome Biol. Evol , vol.3 , pp. 799-811
    • Lang, G.I.1    Murray, A.W.2
  • 35
    • 84880768893 scopus 로고    scopus 로고
    • Readers of pcna modifications
    • Ulrich, H.D. & Takahashi, T. Readers of PCNA modifications. Chromosoma 122, 259-274 (2013
    • (2013) Chromosoma , vol.122 , pp. 259-274
    • Ulrich, H.D.1    Takahashi, T.2
  • 36
    • 0033529497 scopus 로고    scopus 로고
    • Analysis of the essential functions of the c-Terminal protein/protein interaction domain of saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the dna polymerase domain
    • Dua, R., Levy, D.L. & Campbell, J.L. Analysis of the essential functions of the C-Terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J. Biol. Chem. 274, 22283-22288 (1999
    • (1999) J. Biol. Chem , vol.274 , pp. 22283-22288
    • Dua, R.1    Levy, D.L.2    Campbell, J.L.3
  • 37
    • 0034955240 scopus 로고    scopus 로고
    • Schizosaccharomyces pombe cells lacking the amino-Terminal catalytic domains of dna polymerase epsilon are viable but require the dna damage checkpoint control
    • Feng, W. & DUrso, G. Schizosaccharomyces pombe cells lacking the amino-Terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control. Mol. Cell. Biol. 21, 4495-4504 (2001
    • (2001) Mol. Cell. Biol , vol.21 , pp. 4495-4504
    • Feng, W.1    Durso, G.2
  • 38
    • 84906101503 scopus 로고    scopus 로고
    • Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork
    • Georgescu, R.E., et al. Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat. Struct. Mol. Biol. 21, 664-670 (2014
    • (2014) Nat. Struct. Mol. Biol , vol.21 , pp. 664-670
    • Georgescu, R.E.1
  • 39
    • 0026025891 scopus 로고
    • Molecular genetic analysis of fission yeast schizosaccharomyces pombe
    • Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795-823 (1991
    • (1991) Methods Enzymol , vol.194 , pp. 795-823
    • Moreno, S.1    Klar, A.2    Nurse, P.3
  • 40
    • 37049028325 scopus 로고    scopus 로고
    • Gene tagging and gene replacement using recombinase-mediated cassette exchange in schizosaccharomyces pombe
    • Watson, A.T., Garcia, V., Bone, N., Carr, A.M. & Armstrong, J. Gene tagging and gene replacement using recombinase-mediated cassette exchange in Schizosaccharomyces pombe. Gene 407, 63-74 (2008
    • (2008) Gene , vol.407 , pp. 63-74
    • Watson, A.T.1    Garcia, V.2    Bone, N.3    Carr, A.M.4    Armstrong, J.5
  • 41
    • 0006120328 scopus 로고
    • The mechanism of the alkaline hydrolysis of ribonucleic acids
    • Lipkin, D., Talbert, P.T. & Cohn, M. The mechanism of the alkaline hydrolysis of ribonucleic acids. J. Am. Chem. Soc. 76, 2871-2872 (1954
    • (1954) J. Am. Chem. Soc , vol.76 , pp. 2871-2872
    • Lipkin, D.1    Talbert, P.T.2    Cohn, M.3
  • 42
    • 84872732277 scopus 로고    scopus 로고
    • Strand-specific libraries for high throughput rna sequencing (rna-seq) prepared without poly(a) selection
    • Zhang, Z., Theurkauf, W.E., Weng, Z. & Zamore, P.D. Strand-specific libraries for high throughput RNA sequencing (RNA-Seq) prepared without poly(A) selection. Silence 3, 9 (2012
    • (2012) Silence , vol.3 , pp. 9
    • Zhang, Z.1    Theurkauf, W.E.2    Weng, Z.3    Zamore, P.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.