-
1
-
-
59149085501
-
The global burden of hepatitis C
-
D. Lavanchy, "The global burden of hepatitis C," Liver International, vol. 29, supplement 1, pp. 74-81, 2009.
-
(2009)
Liver International
, vol.29
, pp. 74-81
-
-
Lavanchy, D.1
-
2
-
-
79952461113
-
Assembly of infectious hepatitis C virus particles
-
R. Bartenschlager, F. Penin, V. Lohmann, and P. André, "Assembly of infectious hepatitis C virus particles," Trends in Microbiology, vol. 19, no. 2, pp. 95-103, 2011.
-
(2011)
Trends in Microbiology
, vol.19
, Issue.2
, pp. 95-103
-
-
Bartenschlager, R.1
Penin, F.2
Lohmann, V.3
André, P.4
-
3
-
-
84941129656
-
Structural and functional properties of the hepatitis C virus p7 viroporin
-
V. Madan and R. Bartenschlager, "Structural and functional properties of the hepatitis C virus p7 viroporin," Viruses, vol. 7, no. 8, pp. 4461-4481, 2015.
-
(2015)
Viruses
, vol.7
, Issue.8
, pp. 4461-4481
-
-
Madan, V.1
Bartenschlager, R.2
-
4
-
-
0034877411
-
Novel cell culture systems for the hepatitis C virus
-
R. Bartenschlager and V. Lohmann, "Novel cell culture systems for the hepatitis C virus," Antiviral Research, vol. 52, no. 1, pp. 1-17, 2001.
-
(2001)
Antiviral Research
, vol.52
, Issue.1
, pp. 1-17
-
-
Bartenschlager, R.1
Lohmann, V.2
-
5
-
-
0344012048
-
Membrane association of hepatitis C virus nonstructural proteins and identification of the membrane alteration that harbors the viral replication complex
-
D. Moradpour, R. Gosert, D. Egger, F. Penin, H. E. Blum, and K. Bienz, "Membrane association of hepatitis C virus nonstructural proteins and identification of the membrane alteration that harbors the viral replication complex," Antiviral Research, vol. 60, no. 2, pp. 103-109, 2003.
-
(2003)
Antiviral Research
, vol.60
, Issue.2
, pp. 103-109
-
-
Moradpour, D.1
Gosert, R.2
Egger, D.3
Penin, F.4
Blum, H.E.5
Bienz, K.6
-
6
-
-
34249024924
-
Replication of hepatitis C virus
-
D. Moradpour, F. Penin, and C. M. Rice, "Replication of hepatitis C virus," Nature ReviewsMicrobiology, vol. 5, no. 6, pp. 453-463, 2007.
-
(2007)
Nature ReviewsMicrobiology
, vol.5
, Issue.6
, pp. 453-463
-
-
Moradpour, D.1
Penin, F.2
Rice, C.M.3
-
7
-
-
8644265138
-
Membrane association of the RNA-dependent RNA polymerase is essential for hepatitis C virus RNA replication
-
D. Moradpour, V. Brass, E. Bieck et al., "Membrane association of the RNA-dependent RNA polymerase is essential for hepatitis C virus RNA replication," Journal of Virology, vol. 78, no. 23, pp. 13278-13284, 2004.
-
(2004)
Journal of Virology
, vol.78
, Issue.23
, pp. 13278-13284
-
-
Moradpour, D.1
Brass, V.2
Bieck, E.3
-
8
-
-
84910629145
-
Hepatitis C virus RNA replication and assembly: Living on the fat of the land
-
D. Paul, V. Madan, and R. Bartenschlager, "Hepatitis C virus RNA replication and assembly: living on the fat of the land," Cell Host & Microbe, vol. 16, no. 5, pp. 569-579, 2014.
-
(2014)
Cell Host & Microbe
, vol.16
, Issue.5
, pp. 569-579
-
-
Paul, D.1
Madan, V.2
Bartenschlager, R.3
-
9
-
-
22544470874
-
Production of infectious hepatitis C virus in tissue culture from a cloned viral genome
-
T. Wakita, T. Pietschmann, T. Kato et al., "Production of infectious hepatitis C virus in tissue culture from a cloned viral genome," Nature Medicine, vol. 11, no. 7, pp. 791-796, 2005.
-
(2005)
Nature Medicine
, vol.11
, Issue.7
, pp. 791-796
-
-
Wakita, T.1
Pietschmann, T.2
Kato, T.3
-
10
-
-
21544440397
-
Robust hepatitis C virus infection in vitro
-
J. Zhong, P. Gastaminza, G. Cheng et al., "Robust hepatitis C virus infection in vitro," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 26, pp. 9294-9299, 2005.
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.26
, pp. 9294-9299
-
-
Zhong, J.1
Gastaminza, P.2
Cheng, G.3
-
11
-
-
23044437222
-
Complete replication of hepatitis C virus in cell culture
-
B. D. Lindenbach, M. J. Evans, A. J. Syder et al., "Complete replication of hepatitis C virus in cell culture," Science, vol. 309, no. 5734, pp. 623-626, 2005.
-
(2005)
Science
, vol.309
, Issue.5734
, pp. 623-626
-
-
Lindenbach, B.D.1
Evans, M.J.2
Syder, A.J.3
-
12
-
-
0345188811
-
Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line
-
V. Lohmann, F. Körner, J.-O. Koch, U. Herian, L. Theilmann, and R. Bartenschlager, "Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line," Science, vol. 285, no. 5424, pp. 110-113, 1999.
-
(1999)
Science
, vol.285
, Issue.5424
, pp. 110-113
-
-
Lohmann, V.1
Körner, F.2
Koch, J.-O.3
Herian, U.4
Theilmann, L.5
Bartenschlager, R.6
-
13
-
-
79954522888
-
Hepatitis C virus and host cell lipids: An intimate connection
-
G. Alvisi, V. Madan, and R. Bartenschlager, "Hepatitis C virus and host cell lipids: An intimate connection," RNA Biology, vol. 8, no. 2, pp. 258-269, 2011.
-
(2011)
RNA Biology
, vol.8
, Issue.2
, pp. 258-269
-
-
Alvisi, G.1
Madan, V.2
Bartenschlager, R.3
-
14
-
-
84908010481
-
Apolipoprotein e likely contributes to a maturation step of infectious hepatitis C virus particles and interacts with viral envelope glycoproteins
-
J.-Y. Lee, E. G. Acosta, I. K. Stoeck et al., "Apolipoprotein E likely contributes to a maturation step of infectious hepatitis C virus particles and interacts with viral envelope glycoproteins," Journal of Virology, vol. 88, no. 21, pp. 12422-12437, 2014.
-
(2014)
Journal of Virology
, vol.88
, Issue.21
, pp. 12422-12437
-
-
Lee, J.-Y.1
Acosta, E.G.2
Stoeck, I.K.3
-
15
-
-
73449126883
-
Apolipoprotein e interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles
-
W. J. A. Benga, S. E. Krieger, M. Dimitrova et al., "Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles," Hepatology, vol. 51, no. 1, pp. 43-53, 2010.
-
(2010)
Hepatology
, vol.51
, Issue.1
, pp. 43-53
-
-
Benga, W.J.A.1
Krieger, S.E.2
Dimitrova, M.3
-
16
-
-
84877926086
-
TIP47 plays a crucial role in the life cycle of hepatitis C virus
-
D. Ploen, M. L. Hafirassou, K. Himmelsbach et al., "TIP47 plays a crucial role in the life cycle of hepatitis C virus," Journal of Hepatology, vol. 58, no. 6, pp. 1081-1088, 2013.
-
(2013)
Journal of Hepatology
, vol.58
, Issue.6
, pp. 1081-1088
-
-
Ploen, D.1
Hafirassou, M.L.2
Himmelsbach, K.3
-
17
-
-
84893776013
-
TIP47 is associated with the Hepatitis C virus and its interaction with Rab9 is required for release of viral particles
-
D. Ploen, M. L. Hafirassou, K. Himmelsbach et al., "TIP47 is associated with the Hepatitis C virus and its interaction with Rab9 is required for release of viral particles," European Journal of Cell Biology, vol. 92, no. 12, pp. 374-382, 2013.
-
(2013)
European Journal of Cell Biology
, vol.92
, Issue.12
, pp. 374-382
-
-
Ploen, D.1
Hafirassou, M.L.2
Himmelsbach, K.3
-
18
-
-
80055073369
-
Trafficking of hepatitis C virus core protein during virus particle assembly
-
N. A. Counihan, S. M. Rawlinson, and B. D. Lindenbach, "Trafficking of hepatitis C virus core protein during virus particle assembly," PLoS Pathogens, vol. 7, no. 10, Article ID e1002302, 2011.
-
(2011)
PLoS Pathogens
, vol.7
, Issue.10
-
-
Counihan, N.A.1
Rawlinson, S.M.2
Lindenbach, B.D.3
-
19
-
-
84927623326
-
Hepatitis C virus and lipid droplets: Finding a niche
-
A. Filipe and J. McLauchlan, "Hepatitis C virus and lipid droplets: finding a niche," Trends inMolecularMedicine, vol. 21, no. 1, pp. 34-42, 2015.
-
(2015)
Trends InMolecularMedicine
, vol.21
, Issue.1
, pp. 34-42
-
-
Filipe, A.1
McLauchlan, J.2
-
20
-
-
34548316984
-
The lipid droplet is an important organelle for hepatitis C virus production
-
Y. Miyanari, K. Atsuzawa, N. Usuda et al., "The lipid droplet is an important organelle for hepatitis C virus production," Nature Cell Biology, vol. 9, no. 9, pp. 1089-1097, 2007.
-
(2007)
Nature Cell Biology
, vol.9
, Issue.9
, pp. 1089-1097
-
-
Miyanari, Y.1
Atsuzawa, K.2
Usuda, N.3
-
21
-
-
78149359508
-
Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1
-
E. Herker, C. Harris, C. Hernandez et al., "Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1," Nature Medicine, vol. 16, no. 11, pp. 1295-1298, 2010.
-
(2010)
Nature Medicine
, vol.16
, Issue.11
, pp. 1295-1298
-
-
Herker, E.1
Harris, C.2
Hernandez, C.3
-
22
-
-
84875991598
-
Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core
-
G. Camus, E. Herker, A. A. Modi et al., "Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core,"The Journal of Biological Chemistry, vol. 288, no. 14, pp. 9915-9923, 2013.
-
(2013)
The Journal of Biological Chemistry
, vol.288
, Issue.14
, pp. 9915-9923
-
-
Camus, G.1
Herker, E.2
Modi, A.A.3
-
23
-
-
84873355385
-
HCVand oxidative stress in the liver
-
A. V. Ivanov, B. Bartosch,O. A. Smirnova,M. G. Isaguliants, and S. N. Kochetkov, "HCVand oxidative stress in the liver," Viruses, vol. 5, no. 2, pp. 439-469, 2013.
-
(2013)
Viruses
, vol.5
, Issue.2
, pp. 439-469
-
-
Ivanov, A.V.1
Bartosch, B.2
Smirnova, O.A.3
Isaguliants, M.G.4
Kochetkov, S.N.5
-
24
-
-
80053608796
-
Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: An overview
-
M. Marra, I. M. Sordelli, A. Lombardi et al., "Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: An overview," Journal of TranslationalMedicine, vol. 9, no. 1, article 171, 2011.
-
(2011)
Journal of TranslationalMedicine
, vol.9
, Issue.1
-
-
Marra, M.1
Sordelli, I.M.2
Lombardi, A.3
-
25
-
-
84901794462
-
RNA viruses: ROSmediated cell death
-
M. L. Reshi, Y.-C. Su, and J.-R. Hong, "RNA viruses: ROSmediated cell death," International Journal of Cell Biology, vol. 2014, Article ID467452, 16 pages, 2014.
-
(2014)
International Journal of Cell Biology
, vol.2014
-
-
Reshi, M.L.1
Su, Y.-C.2
Hong, J.-R.3
-
26
-
-
84896844772
-
Interactions between hepatitis C virus and mitochondria: Impact on pathogenesis and innate immunity
-
T. Wang and S. A. Weinman, "Interactions between hepatitis C virus and mitochondria: impact on pathogenesis and innate immunity," Current Pathobiology Reports, vol. 1, no. 3, pp. 179-187, 2013.
-
(2013)
Current Pathobiology Reports
, vol.1
, Issue.3
, pp. 179-187
-
-
Wang, T.1
Weinman, S.A.2
-
27
-
-
84893764764
-
Mitochondrial reactive oxygen species as a mystery voice in hepatitis C
-
K. Hino, Y. Hara, and S. Nishina, "Mitochondrial reactive oxygen species as a mystery voice in hepatitis C," Hepatology Research, vol. 44, no. 2, pp. 123-132, 2014.
-
(2014)
Hepatology Research
, vol.44
, Issue.2
, pp. 123-132
-
-
Hino, K.1
Hara, Y.2
Nishina, S.3
-
28
-
-
84938300316
-
Antioxidant responses and cellular adjustments to oxidative stress
-
C. Espinosa-Diez, V. Miguel, D. Mennerich et al., "Antioxidant responses and cellular adjustments to oxidative stress," Redox Biology, vol. 6, pp. 183-197, 2015.
-
(2015)
Redox Biology
, vol.6
, pp. 183-197
-
-
Espinosa-Diez, C.1
Miguel, V.2
Mennerich, D.3
-
29
-
-
84938765962
-
The Keap1/Nrf2 pathway in health and disease: From the bench to the clinic
-
M. A. O'Connell and J. D. Hayes, "The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic," Biochemical Society Transactions, vol. 43, no. 4, pp. 687-689, 2015.
-
(2015)
Biochemical Society Transactions
, vol.43
, Issue.4
, pp. 687-689
-
-
O'Connell, M.A.1
Hayes, J.D.2
-
30
-
-
84938796685
-
Keap1/Nrf2 pathway in the frontiers of cancer and non-cancer cell metabolism
-
D. V. Chartoumpekis, N. Wakabayashi, and T. W. Kensler, "Keap1/Nrf2 pathway in the frontiers of cancer and non-cancer cell metabolism," Biochemical Society Transactions, vol. 43, no. 4, pp. 639-644, 2015.
-
(2015)
Biochemical Society Transactions
, vol.43
, Issue.4
, pp. 639-644
-
-
Chartoumpekis, D.V.1
Wakabayashi, N.2
Kensler, T.W.3
-
31
-
-
33847050801
-
Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway
-
T. W. Kensler, N. Wakabayashi, and S. Biswal, "Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway," Annual Review of Pharmacology and Toxicology, vol. 47, pp. 89-116, 2007.
-
(2007)
Annual Review of Pharmacology and Toxicology
, vol.47
, pp. 89-116
-
-
Kensler, T.W.1
Wakabayashi, N.2
Biswal, S.3
-
32
-
-
84938694329
-
Molecularmechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention
-
B. Harder, T. Jiang, T. Wu et al., "Molecularmechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention," Biochemical Society Transactions, vol. 43, no. 4, pp. 680-686, 2015.
-
(2015)
Biochemical Society Transactions
, vol.43
, Issue.4
, pp. 680-686
-
-
Harder, B.1
Jiang, T.2
Wu, T.3
-
33
-
-
38049055294
-
Impaired liver regeneration in Nrf2 knockout mice: Role of ROS-mediated insulin/IGF-1 resistance
-
T. A. Beyer, W. Xu, D. Teupser et al., "Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance,"TheEMBOJournal, vol. 27,no. 1, pp. 212-223, 2008.
-
(2008)
TheEMBOJournal
, vol.27
, Issue.1
, pp. 212-223
-
-
Beyer, T.A.1
Xu, W.2
Teupser, D.3
-
34
-
-
42449110757
-
The cytoprotective Nrf2 transcription factor controls insulin receptor signaling in the regenerating liver
-
T. A. Beyer and S. Werner, "The cytoprotective Nrf2 transcription factor controls insulin receptor signaling in the regenerating liver," Cell Cycle, vol. 7, no. 7, pp. 874-878, 2008.
-
(2008)
Cell Cycle
, vol.7
, Issue.7
, pp. 874-878
-
-
Beyer, T.A.1
Werner, S.2
-
35
-
-
84864198388
-
Aliver full of JNK: Signaling in regulation of cell function and disease pathogenesis, and clinical approaches
-
E. Seki, D. A. Brenner, andM. Karin, "Aliver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches," Gastroenterology, vol. 143, no. 2, pp. 307-320, 2012.
-
(2012)
Gastroenterology
, vol.143
, Issue.2
, pp. 307-320
-
-
Seki, E.1
Brenner, D.A.2
Karin, M.3
-
36
-
-
84893051766
-
Insulin signaling, resistance, and metabolic syndrome: Insights from mouse models into disease mechanisms
-
S. Guo, "Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms," Journal of Endocrinology, vol. 220, no. 2, pp. T1-T23, 2014.
-
(2014)
Journal of Endocrinology
, vol.220
, Issue.2
, pp. T1-T23
-
-
Guo, S.1
-
37
-
-
84938813629
-
Dissecting molecular cross-talk between Nrf2 and NF-B response pathways
-
J. Wardyn, A. Ponsford, and C. Sanderson, "Dissecting molecular cross-talk between Nrf2 and NF-B response pathways," Biochemical Society Transactions, vol. 43, no. 4, pp. 621-626, 2015.
-
(2015)
Biochemical Society Transactions
, vol.43
, Issue.4
, pp. 621-626
-
-
Wardyn, J.1
Ponsford, A.2
Sanderson, C.3
-
38
-
-
84953297386
-
NF-B/RelA and Nrf2 cooperate to maintain hepatocyte integrity and to prevent development of hepatocellular adenoma
-
U. A. Köhler, F. Böhm, F. Rolfs et al., "NF-B/RelA and Nrf2 cooperate to maintain hepatocyte integrity and to prevent development of hepatocellular adenoma," Journal ofHepatology, vol. 64, no. 1, pp. 94-102, 2016.
-
(2016)
Journal OfHepatology
, vol.64
, Issue.1
, pp. 94-102
-
-
Köhler, U.A.1
Böhm, F.2
Rolfs, F.3
-
39
-
-
84899942687
-
The adjuvant component -tocopherol triggers via modulation of Nrf2 the expression and turnover of hypocretin in vitro and its implication to the development of narcolepsy
-
S. Masoudi, D. Ploen, K. Kunz, and E. Hildt, "The adjuvant component -tocopherol triggers via modulation of Nrf2 the expression and turnover of hypocretin in vitro and its implication to the development of narcolepsy," Vaccine, vol. 32, no. 25, pp. 2980-2988, 2014.
-
(2014)
Vaccine
, vol.32
, Issue.25
, pp. 2980-2988
-
-
Masoudi, S.1
Ploen, D.2
Kunz, K.3
Hildt, E.4
-
40
-
-
84930937748
-
HCVcore protein uses multiple mechanisms to induce oxidative stress in human hepatoma huh7 cells
-
A. V. Ivanov,O. A. Smirnova, I. Y. Petrushanko et al., "HCVcore protein uses multiple mechanisms to induce oxidative stress in human hepatoma huh7 cells," Viruses, vol. 7, no. 6, pp. 2745-2770, 2015.
-
(2015)
Viruses
, vol.7
, Issue.6
, pp. 2745-2770
-
-
Ivanov, A.V.1
Smirnova, O.A.2
Petrushanko, I.Y.3
-
41
-
-
3242673323
-
TargetingofhepatitisC virus core protein to mitochondria through a novel C-terminal localization motif
-
B. Schwer, S. Ren, T. Pietschmannet al., "TargetingofhepatitisC virus core protein to mitochondria through a novel C-terminal localization motif," Journal of Virology, vol. 78, no. 15, pp. 7958-7968, 2004.
-
(2004)
Journal of Virology
, vol.78
, Issue.15
, pp. 7958-7968
-
-
Schwer, B.1
Ren, S.2
Pietschmannet al, T.3
-
42
-
-
19944428289
-
Molecular determinants for subcellular localization of hepatitis C virus core protein
-
R. Suzuki, S. Sakamoto, T. Tsutsumi et al., "Molecular determinants for subcellular localization of hepatitis C virus core protein," Journal of Virology, vol. 79, no. 2, pp. 1271-1281, 2005.
-
(2005)
Journal of Virology
, vol.79
, Issue.2
, pp. 1271-1281
-
-
Suzuki, R.1
Sakamoto, S.2
Tsutsumi, T.3
-
43
-
-
0036165333
-
Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein
-
M. Okuda, K. Li, M. R. Beard et al., "Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein," Gastroenterology, vol. 122, no. 2, pp. 366-375, 2002.
-
(2002)
Gastroenterology
, vol.122
, Issue.2
, pp. 366-375
-
-
Okuda, M.1
Li, K.2
Beard, M.R.3
-
44
-
-
27844604269
-
Hepatitis C virus core protein inhibitsmitochondrial electron transport and increases reactive oxygen species (ROS) production
-
M. Korenaga, T. Wang, Y. Li et al., "Hepatitis C virus core protein inhibitsmitochondrial electron transport and increases reactive oxygen species (ROS) production," The Journal of Biological Chemistry, vol. 280, no. 45, pp. 37481-37488, 2005.
-
(2005)
The Journal of Biological Chemistry
, vol.280
, Issue.45
, pp. 37481-37488
-
-
Korenaga, M.1
Wang, T.2
Li, Y.3
-
45
-
-
84863351524
-
The microRNA regulatory network in normal-and HTLV-1-transformed T cells
-
D. M. D'Agostino, P. Zanovello, T. Watanabe, and V. Ciminale, "The microRNA regulatory network in normal-and HTLV-1-transformed T cells," Advances in Cancer Research, vol. 113, pp. 45-83, 2012.
-
(2012)
Advances in Cancer Research
, vol.113
, pp. 45-83
-
-
Dagostino, D.M.1
Zanovello, P.2
Watanabe, T.3
Ciminale, V.4
-
46
-
-
82555170658
-
Persistent expression of hepatitis C virus non-structural proteins leads to increased autophagy and mitochondrial injury in human hepatoma cells
-
V. C. Chu, S. Bhattacharya, A. Nomoto et al., "Persistent expression of hepatitis C virus non-structural proteins leads to increased autophagy and mitochondrial injury in human hepatoma cells," PLoSONE, vol. 6, no. 12,Article IDe28551,2011.
-
(2011)
PLoSONE
, vol.6
, Issue.12
-
-
Chu, V.C.1
Bhattacharya, S.2
Nomoto, A.3
-
47
-
-
29744467205
-
Signal peptide cleavage and internal targeting signals direct the hepatitis C virus p7 protein to distinct intracellular membranes
-
S. Griffin, D. Clarke, C. McCormick, D. Rowlands, and M. Harris, "Signal peptide cleavage and internal targeting signals direct the hepatitis C virus p7 protein to distinct intracellular membranes," Journal ofVirology, vol. 79,no. 24,pp. 15525-15536, 2005.
-
(2005)
Journal OfVirology
, vol.79
, Issue.24
, pp. 15525-15536
-
-
Griffin, S.1
Clarke, D.2
McCormick, C.3
Rowlands, D.4
Harris, M.5
-
48
-
-
33644781721
-
Subcellular localization of hepatitis C virus structural proteins in a cell culture system that efficiently replicates the virus
-
Y. Rouillé, F. Helle, D. Delgrange et al., "Subcellular localization of hepatitis C virus structural proteins in a cell culture system that efficiently replicates the virus," Journal of Virology, vol. 80, no. 6, pp. 2832-2841, 2006.
-
(2006)
Journal of Virology
, vol.80
, Issue.6
, pp. 2832-2841
-
-
Rouillé, Y.1
Helle, F.2
Delgrange, D.3
-
49
-
-
79960941022
-
Clinical and virological characteristics of chronic hepatitis B with concurrent hepatitis B e antigen and antibody detection
-
J. Wang, B. Zhou, Q. Lai et al., "Clinical and virological characteristics of chronic hepatitis B with concurrent hepatitis B e antigen and antibody detection," Journal of Viral Hepatitis, vol. 18, no. 9, pp. 646-652, 2011.
-
(2011)
Journal of Viral Hepatitis
, vol.18
, Issue.9
, pp. 646-652
-
-
Wang, J.1
Zhou, B.2
Lai, Q.3
-
50
-
-
29144462494
-
Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity
-
X.-D. Li, L. Sun, R. B. Seth, G. Pineda, and Z. J. Chen, "Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 49, pp. 17717-17722, 2005.
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.49
, pp. 17717-17722
-
-
Li, X.-D.1
Sun, L.2
Seth, R.B.3
Pineda, G.4
Chen, Z.J.5
-
51
-
-
84863264794
-
Control of innate immune signaling and membrane targeting by the hepatitis C virus NS3/4A protease are governed by the NS3 Helix 0
-
S. M. Horner, H. S. Park, and M. Gale, "Control of innate immune signaling and membrane targeting by the hepatitis C virus NS3/4A protease are governed by the NS3 Helix 0," Journal of Virology, vol. 86, no. 6, pp. 3112-3120, 2012.
-
(2012)
Journal of Virology
, vol.86
, Issue.6
, pp. 3112-3120
-
-
Horner, S.M.1
Park, H.S.2
Gale, M.3
-
52
-
-
59749085907
-
MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virusNS3/4A protease
-
M. Baril, M.-E. Racine, F. Penin, and D. Lamarre, "MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virusNS3/4A protease," Journal of Virology, vol. 83, no. 3, pp. 1299-1311, 2009.
-
(2009)
Journal of Virology
, vol.83
, Issue.3
, pp. 1299-1311
-
-
Baril, M.1
Racine, M.-E.2
Penin, F.3
Lamarre, D.4
-
53
-
-
23744461982
-
Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion
-
N. L. Benali-Furet,M. Chami, L. Houel et al., "Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion," Oncogene, vol. 24, no. 31, pp. 4921-4933, 2005.
-
(2005)
Oncogene
, vol.24
, Issue.31
, pp. 4921-4933
-
-
Benali-Furet, N.L.1
Chami, M.2
Houel, L.3
-
54
-
-
34547415672
-
Hepatitis C virus protein expression causes calcium-mediated mitochondrial bioenergetic dysfunction and nitro-oxidative stress
-
C. Piccoli, R. Scrima, G. Quarato et al., "Hepatitis C virus protein expression causes calcium-mediated mitochondrial bioenergetic dysfunction and nitro-oxidative stress," Hepatology, vol. 46, no. 1, pp. 58-65, 2007.
-
(2007)
Hepatology
, vol.46
, Issue.1
, pp. 58-65
-
-
Piccoli, C.1
Scrima, R.2
Quarato, G.3
-
55
-
-
16244405250
-
Hepatitis C virus, ER stress, and oxidative stress
-
K. D. Tardif, G. Waris, and A. Siddiqui, "Hepatitis C virus, ER stress, and oxidative stress," Trends in Microbiology, vol. 13, no. 4, pp. 159-163, 2005.
-
(2005)
Trends in Microbiology
, vol.13
, Issue.4
, pp. 159-163
-
-
Tardif, K.D.1
Waris, G.2
Siddiqui, A.3
-
56
-
-
1642464020
-
Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: Role of JNK, p38 MAPK and AP-1
-
I. Qadri, M. Iwahashi, J. M. Capasso et al., "Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: role of JNK, p38 MAPK and AP-1," Biochemical Journal, vol. 378, no. 3, pp. 919-928, 2004.
-
(2004)
Biochemical Journal
, vol.378
, Issue.3
, pp. 919-928
-
-
Qadri, I.1
Iwahashi, M.2
Capasso, J.M.3
-
57
-
-
64549142339
-
Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes
-
N. Dionisio, M. V. Garcia-Mediavilla, S. Sanchez-Campos et al., "Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes," Journal of Hepatology, vol. 50, no. 5, pp. 872-882, 2009.
-
(2009)
Journal of Hepatology
, vol.50
, Issue.5
, pp. 872-882
-
-
Dionisio, N.1
Garcia-Mediavilla, M.V.2
Sanchez-Campos, S.3
-
58
-
-
79953220445
-
Hepatitis C virus impairs the induction of cytoprotectiveNrf2 target genes by delocalization of small maf proteins
-
M. Carvajal-Yepes, K. Himmelsbach, S. Schaedler et al., "Hepatitis C virus impairs the induction of cytoprotectiveNrf2 target genes by delocalization of small maf proteins," The Journal of Biological Chemistry, vol. 286, no. 11, pp. 8941-8951, 2011.
-
(2011)
The Journal of Biological Chemistry
, vol.286
, Issue.11
, pp. 8941-8951
-
-
Carvajal-Yepes, M.1
Himmelsbach, K.2
Schaedler, S.3
-
59
-
-
34547739644
-
Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca2+ uniporter activity
-
Y. Li, D. F. Boehning, T. Qian, V. L. Popov, and S. A. Weinman, "Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca2+ uniporter activity," The FASEB Journal, vol. 21, no. 10, pp. 2474-2485, 2007.
-
(2007)
The FASEB Journal
, vol.21
, Issue.10
, pp. 2474-2485
-
-
Li, Y.1
Boehning, D.F.2
Qian, T.3
Popov, V.L.4
Weinman, S.A.5
-
60
-
-
79952197289
-
Role of Hepatitis C virus core protein in viralinduced mitochondrial dysfunction
-
T. Wang, R. V. Campbell, M. K. Yi, S. M. Lemon, and S. A. Weinman, "Role of Hepatitis C virus core protein in viralinduced mitochondrial dysfunction," Journal of Viral Hepatitis, vol. 17, no. 11, pp. 784-793, 2010.
-
(2010)
Journal of Viral Hepatitis
, vol.17
, Issue.11
, pp. 784-793
-
-
Wang, T.1
Campbell, R.V.2
Yi, M.K.3
Lemon, S.M.4
Weinman, S.A.5
-
61
-
-
84926429143
-
Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complexes i and III
-
D. P. Lindsay, A. K. Camara, D. F. Stowe, R. Lubbe, and M. Aldakkak, "Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complexes I and III," Frontiers in Physiology, vol. 6, article 58, 2015.
-
(2015)
Frontiers in Physiology
, vol.6
-
-
Lindsay, D.P.1
Camara, A.K.2
Stowe, D.F.3
Lubbe, R.4
Aldakkak, M.5
-
62
-
-
84879430920
-
Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
-
C. L. Quinlan, I. V. Perevoshchikova, M. Hey-Mogensen, A. L. Orr, and M. D. Brand, "Sites of reactive oxygen species generation by mitochondria oxidizing different substrates," Redox Biology, vol. 1, no. 1, pp. 304-312, 2013.
-
(2013)
Redox Biology
, vol.1
, Issue.1
, pp. 304-312
-
-
Quinlan, C.L.1
Perevoshchikova, I.V.2
Hey-Mogensen, M.3
Orr, A.L.4
Brand, M.D.5
-
63
-
-
84923875260
-
Hepatitis C virus attenuates mitochondrial lipid -oxidation by downregulating mitochondrial trifunctional-protein expression
-
Y. Amako, T. Munakata, M. Kohara et al., "Hepatitis C virus attenuates mitochondrial lipid -oxidation by downregulating mitochondrial trifunctional-protein expression," Journal of Virology, vol. 89, no. 8, pp. 4092-4101, 2015.
-
(2015)
Journal of Virology
, vol.89
, Issue.8
, pp. 4092-4101
-
-
Amako, Y.1
Munakata, T.2
Kohara, M.3
-
64
-
-
84877673791
-
Hepatitis C virus core protein induces hepaticmetabolism disorders through down-regulation of the SIRT1-AMPK signaling pathway
-
J.-W. Yu, L.-J. Sun, W. Liu, Y.-H. Zhao, P. Kang, and B.-Z. Yan, "Hepatitis C virus core protein induces hepaticmetabolism disorders through down-regulation of the SIRT1-AMPK signaling pathway," International Journal of Infectious Diseases, vol. 17, no. 7, pp. e539-e545, 2013.
-
(2013)
International Journal of Infectious Diseases
, vol.17
, Issue.7
, pp. e539-e545
-
-
Yu, J.-W.1
Sun, L.-J.2
Liu, W.3
Zhao, Y.-H.4
Kang, P.5
Yan, B.-Z.6
-
65
-
-
84857186085
-
Prohibitin 1modulatesmitochondrial stress-related autophagy in human colonic epithelial cells
-
A. S. Kathiria, L. D. Butcher, L. A. Feagins, R. F. Souza, C. R. Boland, and A. L. Theiss, "Prohibitin 1modulatesmitochondrial stress-related autophagy in human colonic epithelial cells," PLoS ONE, vol. 7, no. 2,Article ID e31231, 2012.
-
(2012)
PLoS ONE
, vol.7
, Issue.2
-
-
Kathiria, A.S.1
Butcher, L.D.2
Feagins, L.A.3
Souza, R.F.4
Boland, C.R.5
Theiss, A.L.6
-
66
-
-
68949196124
-
Proteomics analysis of mitochondrial proteins reveals overexpression of a mitochondrial protein chaperon, prohibitin, in cells expressing hepatitis C virus core protein
-
T. Tsutsumi, M. Matsuda, H. Aizaki et al., "Proteomics analysis of mitochondrial proteins reveals overexpression of a mitochondrial protein chaperon, prohibitin, in cells expressing hepatitis C virus core protein," Hepatology, vol. 50, no. 2, pp. 378-386, 2009.
-
(2009)
Hepatology
, vol.50
, Issue.2
, pp. 378-386
-
-
Tsutsumi, T.1
Matsuda, M.2
Aizaki, H.3
-
67
-
-
80052569750
-
Prohibitin is overexpressed in Huh-7-HCV and Huh-7. 5-HCV cells harboring in vitro transcribed full-length hepatitis C virus RNA
-
S.-S. Dang, M.-Z. Sun, E. Yang et al., "Prohibitin is overexpressed in Huh-7-HCV and Huh-7. 5-HCV cells harboring in vitro transcribed full-length hepatitis C virus RNA," Virology Journal, vol. 8, article 424, 2011.
-
(2011)
Virology Journal
, vol.8
-
-
Dang, S.-S.1
Sun, M.-Z.2
Yang, E.3
-
68
-
-
84901056473
-
Role of NADPH oxidases in liver fibrosis
-
Y.-H. Paik, J. Kim, T. Aoyama, S. De Minicis, R. Bataller, and D. A. Brenner, "Role of NADPH oxidases in liver fibrosis," Antioxidants and Redox Signaling, vol. 20, no. 17, pp. 2854-2872, 2014.
-
(2014)
Antioxidants and Redox Signaling
, vol.20
, Issue.17
, pp. 2854-2872
-
-
Paik, Y.-H.1
Kim, J.2
Aoyama, T.3
De Minicis, S.4
Bataller, R.5
Brenner, D.A.6
-
69
-
-
33846794822
-
The NOX family of ROSgeneratingNADPHoxidases: Physiology and pathophysiology
-
K. Bedard and K.-H. Krause, "The NOX family of ROSgeneratingNADPHoxidases: physiology and pathophysiology," Physiological Reviews, vol. 87, no. 1, pp. 245-313, 2007.
-
(2007)
Physiological Reviews
, vol.87
, Issue.1
, pp. 245-313
-
-
Bedard, K.1
Krause, K.-H.2
-
70
-
-
0034608934
-
Identification of Renox, an NAD(P)H oxidase in kidney
-
M. Geiszt, J. B. Kopp, P. Várnai, and T. L. Leto, "Identification of Renox, an NAD(P)H oxidase in kidney," Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 14, pp. 8010-8014, 2000.
-
(2000)
Proceedings of the National Academy of Sciences of the United States of America
, vol.97
, Issue.14
, pp. 8010-8014
-
-
Geiszt, M.1
Kopp, J.B.2
Várnai, P.3
Leto, T.L.4
-
71
-
-
77954236285
-
Hepatocyte NAD(P)Hoxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection
-
N. S. R. deMochel, S. Seronello, S. H. Wang et al., "Hepatocyte NAD(P)Hoxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection," Hepatology, vol. 52, no. 1, pp. 47-59, 2010.
-
(2010)
Hepatology
, vol.52
, Issue.1
, pp. 47-59
-
-
DeMochel, N.S.R.1
Seronello, S.2
Wang, S.H.3
-
72
-
-
72849147487
-
Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor -dependent manner: A newcontributor toHCVinduced oxidative stress
-
H. E. Boudreau, S. U. Emerson, A. Korzeniowska, M. A. Jendrysik, and T. L. Leto, "Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor -dependent manner: A newcontributor toHCVinduced oxidative stress," Journal of Virology, vol. 83, no. 24, pp. 12934-12946, 2009.
-
(2009)
Journal of Virology
, vol.83
, Issue.24
, pp. 12934-12946
-
-
Boudreau, H.E.1
Emerson, S.U.2
Korzeniowska, A.3
Jendrysik, M.A.4
Leto, T.L.5
-
73
-
-
0842266604
-
Oxidative protein folding in eukaryotes:mechanisms and consequences
-
B. P. Tu and J. S. Weissman, "Oxidative protein folding in eukaryotes:mechanisms and consequences," The Journal of Cell Biology, vol. 164, no. 3, pp. 341-346, 2004.
-
(2004)
The Journal of Cell Biology
, vol.164
, Issue.3
, pp. 341-346
-
-
Tu, B.P.1
Weissman, J.S.2
-
74
-
-
80052899192
-
HCV causes chronic endoplasmic reticulum stress leading to adaptation and interference with the unfolded protein response
-
E. Merquiol, D. Uzi, T. Mueller et al., "HCV causes chronic endoplasmic reticulum stress leading to adaptation and interference with the unfolded protein response," PLoS ONE, vol. 6, no. 9, Article IDe24660, 2011.
-
(2011)
PLoS ONE
, vol.6
, Issue.9
-
-
Merquiol, E.1
Uzi, D.2
Mueller, T.3
-
75
-
-
84903901688
-
Endoplasmic reticulumstress links hepatitis C virus RNA replication to wildtype PGC-1/liver-specific PGC-1 upregulation
-
W. Yao, H. Cai, X. Li, T. Li, L. Hu, and T. Peng, "Endoplasmic reticulumstress links hepatitis C virus RNA replication to wildtype PGC-1/liver-specific PGC-1 upregulation," Journal of Virology, vol. 88, no. 15, pp. 8361-8374, 2014.
-
(2014)
Journal of Virology
, vol.88
, Issue.15
, pp. 8361-8374
-
-
Yao, W.1
Cai, H.2
Li, X.3
Li, T.4
Hu, L.5
Peng, T.6
-
76
-
-
24644495622
-
Hepatitis C virus envelope proteins regulate CHOP via induction of the unfolded protein response
-
S.-W. Chan and P. A. Egan, "Hepatitis C virus envelope proteins regulate CHOP via induction of the unfolded protein response," The FASEB Journal, vol. 19, no. 11, pp. 1510-1512, 2005.
-
(2005)
The FASEB Journal
, vol.19
, Issue.11
, pp. 1510-1512
-
-
Chan, S.-W.1
Egan, P.A.2
-
77
-
-
30744475504
-
Hepatitis C virus non-structural protein NS4B can modulate an unfolded protein response
-
Y. Zheng, B. Gao, L. Ye et al., "Hepatitis C virus non-structural protein NS4B can modulate an unfolded protein response," Journal of Microbiology, vol. 43, no. 6, pp. 529-536, 2005.
-
(2005)
Journal of Microbiology
, vol.43
, Issue.6
, pp. 529-536
-
-
Zheng, Y.1
Gao, B.2
Ye, L.3
-
78
-
-
84905660674
-
ER stress, autophagy, and RNA viruses
-
J. Jheng, J. Ho, and J. Horng, "ER stress, autophagy, and RNA viruses," Frontiers in Microbiology, vol. 5, article 388, 2014.
-
(2014)
Frontiers in Microbiology
, vol.5
-
-
Jheng, J.1
Ho, J.2
Horng, J.3
-
79
-
-
84859232387
-
Ero1 regulates Ca2+ fluxes at the endoplasmic reticulum-mitochondria interface (MAM)
-
T. Anelli, L. Bergamelli,E. Margittai et al., "Ero1 regulates Ca2+ fluxes at the endoplasmic reticulum-mitochondria interface (MAM)," Antioxidants & Redox Signaling, vol. 16, no. 10, pp. 1077-1087, 2012.
-
(2012)
Antioxidants & Redox Signaling
, vol.16
, Issue.10
, pp. 1077-1087
-
-
Anelli, T.1
Bergamelli, L.2
Margittai, E.3
-
80
-
-
84899757673
-
HepatitisCvirus coreprotein activates autophagy through EIF2AK3 andATF6UPR pathwaymediated MAP1LC3B and ATG12 expression
-
J. Wang, R. Kang,H. Huang et al., "HepatitisCvirus coreprotein activates autophagy through EIF2AK3 andATF6UPR pathwaymediated MAP1LC3B and ATG12 expression," Autophagy, vol. 10, no. 5, pp. 766-784, 2014.
-
(2014)
Autophagy
, vol.10
, Issue.5
, pp. 766-784
-
-
Wang, J.1
Kang, R.2
Huang, H.3
-
81
-
-
50049122662
-
Decreased expression of cytochromes P450 1A2, 2E1, and 3A4 and drug transporters Na+-taurocholate-cotransporting polypeptide, organic cation transporter 1, and organic anion-transporting peptide-C correlates with the progression of liver fibrosis in chronic hepatitis C patients
-
K. Nakai, H. Tanaka, K. Hanada et al., "Decreased expression of cytochromes P450 1A2, 2E1, and 3A4 and drug transporters Na+-taurocholate-cotransporting polypeptide, organic cation transporter 1, and organic anion-transporting peptide-C correlates with the progression of liver fibrosis in chronic hepatitis C patients," DrugMetabolism and Disposition, vol. 36, no. 9, pp. 1786-1793, 2008.
-
(2008)
DrugMetabolism and Disposition
, vol.36
, Issue.9
, pp. 1786-1793
-
-
Nakai, K.1
Tanaka, H.2
Hanada, K.3
-
82
-
-
84912113044
-
The roleof reactiveoxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts
-
K. Linhart,H. Bartsch, andH. K. Seitz, "The roleof reactiveoxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts," Redox Biology, vol. 3, pp. 56-62, 2014.
-
(2014)
Redox Biology
, vol.3
, pp. 56-62
-
-
Linhart, K.1
Bartsch, H.2
Seitz, H.K.3
-
83
-
-
80255137185
-
Targeting of the same proteins to multiple subcellular destinations: Mechanisms and physiological implications
-
N. G. Avadhani, "Targeting of the same proteins to multiple subcellular destinations: mechanisms and physiological implications," The FEBS Journal, vol. 278, no. 22, article 4217, 2011.
-
(2011)
The FEBS Journal
, vol.278
, Issue.22
-
-
Avadhani, N.G.1
-
84
-
-
33744899830
-
Induction of 26S proteasome subunit PSMB5 by the bifunctional inducer 3-methylcholanthrene through the Nrf2-ARE, but not the AhR/Arnt-XRE, pathway
-
M.-K. Kwak and T. W. Kensler, "Induction of 26S proteasome subunit PSMB5 by the bifunctional inducer 3-methylcholanthrene through the Nrf2-ARE, but not the AhR/Arnt-XRE, pathway," Biochemical and Biophysical Research Communications, vol. 345, no. 4, pp. 1350-1357, 2006.
-
(2006)
Biochemical and Biophysical Research Communications
, vol.345
, Issue.4
, pp. 1350-1357
-
-
Kwak, M.-K.1
Kensler, T.W.2
-
85
-
-
76849085285
-
Activationof transcription factor Nrf2 by hepatitis C virus induces the cell-survival pathway
-
D. Burdette,M. Olivarez, andG. Waris, "Activationof transcription factor Nrf2 by hepatitis C virus induces the cell-survival pathway," Journal of General Virology, vol. 91, no. 3, pp. 681-690, 2010.
-
(2010)
Journal of General Virology
, vol.91
, Issue.3
, pp. 681-690
-
-
Burdette, D.1
Olivarez, M.2
Waris, G.3
-
86
-
-
84919778896
-
Therapeutic targeting of GSK3 enhances the Nrf2 antioxidant response and confers hepatic cytoprotection in hepatitis C
-
Y. Jiang, H. Bao, Y. Ge et al., "Therapeutic targeting of GSK3 enhances the Nrf2 antioxidant response and confers hepatic cytoprotection in hepatitis C," Gut, vol. 64, no. 1, pp. 168-179, 2015.
-
(2015)
Gut
, vol.64
, Issue.1
, pp. 168-179
-
-
Jiang, Y.1
Bao, H.2
Ge, Y.3
-
87
-
-
80052750522
-
Hepatitis C virus proteins activate NRF2/ARE pathway by distinct ROS-dependent and independentmechanisms inHUH7 cells
-
A. V. Ivanov, O. A. Smirnova, O. N. Ivanova, O. V. Masalova, S. N. Kochetkov, andM. G. Isaguliants, "Hepatitis C virus proteins activate NRF2/ARE pathway by distinct ROS-dependent and independentmechanisms inHUH7 cells," PLoS ONE, vol. 6, no. 9, Article ID e24957, 2011.
-
(2011)
PLoS ONE
, vol.6
, Issue.9
-
-
Ivanov, A.V.1
Smirnova, O.A.2
Ivanova, O.N.3
Masalova, O.V.4
Kochetkov, S.N.5
Isaguliants, M.G.6
-
88
-
-
77951430085
-
Gene expression profiling indicates the roles of host oxidative stress, apoptosis, lipid metabolism, and intracellular transport genes in the replication of hepatitis C virus
-
S. Blackham, A. Baillie, F. Al-Hababi et al., "Gene expression profiling indicates the roles of host oxidative stress, apoptosis, lipid metabolism, and intracellular transport genes in the replication of hepatitis C virus," Journal of Virology, vol. 84, no. 10, pp. 5404-5414, 2010.
-
(2010)
Journal of Virology
, vol.84
, Issue.10
, pp. 5404-5414
-
-
Blackham, S.1
Baillie, A.2
Al-Hababi, F.3
-
89
-
-
4444238755
-
Down-regulation of heme oxygenase-1 by hepatitis C virus infection in vivo and by the in vitro expression of hepatitis C core protein
-
M. Y. Abdalla, B. E. Britigan, F. Wen et al., "Down-regulation of heme oxygenase-1 by hepatitis C virus infection in vivo and by the in vitro expression of hepatitis C core protein," Journal of Infectious Diseases, vol. 190, no. 6, pp. 1109-1118, 2004.
-
(2004)
Journal of Infectious Diseases
, vol.190
, Issue.6
, pp. 1109-1118
-
-
Abdalla, M.Y.1
Britigan, B.E.2
Wen, F.3
-
90
-
-
39749122037
-
HepatitisCcore protein inhibits induction of heme oxygenase-1 and sensitizes hepatocytes to cytotoxicity
-
F. Wen, K. E. Brown, B. E. Britigan, and W. N. Schmidt, "HepatitisCcore protein inhibits induction of heme oxygenase-1 and sensitizes hepatocytes to cytotoxicity," Cell Biology and Toxicology, vol. 24, no. 2, pp. 175-188, 2008.
-
(2008)
Cell Biology and Toxicology
, vol.24
, Issue.2
, pp. 175-188
-
-
Wen, F.1
Brown, K.E.2
Britigan, B.E.3
Schmidt, W.N.4
-
91
-
-
38348998612
-
Responses of nontransformed human hepatocytes to conditional expression of full-length hepatitis C virus open reading frame
-
W. Tang, C. A. Lázaro, J. S. Campbell, W. T. Parks, M. G. Katze, and N. Fausto, "Responses of nontransformed human hepatocytes to conditional expression of full-length hepatitis C virus open reading frame," The American Journal of Pathology, vol. 171, no. 6, pp. 1831-1846, 2007.
-
(2007)
The American Journal of Pathology
, vol.171
, Issue.6
, pp. 1831-1846
-
-
Tang, W.1
Lázaro, C.A.2
Campbell, J.S.3
Parks, W.T.4
Katze, M.G.5
Fausto, N.6
-
92
-
-
84955558758
-
Glutathione peroxidase 4 is reversibly induced by HCV to control lipid peroxidation and to increase virion infectivity
-
C. Brault, P. Lévy, S. Duponchel et al., "Glutathione peroxidase 4 is reversibly induced by HCV to control lipid peroxidation and to increase virion infectivity," Gut, vol. 65, no. 1, pp. 144-154, 2014.
-
(2014)
Gut
, vol.65
, Issue.1
, pp. 144-154
-
-
Brault, C.1
Lévy, P.2
Duponchel, S.3
-
93
-
-
36749054104
-
Inhibition of hepatitis C virus replication by peroxidation of arachidonate and restoration by Vitamin E
-
H. Huang, Y. Chen, and J. Ye, "Inhibition of hepatitis C virus replication by peroxidation of arachidonate and restoration by vitamin E," Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18666-18670, 2007.
-
(2007)
Proceedings of the National Academy of Sciences of the United States of America
, vol.104
, Issue.47
, pp. 18666-18670
-
-
Huang, H.1
Chen, Y.2
Ye, J.3
-
94
-
-
1442306648
-
Reactive oxygen species suppress hepatitis C virus RNA replication in human hepatoma cells
-
J. Choi, K. J. Lee, Y. Zheng, A. K. Yamaga,M. M. C. Lai, and J.-H. Ou, "Reactive oxygen species suppress hepatitis C virus RNA replication in human hepatoma cells," Hepatology, vol. 39, no. 1, pp. 81-89, 2004.
-
(2004)
Hepatology
, vol.39
, Issue.1
, pp. 81-89
-
-
Choi, J.1
Lee, K.J.2
Zheng, Y.3
Yamaga, A.K.4
Lai, M.M.C.5
Ou, J.-H.6
-
95
-
-
84914125473
-
Inhibitory effects of Pycnogenol? on hepatitis C virus replication
-
S. Ezzikouri, T. Nishimura, M. Kohara et al., "Inhibitory effects of Pycnogenol? on hepatitis C virus replication," Antiviral Research, vol. 113, pp. 93-102, 2015.
-
(2015)
Antiviral Research
, vol.113
, pp. 93-102
-
-
Ezzikouri, S.1
Nishimura, T.2
Kohara, M.3
-
96
-
-
84937917960
-
Hepatitis C virus comes for dinner: How the hepatitis C virus interferes with autophagy
-
D. Ploen and E. Hildt, "Hepatitis C virus comes for dinner: how the hepatitis C virus interferes with autophagy," World Journal of Gastroenterology, vol. 21, no. 28, pp. 8492-8507, 2015.
-
(2015)
World Journal of Gastroenterology
, vol.21
, Issue.28
, pp. 8492-8507
-
-
Ploen, D.1
Hildt, E.2
-
97
-
-
34249668329
-
Eating the endoplasmic reticulum: Quality control by autophagy
-
T. Yorimitsu and D. J. Klionsky, "Eating the endoplasmic reticulum: quality control by autophagy," Trends in Cell Biology, vol. 17, no. 6, pp. 279-285, 2007.
-
(2007)
Trends in Cell Biology
, vol.17
, Issue.6
, pp. 279-285
-
-
Yorimitsu, T.1
Klionsky, D.J.2
-
98
-
-
25144506835
-
Autophagy in cell death: An innocent convict?
-
B. Levine and J. Yuan, "Autophagy in cell death: An innocent convict?" The Journal of Clinical Investigation, vol. 115, no. 10, pp. 2679-2688, 2005.
-
(2005)
The Journal of Clinical Investigation
, vol.115
, Issue.10
, pp. 2679-2688
-
-
Levine, B.1
Yuan, J.2
-
99
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, "Autophagy fights disease through cellular self-digestion," Nature, vol. 451, no. 7182, pp. 1069-1075, 2008.
-
(2008)
Nature
, vol.451
, Issue.7182
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
100
-
-
0026668042
-
Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
-
K. Takeshige, M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi, "Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction," Journal of Cell Biology, vol. 119, no. 2, pp. 301-311, 1992.
-
(1992)
Journal of Cell Biology
, vol.119
, Issue.2
, pp. 301-311
-
-
Takeshige, K.1
Baba, M.2
Tsuboi, S.3
Noda, T.4
Ohsumi, Y.5
-
101
-
-
67649607465
-
Autophagy, immunity, and microbial adaptations
-
V. Deretic and B. Levine, "Autophagy, immunity, and microbial adaptations," Cell Host & Microbe, vol. 5, no. 6, pp. 527-549, 2009.
-
(2009)
Cell Host & Microbe
, vol.5
, Issue.6
, pp. 527-549
-
-
Deretic, V.1
Levine, B.2
-
102
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
-
S. Sengupta, T. R. Peterson, and D. M. Sabatini, "Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress," Molecular Cell, vol. 40, no. 2, pp. 310-322, 2010.
-
(2010)
Molecular Cell
, vol.40
, Issue.2
, pp. 310-322
-
-
Sengupta, S.1
Peterson, T.R.2
Sabatini, D.M.3
-
103
-
-
66449083078
-
ULK1. ATG13. FIP200 complex complex mediates mTOR signaling and is essential for autophagy
-
I. G. Ganley, H. Du Lam, J. Wang, X. Ding, S. Chen, and X. Jiang, "ULK1. ATG13. FIP200 complex complex mediates mTOR signaling and is essential for autophagy," The Journal of Biological Chemistry, vol. 284, no. 18, pp. 12297-12305, 2009.
-
(2009)
The Journal of Biological Chemistry
, vol.284
, Issue.18
, pp. 12297-12305
-
-
Ganley, I.G.1
Du Lam, H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
104
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
N. Hosokawa, T. Hara, T. Kaizuka et al., "Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy," Molecular Biology of the Cell, vol. 20, no. 7, pp. 1981-1991, 2009.
-
(2009)
Molecular Biology of the Cell
, vol.20
, Issue.7
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
-
105
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
J. Kim, M. Kundu, B. Viollet, and K.-L. Guan, "AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1," Nature Cell Biology, vol. 13, no. 2, pp. 132-141, 2011.
-
(2011)
Nature Cell Biology
, vol.13
, Issue.2
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.-L.4
-
106
-
-
78649338141
-
Autophagy and the integrated stress response
-
G. Kroemer, G. Mariño, and B. Levine, "Autophagy and the integrated stress response," Molecular Cell, vol. 40, no. 2, pp. 280-293, 2010.
-
(2010)
Molecular Cell
, vol.40
, Issue.2
, pp. 280-293
-
-
Kroemer, G.1
Mariño, G.2
Levine, B.3
-
107
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
N. Mizushima, T. Yoshimori, and Y. Ohsumi, "The role of Atg proteins in autophagosome formation," Annual Review of Cell and Developmental Biology, vol. 27, pp. 107-132, 2011.
-
(2011)
Annual Review of Cell and Developmental Biology
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
Yoshimori, T.2
Ohsumi, Y.3
-
108
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
E. Itakura and N. Mizushima, "Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins," Autophagy, vol. 6, no. 6, pp. 764-776, 2010.
-
(2010)
Autophagy
, vol.6
, Issue.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
109
-
-
77955895424
-
Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L
-
K. Matsunaga, E. Morita, T. Saitoh et al., "Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L,"The Journal of Cell Biology, vol. 190, no. 4, pp. 511-521, 2010.
-
(2010)
The Journal of Cell Biology
, vol.190
, Issue.4
, pp. 511-521
-
-
Matsunaga, K.1
Morita, E.2
Saitoh, T.3
-
110
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
E. L. Axe, S. A. Walker, M. Manifava et al., "Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum," The Journal of Cell Biology, vol. 182, no. 4, pp. 685-701, 2008.
-
(2008)
The Journal of Cell Biology
, vol.182
, Issue.4
, pp. 685-701
-
-
Axe, E.L.1
Walker, S.A.2
Manifava, M.3
-
111
-
-
43949143804
-
The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
-
N. Fujita, T. Itoh, H. Omori, M. Fukuda, T. Noda, and T. Yoshimori, "The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy," Molecular Biology of the Cell, vol. 19, no. 5, pp. 2092-2100, 2008.
-
(2008)
Molecular Biology of the Cell
, vol.19
, Issue.5
, pp. 2092-2100
-
-
Fujita, N.1
Itoh, T.2
Omori, H.3
Fukuda, M.4
Noda, T.5
Yoshimori, T.6
-
112
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
M. Hamasaki, N. Furuta, A. Matsuda et al., "Autophagosomes form at ER-mitochondria contact sites," Nature, vol. 495, no. 7441, pp. 389-393, 2013.
-
(2013)
Nature
, vol.495
, Issue.7441
, pp. 389-393
-
-
Hamasaki, M.1
Furuta, N.2
Matsuda, A.3
-
113
-
-
77952495224
-
Mitochondria supply membranes for autophagosome biogenesis during starvation
-
D. W. Hailey, A. S. Rambold, P. Satpute-Krishnan et al., "Mitochondria supply membranes for autophagosome biogenesis during starvation," Cell, vol. 141, no. 4, pp. 656-667, 2010.
-
(2010)
Cell
, vol.141
, Issue.4
, pp. 656-667
-
-
Hailey, D.W.1
Rambold, A.S.2
Satpute-Krishnan, P.3
-
114
-
-
75749135725
-
The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy
-
W.-L. Yen, T. Shintani, U. Nair et al., "The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy," Journal of Cell Biology, vol. 188, no. 1, pp. 101-114, 2010.
-
(2010)
Journal of Cell Biology
, vol.188
, Issue.1
, pp. 101-114
-
-
Yen, W.-L.1
Shintani, T.2
Nair, U.3
-
115
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-autophagosomal structures
-
B. Ravikumar, K. Moreau, L. Jahreiss, C. Puri, and D. C. Rubinsztein, "Plasma membrane contributes to the formation of pre-autophagosomal structures," Nature Cell Biology, vol. 12, no. 8, pp. 747-757, 2010.
-
(2010)
Nature Cell Biology
, vol.12
, Issue.8
, pp. 747-757
-
-
Ravikumar, B.1
Moreau, K.2
Jahreiss, L.3
Puri, C.4
Rubinsztein, D.C.5
-
116
-
-
84870880174
-
The hairpintype tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
E. Itakura, C. Kishi-Itakura, and N. Mizushima, "The hairpintype tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes," Cell, vol. 151, no. 6, pp. 1256-1269, 2012.
-
(2012)
Cell
, vol.151
, Issue.6
, pp. 1256-1269
-
-
Itakura, E.1
Kishi-Itakura, C.2
Mizushima, N.3
-
117
-
-
84920448565
-
PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins
-
D. G. McEwan, D. Popovic, A. Gubas et al., "PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins," Molecular Cell, vol. 57, no. 1, pp. 39-54, 2015.
-
(2015)
Molecular Cell
, vol.57
, Issue.1
, pp. 39-54
-
-
McEwan, D.G.1
Popovic, D.2
Gubas, A.3
-
118
-
-
84884814648
-
Modulation of the autophagy pathway by human tumor viruses
-
L. M. Silva and J. U. Jung, "Modulation of the autophagy pathway by human tumor viruses," Seminars in Cancer Biology, vol. 23, no. 5, pp. 323-328, 2013.
-
(2013)
Seminars in Cancer Biology
, vol.23
, Issue.5
, pp. 323-328
-
-
Silva, L.M.1
Jung, J.U.2
-
119
-
-
84922489435
-
Oxidative stress and autophagy: The clash between damage and metabolic needs
-
G. Filomeni, D. de Zio, and F. Cecconi, "Oxidative stress and autophagy: the clash between damage and metabolic needs," Cell Death and Differentiation, vol. 22, no. 3, pp. 377-388, 2015.
-
(2015)
Cell Death and Differentiation
, vol.22
, Issue.3
, pp. 377-388
-
-
Filomeni, G.1
De Zio, D.2
Cecconi, F.3
-
120
-
-
77957674533
-
Under the ROS: Thiol network is the principal suspect for autophagy commitment
-
G. Filomeni, E. Desideri, S. Cardaci, G. Rotilio, and M. R. Ciriolo, "Under the ROS: thiol network is the principal suspect for autophagy commitment," Autophagy, vol. 6, no. 7, pp. 999-1005, 2010.
-
(2010)
Autophagy
, vol.6
, Issue.7
, pp. 999-1005
-
-
Filomeni, G.1
Desideri, E.2
Cardaci, S.3
Rotilio, G.4
Ciriolo, M.R.5
-
121
-
-
84943782364
-
Autophagy and apoptosis in liver injury
-
K. Wang, "Autophagy and apoptosis in liver injury," Cell Cycle, vol. 14, no. 11, pp. 1631-1642, 2015.
-
(2015)
Cell Cycle
, vol.14
, Issue.11
, pp. 1631-1642
-
-
Wang, K.1
-
122
-
-
34250825929
-
Oxidation as a post-translational modification that regulates autophagy
-
R. Scherz-Shouval, E. Shvets, and Z. Elazar, "Oxidation as a post-translational modification that regulates autophagy," Autophagy, vol. 3, no. 4, pp. 371-373, 2007.
-
(2007)
Autophagy
, vol.3
, Issue.4
, pp. 371-373
-
-
Scherz-Shouval, R.1
Shvets, E.2
Elazar, Z.3
-
123
-
-
84883827034
-
Calyxin y induces hydrogen peroxide-dependent autophagy and apoptosis via JNK activation in human non-small cell lung cancerNCI-H460 cells
-
C. Zhang, L. Yang, X.-B. Wang et al., "Calyxin Y induces hydrogen peroxide-dependent autophagy and apoptosis via JNK activation in human non-small cell lung cancerNCI-H460 cells," Cancer Letters, vol. 340, no. 1, pp. 51-62, 2013.
-
(2013)
Cancer Letters
, vol.340
, Issue.1
, pp. 51-62
-
-
Zhang, C.1
Yang, L.2
Wang, X.-B.3
-
124
-
-
67549084381
-
Superoxide is themajor reactive oxygen species regulating autophagy
-
Y. Chen, M. B. Azad, and S. B. Gibson, "Superoxide is themajor reactive oxygen species regulating autophagy," Cell Death and Differentiation, vol. 16, no. 7, pp. 1040-1052, 2009.
-
(2009)
Cell Death and Differentiation
, vol.16
, Issue.7
, pp. 1040-1052
-
-
Chen, Y.1
Azad, M.B.2
Gibson, S.B.3
-
125
-
-
84898785937
-
Redox regulation of antioxidants, autophagy, and the response to stress: Implications for electrophile therapeutics
-
A.-L. Levonen, B. G. Hill, E. Kansanen, J. Zhang, and V. M. Darley-Usmar, "Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics," Free Radical Biology andMedicine, vol. 71, pp. 196-207, 2014.
-
(2014)
Free Radical Biology AndMedicine
, vol.71
, pp. 196-207
-
-
Levonen, A.-L.1
Hill, B.G.2
Kansanen, E.3
Zhang, J.4
Darley-Usmar, V.M.5
-
126
-
-
62949091373
-
Autophagy: A lysosomal degradation pathway with a central role in health and disease
-
E.-L. Eskelinen and P. Saftig, "Autophagy: A lysosomal degradation pathway with a central role in health and disease," Biochimica et Biophysica Acta-Molecular Cell Research, vol. 1793, no. 4, pp. 664-673, 2009.
-
(2009)
Biochimica et Biophysica Acta-Molecular Cell Research
, vol.1793
, Issue.4
, pp. 664-673
-
-
Eskelinen, E.-L.1
Saftig, P.2
-
128
-
-
0032827002
-
Regulatory mechanisms of cellular response to oxidative stress
-
K. Itoh, T. Ishii, N. Wakabayashi, and M. Yamamoto, "Regulatory mechanisms of cellular response to oxidative stress," Free Radical Research, vol. 31, no. 4, pp. 319-324, 1999.
-
(1999)
Free Radical Research
, vol.31
, Issue.4
, pp. 319-324
-
-
Itoh, K.1
Ishii, T.2
Wakabayashi, N.3
Yamamoto, M.4
-
129
-
-
0037015035
-
Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants
-
A. T. Dinkova-Kostova, W. D. Holtzclaw, R. N. Cole et al., "Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants," Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11908-11913, 2002.
-
(2002)
Proceedings of the National Academy of Sciences of the United States of America
, vol.99
, Issue.18
, pp. 11908-11913
-
-
Dinkova-Kostova, A.T.1
Holtzclaw, W.D.2
Cole, R.N.3
-
130
-
-
0242580049
-
Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress
-
D. D. Zhang and M. Hannink, "Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress," Molecular and Cellular Biology, vol. 23, no. 22, pp. 8137-8151, 2003.
-
(2003)
Molecular and Cellular Biology
, vol.23
, Issue.22
, pp. 8137-8151
-
-
Zhang, D.D.1
Hannink, M.2
-
131
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factorNrf2 through inactivation of Keap1
-
M. Komatsu, H. Kurokawa, S. Waguri et al., "The selective autophagy substrate p62 activates the stress responsive transcription factorNrf2 through inactivation of Keap1," Nature Cell Biology, vol. 12, no. 3, pp. 213-223, 2010.
-
(2010)
Nature Cell Biology
, vol.12
, Issue.3
, pp. 213-223
-
-
Komatsu, M.1
Kurokawa, H.2
Waguri, S.3
-
132
-
-
77953366801
-
A noncanonical mechanism of Nrf2 activation by autophagy deficiency: Direct interaction between Keap1 and p62
-
A. Lau, X.-J. Wang, F. Zhao et al., "A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62,"Molecular and Cellular Biology, vol. 30, no. 13, pp. 3275-3285, 2010.
-
(2010)
Molecular and Cellular Biology
, vol.30
, Issue.13
, pp. 3275-3285
-
-
Lau, A.1
Wang, X.-J.2
Zhao, F.3
-
133
-
-
77954599053
-
P62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
-
A. Jain, T. Lamark, E. Sjøttem et al., "p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription,"The Journal of Biological Chemistry, vol. 285, no. 29, pp. 22576-22591, 2010.
-
(2010)
The Journal of Biological Chemistry
, vol.285
, Issue.29
, pp. 22576-22591
-
-
Jain, A.1
Lamark, T.2
Sjøttem, E.3
-
134
-
-
77955352128
-
Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy
-
W. Fan, Z. Tang, D. Chen et al., "Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy," Autophagy, vol. 6, no. 5, pp. 614-621, 2010.
-
(2010)
Autophagy
, vol.6
, Issue.5
, pp. 614-621
-
-
Fan, W.1
Tang, Z.2
Chen, D.3
-
135
-
-
77952781968
-
Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway
-
I. M. Copple, A. Lister, A. D. Obeng et al., "Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway," The Journal of Biological Chemistry, vol. 285, no. 22, pp. 16782-16788, 2010.
-
(2010)
The Journal of Biological Chemistry
, vol.285
, Issue.22
, pp. 16782-16788
-
-
Copple, I.M.1
Lister, A.2
Obeng, A.D.3
-
136
-
-
84970954340
-
P62 links autophagy andNrf2 signaling
-
T. Jiang, B. Harder,M. Rojo de laVega, P. K. Wong, E. Chapman, andD. D. Zhang, "p62 links autophagy andNrf2 signaling," Free Radical Biology & Medicine, vol. 88, pp. 199-204, 2015.
-
(2015)
Free Radical Biology & Medicine
, vol.88
, pp. 199-204
-
-
Jiang, T.1
Harder, B.2
LaVega De M.Rojo3
Wong, P.K.4
Chapman, E.5
Zhang, D.D.6
-
137
-
-
84954129051
-
P62/SQSTM1 functions as a signaling hub and an autophagy adaptor
-
Y. Katsuragi, Y. Ichimura, and M. Komatsu, "p62/SQSTM1 functions as a signaling hub and an autophagy adaptor," The FEBS Journal, vol. 282, no. 24, pp. 4672-4678, 2015.
-
(2015)
The FEBS Journal
, vol.282
, Issue.24
, pp. 4672-4678
-
-
Katsuragi, Y.1
Ichimura, Y.2
Komatsu, M.3
-
138
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins
-
T. Johansen and T. Lamark, "Selective autophagy mediated by autophagic adapter proteins," Autophagy, vol. 7, no. 3, pp. 279-296, 2011.
-
(2011)
Autophagy
, vol.7
, Issue.3
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
139
-
-
84883830467
-
Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy
-
Y. Ichimura, S. Waguri, Y.-S. Sou et al., "Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy," Molecular Cell, vol. 51, no. 5, pp. 618-631, 2013.
-
(2013)
Molecular Cell
, vol.51
, Issue.5
, pp. 618-631
-
-
Ichimura, Y.1
Waguri, S.2
Sou, Y.-S.3
-
140
-
-
84889889353
-
Nrf2 and Nrf1 signaling and ER stress crosstalk: Implication for proteasomal degradation and autophagy
-
H. Digaleh, M. Kiaei, and F. Khodagholi, "Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy," Cellular and Molecular Life Sciences, vol. 70, no. 24, pp. 4681-4694, 2013.
-
(2013)
Cellular and Molecular Life Sciences
, vol.70
, Issue.24
, pp. 4681-4694
-
-
Digaleh, H.1
Kiaei, M.2
Khodagholi, F.3
-
141
-
-
77953482821
-
In vivo hepatic endoplasmic reticulum stress in patients with chronic hepatitis C
-
T. Asselah, I. Bièche, A. Mansouri et al., "In vivo hepatic endoplasmic reticulum stress in patients with chronic hepatitis C," The Journal of Pathology, vol. 221, no. 3, pp. 264-274, 2010.
-
(2010)
The Journal of Pathology
, vol.221
, Issue.3
, pp. 264-274
-
-
Asselah, T.1
Bièche, I.2
Mansouri, A.3
-
142
-
-
54449101892
-
Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response
-
D. Sir, W.-L. Chen, J. Choi, T. Wakita, T. S. B. Yen, and J.-H. J. Ou, "Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response," Hepatology, vol. 48, no. 4, pp. 1054-1061, 2008.
-
(2008)
Hepatology
, vol.48
, Issue.4
, pp. 1054-1061
-
-
Sir, D.1
Chen, W.-L.2
Choi, J.3
Wakita, T.4
Yen, T.S.B.5
Ou, J.-H.J.6
-
143
-
-
78650961487
-
Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro
-
P.-Y. Ke and S. S.-L. Chen, "Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro," The Journal of Clinical Investigation, vol. 121, no. 1, pp. 37-56, 2011.
-
(2011)
The Journal of Clinical Investigation
, vol.121
, Issue.1
, pp. 37-56
-
-
Ke, P.-Y.1
Chen, S.S.-L.2
-
144
-
-
0036314483
-
Hepatitis C virus subgenomic replicons induce endoplasmic reticulumstress activating an intracellular signaling pathway
-
K. D. Tardif, K. Mori, and A. Siddiqui, "Hepatitis C virus subgenomic replicons induce endoplasmic reticulumstress activating an intracellular signaling pathway," Journal of Virology, vol. 76, no. 15, pp. 7453-7459, 2002.
-
(2002)
Journal of Virology
, vol.76
, Issue.15
, pp. 7453-7459
-
-
Tardif, K.D.1
Mori, K.2
Siddiqui, A.3
-
145
-
-
79955689690
-
Autophagy: A novel guardian ofHCV against innate immune response
-
P.-Y. Ke and S. S.-L. Chen, "Autophagy: A novel guardian ofHCV against innate immune response," Autophagy, vol. 7, no. 5, pp. 533-535, 2011.
-
(2011)
Autophagy
, vol.7
, Issue.5
, pp. 533-535
-
-
Ke, P.-Y.1
Chen, S.S.-L.2
-
146
-
-
68549086862
-
Hepatitis C virus NS4B induces unfolded protein response and endoplasmic reticulumoverload response-dependent NF-B activation
-
S. Li, L. Ye, X. Yu et al., "Hepatitis C virus NS4B induces unfolded protein response and endoplasmic reticulumoverload response-dependent NF-B activation," Virology, vol. 391, no. 2, pp. 257-264, 2009.
-
(2009)
Virology
, vol.391
, Issue.2
, pp. 257-264
-
-
Li, S.1
Ye, L.2
Yu, X.3
-
147
-
-
80054978956
-
Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy
-
W.-C. Su, T.-C. Chao, Y.-L. Huang, S.-C. Weng, K.-S. Jeng, and M. M. C. Lai, "Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy," Journal of Virology, vol. 85, no. 20, pp. 10561-10571, 2011.
-
(2011)
Journal of Virology
, vol.85
, Issue.20
, pp. 10561-10571
-
-
Su, W.-C.1
Chao, T.-C.2
Huang, Y.-L.3
Weng, S.-C.4
Jeng, K.-S.5
Lai, M.M.C.6
-
148
-
-
79251512287
-
Knockdown of autophagy enhances the innate immune response in hepatitis C virus-infected hepatocytes
-
S. Shrivastava, A. Raychoudhuri, R. Steele, R. Ray, and R. B. Ray, "Knockdown of autophagy enhances the innate immune response in hepatitis C virus-infected hepatocytes," Hepatology, vol. 53, no. 2, pp. 406-414, 2011.
-
(2011)
Hepatology
, vol.53
, Issue.2
, pp. 406-414
-
-
Shrivastava, S.1
Raychoudhuri, A.2
Steele, R.3
Ray, R.4
Ray, R.B.5
-
149
-
-
84866054964
-
Autophagy and RNA virus interactomes reveal IRGMas a common target
-
I. P. Grégoire, C. Rabourdin-Combe, andM. Faure, "Autophagy and RNA virus interactomes reveal IRGMas a common target," Autophagy, vol. 8, no. 7, pp. 1136-1137, 2012.
-
(2012)
Autophagy
, vol.8
, Issue.7
, pp. 1136-1137
-
-
Grégoire, I.P.1
Rabourdin-Combe, C.2
Faure, M.3
-
150
-
-
84958073576
-
Knockdown of autophagy inhibits infectious hepatitis C virus release by the exosomal pathway
-
S. Shrivastava, P. Devhare, N. Sujijantarat et al., "Knockdown of autophagy inhibits infectious hepatitis C virus release by the exosomal pathway," Journal of Virology, vol. 90, no. 3, pp. 1387-1396, 2016.
-
(2016)
Journal of Virology
, vol.90
, Issue.3
, pp. 1387-1396
-
-
Shrivastava, S.1
Devhare, P.2
Sujijantarat, N.3
-
151
-
-
84926451754
-
HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication
-
L. Wang, Y. Tian, J.-H. J. Ou, and G. G. Luo, "HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication," PLoS Pathogens, vol. 11, no. 3, Article ID e1004764, 2015.
-
(2015)
PLoS Pathogens
, vol.11
, Issue.3
-
-
Wang, L.1
Tian, Y.2
Ou, J.-H.J.3
Luo, G.G.4
-
152
-
-
84945178532
-
Hepatitis C virus and autophagy
-
L. Wang and J.-H. James Ou, "Hepatitis C virus and autophagy," Biological Chemistry, vol. 396, no. 11, pp. 1215-1222, 2015.
-
(2015)
Biological Chemistry
, vol.396
, Issue.11
, pp. 1215-1222
-
-
Wang, L.1
James Ou, J.-H.2
-
153
-
-
84901217944
-
Autophagy in hepatitis C virus-host interactions: Potential roles and therapeutic targets for liverassociated diseases
-
P.-Y. Ke and S. S.-L. Chen, "Autophagy in hepatitis C virus-host interactions: potential roles and therapeutic targets for liverassociated diseases," World Journal of Gastroenterology, vol. 20, no. 19, pp. 5773-5793, 2014.
-
(2014)
World Journal of Gastroenterology
, vol.20
, Issue.19
, pp. 5773-5793
-
-
Ke, P.-Y.1
Chen, S.S.-L.2
-
154
-
-
84872010602
-
Threedimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication
-
I. Romero-Brey, A. Merz, A. Chiramel et al., "Threedimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication," PLoS Pathogens, vol. 8, no. 12, Article IDe1003056, 2012.
-
(2012)
PLoS Pathogens
, vol.8
, Issue.12
-
-
Romero-Brey, I.1
Merz, A.2
Chiramel, A.3
-
155
-
-
77956294587
-
Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes
-
P. Ferraris, E. Blanchard, and P. Roingeard, "Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes,"The Journal of General Virology, vol. 91, no. 9, pp. 2230-2237, 2010.
-
(2010)
The Journal of General Virology
, vol.91
, Issue.9
, pp. 2230-2237
-
-
Ferraris, P.1
Blanchard, E.2
Roingeard, P.3
-
156
-
-
0036100578
-
Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex
-
D. Egger, B. Wölk, R. Gosert et al., "Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex," Journal of Virology, vol. 76, no. 12, pp. 5974-5984, 2002.
-
(2002)
Journal of Virology
, vol.76
, Issue.12
, pp. 5974-5984
-
-
Egger, D.1
Wölk, B.2
Gosert, R.3
-
157
-
-
84885995316
-
Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment
-
D. Paul, S. Hoppe, G. Saher, J. Krijnse-Locker, and R. Bartenschlager, "Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment," Journal of Virology, vol. 87, no. 19, pp. 10612-10627, 2013.
-
(2013)
Journal of Virology
, vol.87
, Issue.19
, pp. 10612-10627
-
-
Paul, D.1
Hoppe, S.2
Saher, G.3
Krijnse-Locker, J.4
Bartenschlager, R.5
-
158
-
-
84904631176
-
Membranous replication factories induced by plus-strand RNA viruses
-
I. Romero-Brey and R. Bartenschlager, "Membranous replication factories induced by plus-strand RNA viruses," Viruses, vol. 6, no. 7, pp. 2826-2857, 2014.
-
(2014)
Viruses
, vol.6
, Issue.7
, pp. 2826-2857
-
-
Romero-Brey, I.1
Bartenschlager, R.2
-
159
-
-
0035911162
-
Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells
-
N. Mizushima, A. Yamamoto, M. Hatano et al., "Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells," The Journal of Cell Biology, vol. 152, no. 4, pp. 657-668, 2001.
-
(2001)
The Journal of Cell Biology
, vol.152
, Issue.4
, pp. 657-668
-
-
Mizushima, N.1
Yamamoto, A.2
Hatano, M.3
-
160
-
-
77955515860
-
Autophagy protein ATG5 interacts transiently with the hepatitis C virus RNA polymerase (NS5B) early during infection
-
C. Guévin, D. Manna, C. Bélanger, K. V. Konan, P. Mak, and P. Labonté, "Autophagy protein ATG5 interacts transiently with the hepatitis C virus RNA polymerase (NS5B) early during infection," Virology, vol. 405, no. 1, pp. 1-7, 2010.
-
(2010)
Virology
, vol.405
, Issue.1
, pp. 1-7
-
-
Guévin, C.1
Manna, D.2
Bélanger, C.3
Konan, K.V.4
Mak, P.5
Labonté, P.6
-
161
-
-
69549135689
-
The autophagy machinery is required to initiate hepatitis C virus replication
-
M. Dreux, P. Gastaminza, S. F. Wieland, and F. V. Chisari, "The autophagy machinery is required to initiate hepatitis C virus replication," Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 14046-14051, 2009.
-
(2009)
Proceedings of the National Academy of Sciences of the United States of America
, vol.106
, Issue.33
, pp. 14046-14051
-
-
Dreux, M.1
Gastaminza, P.2
Wieland, S.F.3
Chisari, F.V.4
-
162
-
-
73449117507
-
Autophagy proteins promote hepatitis C virus replication
-
M. Dreux and F. V. Chisari, "Autophagy proteins promote hepatitis C virus replication," Autophagy, vol. 5, no. 8, pp. 1224-1225, 2009.
-
(2009)
Autophagy
, vol.5
, Issue.8
, pp. 1224-1225
-
-
Dreux, M.1
Chisari, F.V.2
-
163
-
-
84865103087
-
Hepatitis C virus upregulates Beclin1 for induction of autophagy and activates mTOR signaling
-
S. Shrivastava, J. B. Chowdhury, R. Steele, R. Ray, and R. B. Ray, "Hepatitis C virus upregulates Beclin1 for induction of autophagy and activates mTOR signaling," Journal of Virology, vol. 86, no. 16, pp. 8705-8712, 2012.
-
(2012)
Journal of Virology
, vol.86
, Issue.16
, pp. 8705-8712
-
-
Shrivastava, S.1
Chowdhury, J.B.2
Steele, R.3
Ray, R.4
Ray, R.B.5
-
164
-
-
84899863022
-
Hepatitis C virus NS5A hijacks ARFGAP1 to maintain a phosphatidylinositol 4-phosphateenriched microenvironment
-
H. Li, X. Yang, G. Yang et al., "Hepatitis C virus NS5A hijacks ARFGAP1 to maintain a phosphatidylinositol 4-phosphateenriched microenvironment," Journal of Virology, vol. 88, no. 11, pp. 5956-5966, 2014.
-
(2014)
Journal of Virology
, vol.88
, Issue.11
, pp. 5956-5966
-
-
Li, H.1
Yang, X.2
Yang, G.3
-
165
-
-
84861556595
-
Replication of hepatitis C virus RNA on autophagosomalmembranes
-
D. Sir, C.-F. Kuo, Y. Tian et al., "Replication of hepatitis C virus RNA on autophagosomalmembranes," The Journal of Biological Chemistry, vol. 287, no. 22, pp. 18036-18043, 2012.
-
(2012)
The Journal of Biological Chemistry
, vol.287
, Issue.22
, pp. 18036-18043
-
-
Sir, D.1
Kuo, C.-F.2
Tian, Y.3
-
166
-
-
39749116856
-
HepatitisCvirus genotype 1a growth and induction of autophagy
-
M. Ait-Goughoulte, T. Kanda, K. Meyer, J. S. Ryerse, R. B. Ray, and R. Ray, "HepatitisCvirus genotype 1a growth and induction of autophagy," Journal of Virology, vol. 82, no. 5, pp. 2241-2249, 2008.
-
(2008)
Journal of Virology
, vol.82
, Issue.5
, pp. 2241-2249
-
-
Ait-Goughoulte, M.1
Kanda, T.2
Meyer, K.3
Ryerse, J.S.4
Ray, R.B.5
Ray, R.6
-
167
-
-
70349634804
-
Knockdown of autophagy-related gene decreases the production of infectious hepatitis C virus particles
-
I. Tanida, M. Fukasawa, T. Ueno, E. Kominami, T. Wakita, and K. Hanada, "Knockdown of autophagy-related gene decreases the production of infectious hepatitis C virus particles," Autophagy, vol. 5, no. 7, pp. 937-945, 2009.
-
(2009)
Autophagy
, vol.5
, Issue.7
, pp. 937-945
-
-
Tanida, I.1
Fukasawa, M.2
Ueno, T.3
Kominami, E.4
Wakita, T.5
Hanada, K.6
-
168
-
-
80052166468
-
Impactof the autophagymachinery on hepatitis C virus infection
-
M. DreuxandF. V. Chisari, "Impactof the autophagymachinery on hepatitis C virus infection," Viruses, vol. 3, no. 8, pp. 1342-1357, 2011.
-
(2011)
Viruses
, vol.3
, Issue.8
, pp. 1342-1357
-
-
Dreuxand, M.1
Chisari, F.V.2
-
169
-
-
84955443470
-
Characterization of -taxilin as a novel factor controlling the release of hepatitis C virus
-
F. Elgner, C. Donnerhak, H. Ren et al., "Characterization of -taxilin as a novel factor controlling the release of hepatitis C virus,"TheBiochemical Journal, vol. 473, no. 2,pp. 145-155, 2016.
-
(2016)
TheBiochemical Journal
, vol.473
, Issue.2
, pp. 145-155
-
-
Elgner, F.1
Donnerhak, C.2
Ren, H.3
-
170
-
-
84855293818
-
IRGM is a common target of RNA viruses that subvert the autophagy network
-
I. P. Grégoire, C. Richetta, L. Meyniel-Schicklin et al., "IRGM is a common target of RNA viruses that subvert the autophagy network," PLoS Pathogens, vol. 7, no. 12, Article ID e1002422, 2011.
-
(2011)
PLoS Pathogens
, vol.7
, Issue.12
-
-
Grégoire, I.P.1
Richetta, C.2
Meyniel-Schicklin, L.3
-
171
-
-
70449653438
-
Insulin resistance and not steatosis is associated with modifications in oxidative stressmarkers in chronic hepatitisC, non-3 genotype
-
A. C. Oliveira, E. R. Parise, R. M. Catarino et al., "Insulin resistance and not steatosis is associated with modifications in oxidative stressmarkers in chronic hepatitisC, non-3 genotype," Free Radical Research, vol. 43, no. 12, pp. 1187-1194, 2009.
-
(2009)
Free Radical Research
, vol.43
, Issue.12
, pp. 1187-1194
-
-
Oliveira, A.C.1
Parise, E.R.2
Catarino, R.M.3
-
172
-
-
14844327760
-
Reactive oxygen species promote TNF-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases
-
H. Kamata, S.-I. Honda, S. Maeda, L. Chang, H. Hirata, and M. Karin, "Reactive oxygen species promote TNF-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases," Cell, vol. 120, no. 5, pp. 649-661, 2005.
-
(2005)
Cell
, vol.120
, Issue.5
, pp. 649-661
-
-
Kamata, H.1
Honda, S.-I.2
Maeda, S.3
Chang, L.4
Hirata, H.5
Karin, M.6
-
173
-
-
10044265209
-
JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species
-
J.-J. Ventura,P. Cogswell, R. A. Flavell, A. S. BaldwinJr., andR. J. Davis, "JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species," Genes & Development, vol. 18, no. 23, pp. 2905-2915, 2004.
-
(2004)
Genes & Development
, vol.18
, Issue.23
, pp. 2905-2915
-
-
Ventura, J.-J.1
Cogswell, P.2
Flavell, R.A.3
BaldwinJr., A.S.4
Davis, R.J.5
-
174
-
-
33244481462
-
Ser/Thr phosphorylation of IRS proteins: A molecular basis for insulin resistance
-
Y. Zick, "Ser/Thr phosphorylation of IRS proteins: A molecular basis for insulin resistance," Science's STKE Signal Transduction Knowledge Environment, vol. 2005, no. 268, p. pe4, 2005.
-
(2005)
Science's STKE Signal Transduction Knowledge Environment
, vol.2005
, Issue.268
, pp. p-4
-
-
Zick, Y.1
-
175
-
-
33845542745
-
Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction
-
K. Morino, K. F. Petersen, and G. I. Shulman, "Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction," Diabetes, vol. 55, supplement 2, pp. S9-S15, 2006.
-
(2006)
Diabetes
, vol.55
, pp. S9-S15
-
-
Morino, K.1
Petersen, K.F.2
Shulman, G.I.3
-
176
-
-
84866368309
-
The metabolic regulator PGC-1 links hepatitis C virus infection to hepatic insulin resistance
-
A. Shlomai, M. M. Rechtman, E. O. Burdelova et al., "The metabolic regulator PGC-1 links hepatitis C virus infection to hepatic insulin resistance," Journal of Hepatology, vol. 57, no. 4, pp. 867-873, 2012.
-
(2012)
Journal of Hepatology
, vol.57
, Issue.4
, pp. 867-873
-
-
Shlomai, A.1
Rechtman, M.M.2
Burdelova, E.O.3
-
177
-
-
50949102655
-
Impact of oxidative stress and peroxisome proliferator-activated receptor coactivator-1 in hepatic insulin resistance
-
N. Kumashiro, Y. Tamura, T. Uchida et al., "Impact of oxidative stress and peroxisome proliferator-activated receptor coactivator-1 in hepatic insulin resistance," Diabetes, vol. 57, no. 8, pp. 2083-2091, 2008.
-
(2008)
Diabetes
, vol.57
, Issue.8
, pp. 2083-2091
-
-
Kumashiro, N.1
Tamura, Y.2
Uchida, T.3
-
178
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
J. Lin, C. Handschin, and B. M. Spiegelman, "Metabolic control through the PGC-1 family of transcription coactivators," Cell Metabolism, vol. 1, no. 6, pp. 361-370, 2005.
-
(2005)
Cell Metabolism
, vol.1
, Issue.6
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
179
-
-
0242349197
-
Regulation of hepatic fasting response by PPAR coactivator-1 (PGC-1): Requirement for hepatocyte nuclear factor 4 in gluconeogenesis
-
J. Rhee, Y. Inoue, J. C. Yoon et al., "Regulation of hepatic fasting response by PPAR coactivator-1 (PGC-1): requirement for hepatocyte nuclear factor 4 in gluconeogenesis," Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 4012-4017, 2003.
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.7
, pp. 4012-4017
-
-
Rhee, J.1
Inoue, Y.2
Yoon, J.C.3
-
180
-
-
38849184816
-
PPAR activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice
-
N. Tanaka, K. Moriya, K. Kiyosawa, K. Koike, F. J. Gonzalez, and T. Aoyama, "PPAR activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice,"The Journal of Clinical Investigation, vol. 118, no. 2, pp. 683-694, 2008.
-
(2008)
The Journal of Clinical Investigation
, vol.118
, Issue.2
, pp. 683-694
-
-
Tanaka, N.1
Moriya, K.2
Kiyosawa, K.3
Koike, K.4
Gonzalez, F.J.5
Aoyama, T.6
-
181
-
-
34547097746
-
Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress
-
G. Waris, D. J. Felmlee, F. Negro, and A. Siddiqui, "Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress," Journal of Virology, vol. 81, no. 15, pp. 8122-8130, 2007.
-
(2007)
Journal of Virology
, vol.81
, Issue.15
, pp. 8122-8130
-
-
Waris, G.1
Felmlee, D.J.2
Negro, F.3
Siddiqui, A.4
|