메뉴 건너뛰기




Volumn 6, Issue 7, 2010, Pages 999-1005

Under the ROS... Thiol network is the principal suspect for autophagy commitment

Author keywords

Autophagy; Glutathione; Reactive oxygen species; Redox signaling; Sulphydryls

Indexed keywords

AUTOPHAGY PROTEIN 10; AUTOPHAGY PROTEIN 3; AUTOPHAGY PROTEIN 7; CYSTEINE; GLUTATHIONE; HYDROGEN PEROXIDE; PEPTIDES AND PROTEINS; PEROXIREDOXIN; PHOSPHATIDYLINOSITOL 3,4,5 TRISPHOSPHATE 3 PHOSPHATASE; RAB PROTEIN; REACTIVE OXYGEN METABOLITE; THIOL DERIVATIVE; THIOREDOXIN; UNCLASSIFIED DRUG;

EID: 77957674533     PISSN: 15548627     EISSN: 15548635     Source Type: Journal    
DOI: 10.4161/auto.6.7.12754     Document Type: Note
Times cited : (162)

References (35)
  • 1
    • 0035371184 scopus 로고    scopus 로고
    • Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
    • Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001; 30:1191-212.
    • (2001) Free Radic Biol Med , vol.30 , pp. 1191-1212
    • Schafer, F.Q.1    Buettner, G.R.2
  • 2
    • 60749108379 scopus 로고    scopus 로고
    • Regulation of autophagy by reactive oxygen species (ROS): Implications for cancer progression and treatment
    • Azad MB, Chen Y, Gibson SB. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 2009; 11:777-90.
    • (2009) Antioxid Redox Signal , vol.11 , pp. 777-790
    • Azad, M.B.1    Chen, Y.2    Gibson, S.B.3
  • 3
    • 70350575440 scopus 로고    scopus 로고
    • Modulation of intracellular ROS levels by TIGAR controls autophagy
    • Bensaad K, Cheung EC, Vousden KH. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J 2009; 28:3015-26.
    • (2009) EMBO J , vol.28 , pp. 3015-3026
    • Bensaad, K.1    Cheung, E.C.2    Vousden, K.H.3
  • 5
    • 34247186472 scopus 로고    scopus 로고
    • Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
    • Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007; 26:1749-60.
    • (2007) EMBO J , vol.26 , pp. 1749-1760
    • Scherz-Shouval, R.1    Shvets, E.2    Fass, E.3    Shorer, H.4    Gil, L.5    Elazar, Z.6
  • 6
    • 70349284540 scopus 로고    scopus 로고
    • Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells
    • Leonard SE, Reddie KG, Carroll KS. Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol 2009; 4:783-99.
    • (2009) ACS Chem Biol , vol.4 , pp. 783-799
    • Leonard, S.E.1    Reddie, K.G.2    Carroll, K.S.3
  • 7
  • 8
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009; 20:1992-2003.
    • (2009) Mol Biol Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1    Jun, C.B.2    Ro, S.H.3    Kim, Y.M.4    Otto, N.M.5    Cao, J.6
  • 9
    • 20144362478 scopus 로고    scopus 로고
    • The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability
    • Dames SA, Mulet JM, Rathgeb-Szabo K, Hall MN, Grzesiek S. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem 2005; 280:20558-64.
    • (2005) J Biol Chem , vol.280 , pp. 20558-20564
    • Dames, S.A.1    Mulet, J.M.2    Rathgeb-Szabo, K.3    Hall, M.N.4    Grzesiek, S.5
  • 10
    • 74949090299 scopus 로고    scopus 로고
    • An overview of the molecular mechanism of autophagy
    • Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 2009; 335:1-32.
    • (2009) Curr Top Microbiol Immunol , vol.335 , pp. 1-32
    • Yang, Z.1    Klionsky, D.J.2
  • 11
    • 0030724889 scopus 로고    scopus 로고
    • Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress
    • Jahngen-Hodge J, Obin MS, Gong X, Shang F, Nowell TR Jr, Gong J, et al. Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J Biol Chem 1997; 272:28218-26.
    • (1997) J Biol Chem , vol.272 , pp. 28218-28226
    • Jahngen-Hodge, J.1    Obin, M.S.2    Gong, X.3    Shang, F.4    Nowell Jr., T.R.5    Gong, J.6
  • 12
    • 50249098491 scopus 로고    scopus 로고
    • Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation
    • Itoh T, Fujita N, Kanno E, Yamamoto A, Yoshimori T, Fukuda M. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell 2008; 19:2916-25.
    • (2008) Mol Biol Cell , vol.19 , pp. 2916-2925
    • Itoh, T.1    Fujita, N.2    Kanno, E.3    Yamamoto, A.4    Yoshimori, T.5    Fukuda, M.6
  • 13
  • 14
    • 33750299450 scopus 로고    scopus 로고
    • Protein tyrosine phosphatases: From genes, to function, to disease
    • Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 2006; 7:833-46.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 833-846
    • Tonks, N.K.1
  • 15
    • 25444440875 scopus 로고    scopus 로고
    • The role of autophagy in cancer development and response to therapy
    • Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5:726-34.
    • (2005) Nat Rev Cancer , vol.5 , pp. 726-734
    • Kondo, Y.1    Kanzawa, T.2    Sawaya, R.3    Kondo, S.4
  • 16
    • 28244495868 scopus 로고    scopus 로고
    • 2-Cys peroxiredoxin function in intracellular signal transduction: Therapeutic implications
    • Kang SW, Rhee SG, Chang TS, Jeong W, Choi MH. 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends Mol Med 2005; 11:571-8.
    • (2005) Trends Mol Med , vol.11 , pp. 571-578
    • Kang, S.W.1    Rhee, S.G.2    Chang, T.S.3    Jeong, W.4    Choi, M.H.5
  • 17
    • 19444375216 scopus 로고    scopus 로고
    • Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling
    • Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 2005; 38:1543-52.
    • (2005) Free Radic Biol Med , vol.38 , pp. 1543-1552
    • Rhee, S.G.1    Chae, H.Z.2    Kim, K.3
  • 18
    • 0242416188 scopus 로고    scopus 로고
    • ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin
    • Biteau B, Labarre J, Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 2003; 425:980-4.
    • (2003) Nature , vol.425 , pp. 980-984
    • Biteau, B.1    Labarre, J.2    Toledano, M.B.3
  • 19
    • 0242668688 scopus 로고    scopus 로고
    • Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation
    • Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW, Kim K, et al. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 2003; 300:653-6.
    • (2003) Science , vol.300 , pp. 653-656
    • Woo, H.A.1    Chae, H.Z.2    Hwang, S.C.3    Yang, K.S.4    Kang, S.W.5    Kim, K.6
  • 20
    • 73849144014 scopus 로고    scopus 로고
    • Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling
    • Cox AG, Winterbourn CC, Hampton MB. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J 2009;425:313-25.
    • (2009) Biochem J , vol.425 , pp. 313-325
    • Cox, A.G.1    Winterbourn, C.C.2    Hampton, M.B.3
  • 21
    • 34250828455 scopus 로고    scopus 로고
    • Proteomic analysis of membrane-associated proteins from rat liver autophagosomes
    • Øverbye A, Fengsrud M, Seglen PO. Proteomic analysis of membrane-associated proteins from rat liver autophagosomes. Autophagy 2007; 3:300-22.
    • (2007) Autophagy , vol.3 , pp. 300-322
    • Øverbye, A.1    Fengsrud, M.2    Seglen, P.O.3
  • 23
    • 57749090383 scopus 로고    scopus 로고
    • 2-dependent hyperoxidation of peroxiredoxin 6 (Prdx6) plays a role in cellular toxicity via upregulation of iPLA2 activity
    • 2-dependent hyperoxidation of peroxiredoxin 6 (Prdx6) plays a role in cellular toxicity via upregulation of iPLA2 activity. J Biol Chem 2008;283:33563-8.
    • (2008) J Biol Chem , vol.283 , pp. 33563-33568
    • Kim, S.Y.1    Jo, H.Y.2    Kim, M.H.3    Cha, Y.Y.4    Choi, S.W.5    Shim, J.H.6
  • 25
    • 0032757458 scopus 로고    scopus 로고
    • 2 antagonists inhibit nocodazole-induced Golgi ministack formation: Evidence of an ER intermediate and constitutive cycling
    • 2 antagonists inhibit nocodazole-induced Golgi ministack formation: evidence of an ER intermediate and constitutive cycling. Mol Biol Cell 1999; 10:4021-32.
    • (1999) Mol Biol Cell , vol.10 , pp. 4021-4032
    • Drecktrah, D.1    Brown, W.J.2
  • 27
    • 0036363570 scopus 로고    scopus 로고
    • Quantitation of protein sulfinic and sulfonic acid, irreversibly oxidized protein cysteine sites in cellular proteins
    • Hamann M, Zhang T, Hendrich S, Thomas JA. Quantitation of protein sulfinic and sulfonic acid, irreversibly oxidized protein cysteine sites in cellular proteins. Methods Enzymol 2002; 348:146-56.
    • (2002) Methods Enzymol , vol.348 , pp. 146-156
    • Hamann, M.1    Zhang, T.2    Hendrich, S.3    Thomas, J.A.4
  • 28
    • 2142815107 scopus 로고    scopus 로고
    • Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD
    • Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 2004; 304:596-600.
    • (2004) Science , vol.304 , pp. 596-600
    • Budanov, A.V.1    Sablina, A.A.2    Feinstein, E.3    Koonin, E.V.4    Chumakov, P.M.5
  • 30
    • 60749125535 scopus 로고    scopus 로고
    • Sestrin 2 is not a reductase for cysteine sulfinic acid of peroxiredoxins
    • Woo HA, Bae SH, Park S, Rhee SG. Sestrin 2 is not a reductase for cysteine sulfinic acid of peroxiredoxins. Antioxid Redox Signal 2009; 11:739-45.
    • (2009) Antioxid Redox Signal , vol.11 , pp. 739-745
    • Woo, H.A.1    Bae, S.H.2    Park, S.3    Rhee, S.G.4
  • 31
    • 66849087488 scopus 로고    scopus 로고
    • A novel player in the p53-mediated autophagy: Sestrin2
    • D'Amelio M, Cecconi F. A novel player in the p53-mediated autophagy: Sestrin2. Cell Cycle 2009;8:1467.
    • (2009) Cell Cycle , vol.8 , pp. 1467
    • D'Amelio, M.1    Cecconi, F.2
  • 34
    • 64049113909 scopus 로고    scopus 로고
    • Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
    • Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 2009; 11:468-76.
    • (2009) Nat Cell Biol , vol.11 , pp. 468-476
    • Zhong, Y.1    Wang, Q.J.2    Li, X.3    Yan, Y.4    Backer, J.M.5    Chait, B.T.6
  • 35
    • 67549084381 scopus 로고    scopus 로고
    • Superoxide is the major reactive oxygen species regulating autophagy
    • Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 2009; 16:1040-52.
    • (2009) Cell Death Differ , vol.16 , pp. 1040-1052
    • Chen, Y.1    Azad, M.B.2    Gibson, S.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.