-
1
-
-
0031690490
-
Insulin degradation: progress and potential
-
Duckworth W.C., et al. Insulin degradation: progress and potential. Endocr. Rev. 1998, 19:608-624.
-
(1998)
Endocr. Rev.
, vol.19
, pp. 608-624
-
-
Duckworth, W.C.1
-
2
-
-
0035399887
-
Insulin-degrading enzyme: embarking on amyloid destruction
-
Kurochkin I. Insulin-degrading enzyme: embarking on amyloid destruction. Trends Biochem. Sci. 2001, 26:421-425.
-
(2001)
Trends Biochem. Sci.
, vol.26
, pp. 421-425
-
-
Kurochkin, I.1
-
3
-
-
50249143450
-
Amyloid β-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin
-
Malito E., et al. Amyloid β-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell. Mol. Life Sci. 2008, 65:2574-2585.
-
(2008)
Cell. Mol. Life Sci.
, vol.65
, pp. 2574-2585
-
-
Malito, E.1
-
4
-
-
29844432266
-
Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimers disease: review and hypothesis
-
Qiu W., Folstein M. Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimers disease: review and hypothesis. Neurobiol. Aging 2006, 27:190-198.
-
(2006)
Neurobiol. Aging
, vol.27
, pp. 190-198
-
-
Qiu, W.1
Folstein, M.2
-
5
-
-
84903751880
-
Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones
-
Maianti J.P., et al. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones. Nature 2014, 511:94-98.
-
(2014)
Nature
, vol.511
, pp. 94-98
-
-
Maianti, J.P.1
-
6
-
-
70350223357
-
The inactivation of insulin by tissue extracts; the distribution and properties of insulin inactivating extracts
-
Mirsky I.A., Broh-Kahn R.H. The inactivation of insulin by tissue extracts; the distribution and properties of insulin inactivating extracts. Arch. Biochem. 1949, 20:1-9.
-
(1949)
Arch. Biochem.
, vol.20
, pp. 1-9
-
-
Mirsky, I.A.1
Broh-Kahn, R.H.2
-
7
-
-
67649805129
-
Molecular basis of catalytic chamber-assisted unfolding and cleavage of human insulin by human insulin-degrading enzyme
-
Manolopoulou M., et al. Molecular basis of catalytic chamber-assisted unfolding and cleavage of human insulin by human insulin-degrading enzyme. J. Biol. Chem. 2009, 284:14177-14188.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 14177-14188
-
-
Manolopoulou, M.1
-
8
-
-
84873817119
-
Insulin-degrading enzyme (IDE): a novel heat shock-like protein J
-
Tundo G.R., et al. Insulin-degrading enzyme (IDE): a novel heat shock-like protein J. Biol. Chem. 2013, 288:2281-2289.
-
(2013)
Biol. Chem.
, vol.288
, pp. 2281-2289
-
-
Tundo, G.R.1
-
9
-
-
84899702765
-
Regulation of insulin degrading enzyme activity by obesity-associated factors and pioglitazone in liver of diet-induced obese mice
-
Wei X., et al. Regulation of insulin degrading enzyme activity by obesity-associated factors and pioglitazone in liver of diet-induced obese mice. PLoS ONE 2014, 9:e95399.
-
(2014)
PLoS ONE
, vol.9
, pp. e95399
-
-
Wei, X.1
-
10
-
-
79952997680
-
Insulin-degrading enzyme modulates the natriuretic peptide-mediated signaling response
-
Ralat L.A., et al. Insulin-degrading enzyme modulates the natriuretic peptide-mediated signaling response. J. Biol. Chem. 2011, 286:4670-4679.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 4670-4679
-
-
Ralat, L.A.1
-
11
-
-
77956419621
-
A monomeric variant of insulin degrading enzyme (IDE) loses its regulatory properties
-
Song E.S., et al. A monomeric variant of insulin degrading enzyme (IDE) loses its regulatory properties. PLoS ONE 2010, 5:e9719.
-
(2010)
PLoS ONE
, vol.5
, pp. e9719
-
-
Song, E.S.1
-
12
-
-
84882799287
-
Conformational states and recognition of amyloidogenic peptides of human insulin-degrading enzyme
-
McCord L.A., et al. Conformational states and recognition of amyloidogenic peptides of human insulin-degrading enzyme. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:13827-13832.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 13827-13832
-
-
McCord, L.A.1
-
13
-
-
79954581572
-
Mixed dimers of insulin-degrading enzyme reveal a cis activation mechanism
-
Song E.S., et al. Mixed dimers of insulin-degrading enzyme reveal a cis activation mechanism. J. Biol. Chem. 2011, 286:13852-13858.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 13852-13858
-
-
Song, E.S.1
-
14
-
-
11144234853
-
ATP effects on insulin-degrading enzyme are mediated primarily through its triphosphate moiety
-
Song E.S., et al. ATP effects on insulin-degrading enzyme are mediated primarily through its triphosphate moiety. J. Biol. Chem. 2004, 279:54216-54220.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 54216-54220
-
-
Song, E.S.1
-
15
-
-
33750302461
-
Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism
-
Shen Y., et al. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature 2006, 443:870-874.
-
(2006)
Nature
, vol.443
, pp. 870-874
-
-
Shen, Y.1
-
16
-
-
34548505012
-
Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch of IDE
-
Im H., et al. Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch of IDE. J. Biol. Chem. 2007, 282:25453-25463.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 25453-25463
-
-
Im, H.1
-
17
-
-
84855286354
-
Anion activation site of insulin-degrading enzyme
-
Noinaj N., et al. Anion activation site of insulin-degrading enzyme. J. Biol. Chem. 2012, 287:48-57.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 48-57
-
-
Noinaj, N.1
-
18
-
-
70350532859
-
Structural changes in intermediate filament networks alter the activity of insulin-degrading enzyme
-
Chou Y-H.Y., et al. Structural changes in intermediate filament networks alter the activity of insulin-degrading enzyme. FASEB J. 2009, 23:3734-3742.
-
(2009)
FASEB J.
, vol.23
, pp. 3734-3742
-
-
Chou, Y.-H.Y.1
-
19
-
-
84940847342
-
Proteasome activity is affected by fluctuations in insulin-degrading enzyme distribution
-
Sbardella D., et al. Proteasome activity is affected by fluctuations in insulin-degrading enzyme distribution. PLoS ONE 2015, 10:e0132455.
-
(2015)
PLoS ONE
, vol.10
, pp. e0132455
-
-
Sbardella, D.1
-
20
-
-
75149166216
-
Insulin-degrading enzyme sorting in exosomes: a secretory pathway for a key brain amyloid-β degrading protease
-
Bulloj A., et al. Insulin-degrading enzyme sorting in exosomes: a secretory pathway for a key brain amyloid-β degrading protease. J. Alzheimers Dis. 2010, 19:79-95.
-
(2010)
J. Alzheimers Dis.
, vol.19
, pp. 79-95
-
-
Bulloj, A.1
-
21
-
-
78549284024
-
Statins promote the degradation of extracellular amyloid β-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (ide) secretion
-
Tamboli I.Y., et al. Statins promote the degradation of extracellular amyloid β-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (ide) secretion. J. Biol. Chem. 2010, 285:37405-37414.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 37405-37414
-
-
Tamboli, I.Y.1
-
22
-
-
84935496189
-
CALHM1 ion channel elicits amyloid-β clearance by insulin-degrading enzyme in cell lines and in vivo in the mouse brain
-
Vingtdeux V., et al. CALHM1 ion channel elicits amyloid-β clearance by insulin-degrading enzyme in cell lines and in vivo in the mouse brain. J. Cell Sci. 2015, 128:2330-2338.
-
(2015)
J. Cell Sci.
, vol.128
, pp. 2330-2338
-
-
Vingtdeux, V.1
-
23
-
-
79959569095
-
Functional relevance of a novel SlyX motif in non-conventional secretion of insulin-degrading enzyme
-
Glebov K., et al. Functional relevance of a novel SlyX motif in non-conventional secretion of insulin-degrading enzyme. J. Biol. Chem. 2011, 286:22711-22715.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 22711-22715
-
-
Glebov, K.1
-
24
-
-
33745863033
-
Islet β cell failure in type 2 diabetes
-
Prentki M. Islet β cell failure in type 2 diabetes. J. Clin. Invest. 2006, 116:1802-1812.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 1802-1812
-
-
Prentki, M.1
-
25
-
-
0037390039
-
Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo
-
Farris W., et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:4162-4167.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 4162-4167
-
-
Farris, W.1
-
26
-
-
1642290835
-
Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein
-
Farris W., et al. Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. Am. J. Pathol. 2004, 164:1425-1434.
-
(2004)
Am. J. Pathol.
, vol.164
, pp. 1425-1434
-
-
Farris, W.1
-
27
-
-
0033636523
-
Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction
-
Michael M.D., et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 2000, 6:87-97.
-
(2000)
Mol. Cell
, vol.6
, pp. 87-97
-
-
Michael, M.D.1
-
28
-
-
0037947406
-
Amyloid-β peptide levels in brain are inversely correlated with insulysin activity levels in vivo
-
Miller B.C., et al. Amyloid-β peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:6221-6226.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 6221-6226
-
-
Miller, B.C.1
-
29
-
-
84942456143
-
Catalytic site inhibition of insulin degrading enzyme by a small molecule induces glucose intolerance in mice
-
Deprez-poulain R., et al. Catalytic site inhibition of insulin degrading enzyme by a small molecule induces glucose intolerance in mice. Nat. Commun. 2015, 6:8250.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8250
-
-
Deprez-poulain, R.1
-
30
-
-
84904701506
-
Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose
-
Hayes M.R., et al. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu. Rev. Nutr. 2014, 34:237-260.
-
(2014)
Annu. Rev. Nutr.
, vol.34
, pp. 237-260
-
-
Hayes, M.R.1
-
32
-
-
84857408980
-
Minireview: Glucagon in stress and energy homeostasis
-
Jones B.J., et al. Minireview: Glucagon in stress and energy homeostasis. Endocrinology 2012, 153:1049-1054.
-
(2012)
Endocrinology
, vol.153
, pp. 1049-1054
-
-
Jones, B.J.1
-
33
-
-
79958294798
-
Deletion of insulin-degrading enzyme elicits antipodal, age-dependent effects on glucose and insulin tolerance
-
Abdul-Hay S.O., et al. Deletion of insulin-degrading enzyme elicits antipodal, age-dependent effects on glucose and insulin tolerance. PLoS ONE 2011, 6:e20818.
-
(2011)
PLoS ONE
, vol.6
, pp. e20818
-
-
Abdul-Hay, S.O.1
-
34
-
-
84876779428
-
The role of amyloid β in the pathogenesis of Alzheimer's disease
-
Gilbert B.J. The role of amyloid β in the pathogenesis of Alzheimer's disease. J. Clin. Pathol. 2013, 66:362-366.
-
(2013)
J. Clin. Pathol.
, vol.66
, pp. 362-366
-
-
Gilbert, B.J.1
-
35
-
-
33746377894
-
Protein misfolding, functional amyloid, and human disease
-
Chiti F., Dobson C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75:333-366.
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 333-366
-
-
Chiti, F.1
Dobson, C.M.2
-
36
-
-
0346101885
-
Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death
-
Leissring M.A., et al. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 2003, 40:1087-1093.
-
(2003)
Neuron
, vol.40
, pp. 1087-1093
-
-
Leissring, M.A.1
-
37
-
-
84874806070
-
Mechanisms of insulin resistance in obesity
-
Ye J. Mechanisms of insulin resistance in obesity. Front. Med. 2013, 7:14-24.
-
(2013)
Front. Med.
, vol.7
, pp. 14-24
-
-
Ye, J.1
-
38
-
-
0035950225
-
Clearing the brain's amyloid cobwebs
-
Selkoe D.J. Clearing the brain's amyloid cobwebs. Neuron 2001, 32:177-180.
-
(2001)
Neuron
, vol.32
, pp. 177-180
-
-
Selkoe, D.J.1
-
39
-
-
57649178322
-
The AβCs of Aβ-cleaving proteases
-
Leissring M.A. The AβCs of Aβ-cleaving proteases. J. Biol. Chem. 2008, 283:29645-29649.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 29645-29649
-
-
Leissring, M.A.1
-
40
-
-
84904187229
-
Molecular basis of substrate recognition and degradation by human presequence protease
-
King J.V., et al. Molecular basis of substrate recognition and degradation by human presequence protease. Structure 2014, 22:996-1007.
-
(2014)
Structure
, vol.22
, pp. 996-1007
-
-
King, J.V.1
-
41
-
-
0033764737
-
The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes
-
Ghosh S., et al. The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes. Am. J. Hum. Genet. 2000, 67:1174-1185.
-
(2000)
Am. J. Hum. Genet.
, vol.67
, pp. 1174-1185
-
-
Ghosh, S.1
-
42
-
-
34247244627
-
Decreased catalytic activity of the insulin-degrading enzyme in chromosome 10-linked Alzheimer disease families
-
Kim M., et al. Decreased catalytic activity of the insulin-degrading enzyme in chromosome 10-linked Alzheimer disease families. J. Biol. Chem. 2007, 282:7825-7832.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 7825-7832
-
-
Kim, M.1
-
43
-
-
33847176604
-
A genome-wide association study identifies novel risk loci for type 2 diabetes
-
Sladek R., et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445:881-885.
-
(2007)
Nature
, vol.445
, pp. 881-885
-
-
Sladek, R.1
-
44
-
-
34249895023
-
Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes
-
Zeggini E., et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007, 316:1336-1341.
-
(2007)
Science
, vol.316
, pp. 1336-1341
-
-
Zeggini, E.1
-
45
-
-
84897407583
-
Loss-of-function mutations in SLC30A8 protect against type 2 diabetes
-
Flannick J., et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat. Genet. 2014, 46:357-363.
-
(2014)
Nat. Genet.
, vol.46
, pp. 357-363
-
-
Flannick, J.1
-
46
-
-
0034704198
-
Evidence for genetic linkage of Alzheimer's disease to chromosome 10q
-
Bertram L., et al. Evidence for genetic linkage of Alzheimer's disease to chromosome 10q. Science 2000, 290:2302-2303.
-
(2000)
Science
, vol.290
, pp. 2302-2303
-
-
Bertram, L.1
-
47
-
-
33845892752
-
Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database
-
Bertram L., et al. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 2007, 39:17-23.
-
(2007)
Nat. Genet.
, vol.39
, pp. 17-23
-
-
Bertram, L.1
-
48
-
-
0242321663
-
Genetic variation in a haplotype block spanning IDE influences Alzheimer disease
-
Prince J.A., et al. Genetic variation in a haplotype block spanning IDE influences Alzheimer disease. Hum. Mutat. 2003, 22:363-371.
-
(2003)
Hum. Mutat.
, vol.22
, pp. 363-371
-
-
Prince, J.A.1
-
49
-
-
13944276825
-
Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective
-
Tanzi R.E., Bertram L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 2005, 120:545-555.
-
(2005)
Cell
, vol.120
, pp. 545-555
-
-
Tanzi, R.E.1
Bertram, L.2
-
50
-
-
77649295213
-
Concordant association of insulin degrading enzyme gene (IDE) variants with IDE mRNA, Aβ, and Alzheimer's disease
-
Carrasquillo M.M., et al. Concordant association of insulin degrading enzyme gene (IDE) variants with IDE mRNA, Aβ, and Alzheimer's disease. PLoS ONE 2010, 5:e8764.
-
(2010)
PLoS ONE
, vol.5
, pp. e8764
-
-
Carrasquillo, M.M.1
-
52
-
-
78649694743
-
Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme
-
Ren M., et al. Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. EMBO J. 2010, 29:3952-3966.
-
(2010)
EMBO J.
, vol.29
, pp. 3952-3966
-
-
Ren, M.1
-
53
-
-
77951298520
-
Production of an antigenic peptide by insulin-degrading enzyme
-
Parmentier N., et al. Production of an antigenic peptide by insulin-degrading enzyme. Nat. Immunol. 2010, 11:449-454.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 449-454
-
-
Parmentier, N.1
-
54
-
-
84861851477
-
Peptidomics approach to elucidate the proteolytic regulation of bioactive peptides
-
Kim Y-G., et al. Peptidomics approach to elucidate the proteolytic regulation of bioactive peptides. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:8523-8527.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 8523-8527
-
-
Kim, Y.-G.1
-
55
-
-
84921714353
-
Calcitonin gene-related peptide: physiology and pathophysiology
-
Russell F.A., et al. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol. Rev. 2014, 94:1099-1142.
-
(2014)
Physiol. Rev.
, vol.94
, pp. 1099-1142
-
-
Russell, F.A.1
-
56
-
-
47749114576
-
The catalytic domain of insulin-degrading enzyme forms a denaturant-resistant complex with amyloid β peptide implications for Alzheimer disease
-
Llovera R.E., et al. The catalytic domain of insulin-degrading enzyme forms a denaturant-resistant complex with amyloid β peptide implications for Alzheimer disease. J. Biol. Chem. 2008, 283:17039-17048.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 17039-17048
-
-
Llovera, R.E.1
-
57
-
-
84878253079
-
The type 2 diabetes-associated gene ide is required for insulin secretion and suppression of α-synuclein levels in β-cells
-
Steneberg P., et al. The type 2 diabetes-associated gene ide is required for insulin secretion and suppression of α-synuclein levels in β-cells. Diabetes 2013, 62:2004-2014.
-
(2013)
Diabetes
, vol.62
, pp. 2004-2014
-
-
Steneberg, P.1
-
58
-
-
84938523810
-
Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner
-
Sharma S.K., et al. Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner. Sci. Rep. 2015, 5:12531.
-
(2015)
Sci. Rep.
, vol.5
, pp. 12531
-
-
Sharma, S.K.1
-
59
-
-
84933676860
-
Type 2 diabetes as a protein misfolding disease
-
Mukherjee A., et al. Type 2 diabetes as a protein misfolding disease. Trends Mol. Med. 2015, 21:439-449.
-
(2015)
Trends Mol. Med.
, vol.21
, pp. 439-449
-
-
Mukherjee, A.1
-
60
-
-
67650410543
-
Biological and chemical approaches to diseases of proteostasis deficiency
-
Powers E.T., et al. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 2009, 78:959-991.
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 959-991
-
-
Powers, E.T.1
-
61
-
-
73149099387
-
Molecular basis for the recognition and cleavages of IGF-II, TGF-alpha, and amylin by human insulin-degrading enzyme
-
Guo Q., et al. Molecular basis for the recognition and cleavages of IGF-II, TGF-alpha, and amylin by human insulin-degrading enzyme. J. Mol. Biol. 2010, 395:430-443.
-
(2010)
J. Mol. Biol.
, vol.395
, pp. 430-443
-
-
Guo, Q.1
-
62
-
-
57049166021
-
Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme
-
Malito E., et al. Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme. Biochemistry 2008, 47:12822-12834.
-
(2008)
Biochemistry
, vol.47
, pp. 12822-12834
-
-
Malito, E.1
-
63
-
-
79959605950
-
Identification of the allosteric regulatory site of insulysin
-
Noinaj N., et al. Identification of the allosteric regulatory site of insulysin. PLoS ONE 2011, 6:e20864.
-
(2011)
PLoS ONE
, vol.6
, pp. e20864
-
-
Noinaj, N.1
-
64
-
-
33750323423
-
Effect of insulinase-inhibitor on hypoglycemic action of insulin
-
Mirsky I.A., Perisutti G. Effect of insulinase-inhibitor on hypoglycemic action of insulin. Science 1955, 122:559-560.
-
(1955)
Science
, vol.122
, pp. 559-560
-
-
Mirsky, I.A.1
Perisutti, G.2
-
65
-
-
0042822110
-
An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures
-
Bennett R.G., et al. An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures. Diabetes 2003, 52:2315-2320.
-
(2003)
Diabetes
, vol.52
, pp. 2315-2320
-
-
Bennett, R.G.1
-
66
-
-
77956274306
-
Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin
-
Leissring M.A.M., et al. Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin. PLoS ONE 2010, 5:e10504.
-
(2010)
PLoS ONE
, vol.5
, pp. e10504
-
-
Leissring, M.A.M.1
-
67
-
-
84898665877
-
Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-β hydrolysis
-
Charton J., et al. Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-β hydrolysis. Eur. J. Med. Chem. 2014, 79:184-193.
-
(2014)
Eur. J. Med. Chem.
, vol.79
, pp. 184-193
-
-
Charton, J.1
-
68
-
-
84949116723
-
Structure-activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme
-
Charton J., et al. Structure-activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme. Eur. J. Biochem. 2015, 90:547-567.
-
(2015)
Eur. J. Biochem.
, vol.90
, pp. 547-567
-
-
Charton, J.1
-
69
-
-
84939620729
-
Dual exosite-binding inhibitors of insulin-degrading enzyme challenge its role as the primary mediator of insulin clearance in vivo
-
Durham T.B., et al. Dual exosite-binding inhibitors of insulin-degrading enzyme challenge its role as the primary mediator of insulin clearance in vivo. J. Biol. Chem. 2015, 290:20044-20059.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 20044-20059
-
-
Durham, T.B.1
-
70
-
-
84905719411
-
Insulin-degrading enzyme inhibition, a novel therapy for type 2 diabetes?
-
Costes S., Butler P.C. Insulin-degrading enzyme inhibition, a novel therapy for type 2 diabetes?. Cell Metab. 2014, 20:201-203.
-
(2014)
Cell Metab.
, vol.20
, pp. 201-203
-
-
Costes, S.1
Butler, P.C.2
-
71
-
-
0035902619
-
Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease
-
DeMattos R.B., et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:8850-8855.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 8850-8855
-
-
DeMattos, R.B.1
-
72
-
-
79953836673
-
Sink hypothesis and therapeutic strategies for attenuating Aβ levels
-
Zhang Y., Lee D.H. Sink hypothesis and therapeutic strategies for attenuating Aβ levels. Neuroscientist 2011, 17:163-173.
-
(2011)
Neuroscientist
, vol.17
, pp. 163-173
-
-
Zhang, Y.1
Lee, D.H.2
-
73
-
-
84943579911
-
Delayed-start analysis: Mild Alzheimer's disease patients in solanezumab trials, 3.5 years
-
Liu-Seifert H., et al. Delayed-start analysis: Mild Alzheimer's disease patients in solanezumab trials, 3.5 years. Alzheimers Dement. Transl. Res. Clin. Interv. 2015, 1:111-121.
-
(2015)
Alzheimers Dement. Transl. Res. Clin. Interv.
, vol.1
, pp. 111-121
-
-
Liu-Seifert, H.1
-
74
-
-
84893663363
-
Insulin-degrading enzyme deficiency in bone marrow cells increases atherosclerosis in LDL receptor-deficient mice
-
Caravaggio J.W., et al. Insulin-degrading enzyme deficiency in bone marrow cells increases atherosclerosis in LDL receptor-deficient mice. Cardiovasc. Pathol. 2013, 22:458-464.
-
(2013)
Cardiovasc. Pathol.
, vol.22
, pp. 458-464
-
-
Caravaggio, J.W.1
-
75
-
-
43549100675
-
Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis
-
Haataja L., et al. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev. 2008, 29:303-316.
-
(2008)
Endocr. Rev.
, vol.29
, pp. 303-316
-
-
Haataja, L.1
-
76
-
-
4043171124
-
Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes
-
Hull R.L., et al. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab. 2004, 89:3629-3643.
-
(2004)
J. Clin. Endocrinol. Metab.
, vol.89
, pp. 3629-3643
-
-
Hull, R.L.1
-
77
-
-
84952641633
-
Selective targeting of extracellular insulin-degrading enzyme by quasi-irreversible thiol-modifying inhibitors
-
Published online October 16, 2015
-
Abdul-Hay S.O., et al. Selective targeting of extracellular insulin-degrading enzyme by quasi-irreversible thiol-modifying inhibitors. ACS Chem. Biol. 2015, Published online October 16, 2015. 10.1021/acschembio.5b00595.
-
(2015)
ACS Chem. Biol.
-
-
Abdul-Hay, S.O.1
-
79
-
-
71749105343
-
Protective role of Cys-178 against the inactivation and oligomerization of human insulin-degrading enzyme by oxidation and nitrosylation
-
Ralat L.A., et al. Protective role of Cys-178 against the inactivation and oligomerization of human insulin-degrading enzyme by oxidation and nitrosylation. J. Biol. Chem. 2009, 284:34005-34018.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 34005-34018
-
-
Ralat, L.A.1
-
80
-
-
27944440133
-
Susceptibility of amyloid β peptide degrading enzymes to oxidative damage: a potential Alzheimer's disease spiral
-
Shinall H., et al. Susceptibility of amyloid β peptide degrading enzymes to oxidative damage: a potential Alzheimer's disease spiral. Biochemistry 2005, 44:15345-15350.
-
(2005)
Biochemistry
, vol.44
, pp. 15345-15350
-
-
Shinall, H.1
-
81
-
-
84941342094
-
An extended polyanion activation surface in insulin degrading enzyme
-
Song E.S., et al. An extended polyanion activation surface in insulin degrading enzyme. PLoS ONE 2015, 10:e0133114.
-
(2015)
PLoS ONE
, vol.10
, pp. e0133114
-
-
Song, E.S.1
-
82
-
-
67649197985
-
Small-molecule activators of insulin-degrading enzyme discovered through high-throughput compound screening
-
Cabrol C., et al. Small-molecule activators of insulin-degrading enzyme discovered through high-throughput compound screening. PLoS ONE 2009, 4:e5274.
-
(2009)
PLoS ONE
, vol.4
, pp. e5274
-
-
Cabrol, C.1
-
83
-
-
84947045239
-
Statins induce insulin-degrading enzyme secretion from astrocytes via an autophagy-based unconventional secretory pathway
-
Son S.M., et al. Statins induce insulin-degrading enzyme secretion from astrocytes via an autophagy-based unconventional secretory pathway. Mol. Neurodegener. 2015, 10:56.
-
(2015)
Mol. Neurodegener.
, vol.10
, pp. 56
-
-
Son, S.M.1
|