메뉴 건너뛰기




Volumn 27, Issue 1, 2016, Pages 24-34

Targeting Insulin-Degrading Enzyme to Treat Type 2 Diabetes Mellitus

Author keywords

Alzheimer's disease; Insulin degrading enzyme; Small molecule inhibitors; Type 2 diabetes mellitus

Indexed keywords

AMYLIN; AMYLOID BETA PROTEIN; AMYLOID PROTEIN; INSULIN; INSULINASE;

EID: 84952639447     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2015.11.003     Document Type: Review
Times cited : (87)

References (83)
  • 1
    • 0031690490 scopus 로고    scopus 로고
    • Insulin degradation: progress and potential
    • Duckworth W.C., et al. Insulin degradation: progress and potential. Endocr. Rev. 1998, 19:608-624.
    • (1998) Endocr. Rev. , vol.19 , pp. 608-624
    • Duckworth, W.C.1
  • 2
    • 0035399887 scopus 로고    scopus 로고
    • Insulin-degrading enzyme: embarking on amyloid destruction
    • Kurochkin I. Insulin-degrading enzyme: embarking on amyloid destruction. Trends Biochem. Sci. 2001, 26:421-425.
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 421-425
    • Kurochkin, I.1
  • 3
    • 50249143450 scopus 로고    scopus 로고
    • Amyloid β-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin
    • Malito E., et al. Amyloid β-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell. Mol. Life Sci. 2008, 65:2574-2585.
    • (2008) Cell. Mol. Life Sci. , vol.65 , pp. 2574-2585
    • Malito, E.1
  • 4
    • 29844432266 scopus 로고    scopus 로고
    • Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimers disease: review and hypothesis
    • Qiu W., Folstein M. Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimers disease: review and hypothesis. Neurobiol. Aging 2006, 27:190-198.
    • (2006) Neurobiol. Aging , vol.27 , pp. 190-198
    • Qiu, W.1    Folstein, M.2
  • 5
    • 84903751880 scopus 로고    scopus 로고
    • Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones
    • Maianti J.P., et al. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones. Nature 2014, 511:94-98.
    • (2014) Nature , vol.511 , pp. 94-98
    • Maianti, J.P.1
  • 6
    • 70350223357 scopus 로고
    • The inactivation of insulin by tissue extracts; the distribution and properties of insulin inactivating extracts
    • Mirsky I.A., Broh-Kahn R.H. The inactivation of insulin by tissue extracts; the distribution and properties of insulin inactivating extracts. Arch. Biochem. 1949, 20:1-9.
    • (1949) Arch. Biochem. , vol.20 , pp. 1-9
    • Mirsky, I.A.1    Broh-Kahn, R.H.2
  • 7
    • 67649805129 scopus 로고    scopus 로고
    • Molecular basis of catalytic chamber-assisted unfolding and cleavage of human insulin by human insulin-degrading enzyme
    • Manolopoulou M., et al. Molecular basis of catalytic chamber-assisted unfolding and cleavage of human insulin by human insulin-degrading enzyme. J. Biol. Chem. 2009, 284:14177-14188.
    • (2009) J. Biol. Chem. , vol.284 , pp. 14177-14188
    • Manolopoulou, M.1
  • 8
    • 84873817119 scopus 로고    scopus 로고
    • Insulin-degrading enzyme (IDE): a novel heat shock-like protein J
    • Tundo G.R., et al. Insulin-degrading enzyme (IDE): a novel heat shock-like protein J. Biol. Chem. 2013, 288:2281-2289.
    • (2013) Biol. Chem. , vol.288 , pp. 2281-2289
    • Tundo, G.R.1
  • 9
    • 84899702765 scopus 로고    scopus 로고
    • Regulation of insulin degrading enzyme activity by obesity-associated factors and pioglitazone in liver of diet-induced obese mice
    • Wei X., et al. Regulation of insulin degrading enzyme activity by obesity-associated factors and pioglitazone in liver of diet-induced obese mice. PLoS ONE 2014, 9:e95399.
    • (2014) PLoS ONE , vol.9 , pp. e95399
    • Wei, X.1
  • 10
    • 79952997680 scopus 로고    scopus 로고
    • Insulin-degrading enzyme modulates the natriuretic peptide-mediated signaling response
    • Ralat L.A., et al. Insulin-degrading enzyme modulates the natriuretic peptide-mediated signaling response. J. Biol. Chem. 2011, 286:4670-4679.
    • (2011) J. Biol. Chem. , vol.286 , pp. 4670-4679
    • Ralat, L.A.1
  • 11
    • 77956419621 scopus 로고    scopus 로고
    • A monomeric variant of insulin degrading enzyme (IDE) loses its regulatory properties
    • Song E.S., et al. A monomeric variant of insulin degrading enzyme (IDE) loses its regulatory properties. PLoS ONE 2010, 5:e9719.
    • (2010) PLoS ONE , vol.5 , pp. e9719
    • Song, E.S.1
  • 12
    • 84882799287 scopus 로고    scopus 로고
    • Conformational states and recognition of amyloidogenic peptides of human insulin-degrading enzyme
    • McCord L.A., et al. Conformational states and recognition of amyloidogenic peptides of human insulin-degrading enzyme. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:13827-13832.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 13827-13832
    • McCord, L.A.1
  • 13
    • 79954581572 scopus 로고    scopus 로고
    • Mixed dimers of insulin-degrading enzyme reveal a cis activation mechanism
    • Song E.S., et al. Mixed dimers of insulin-degrading enzyme reveal a cis activation mechanism. J. Biol. Chem. 2011, 286:13852-13858.
    • (2011) J. Biol. Chem. , vol.286 , pp. 13852-13858
    • Song, E.S.1
  • 14
    • 11144234853 scopus 로고    scopus 로고
    • ATP effects on insulin-degrading enzyme are mediated primarily through its triphosphate moiety
    • Song E.S., et al. ATP effects on insulin-degrading enzyme are mediated primarily through its triphosphate moiety. J. Biol. Chem. 2004, 279:54216-54220.
    • (2004) J. Biol. Chem. , vol.279 , pp. 54216-54220
    • Song, E.S.1
  • 15
    • 33750302461 scopus 로고    scopus 로고
    • Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism
    • Shen Y., et al. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature 2006, 443:870-874.
    • (2006) Nature , vol.443 , pp. 870-874
    • Shen, Y.1
  • 16
    • 34548505012 scopus 로고    scopus 로고
    • Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch of IDE
    • Im H., et al. Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch of IDE. J. Biol. Chem. 2007, 282:25453-25463.
    • (2007) J. Biol. Chem. , vol.282 , pp. 25453-25463
    • Im, H.1
  • 17
    • 84855286354 scopus 로고    scopus 로고
    • Anion activation site of insulin-degrading enzyme
    • Noinaj N., et al. Anion activation site of insulin-degrading enzyme. J. Biol. Chem. 2012, 287:48-57.
    • (2012) J. Biol. Chem. , vol.287 , pp. 48-57
    • Noinaj, N.1
  • 18
    • 70350532859 scopus 로고    scopus 로고
    • Structural changes in intermediate filament networks alter the activity of insulin-degrading enzyme
    • Chou Y-H.Y., et al. Structural changes in intermediate filament networks alter the activity of insulin-degrading enzyme. FASEB J. 2009, 23:3734-3742.
    • (2009) FASEB J. , vol.23 , pp. 3734-3742
    • Chou, Y.-H.Y.1
  • 19
    • 84940847342 scopus 로고    scopus 로고
    • Proteasome activity is affected by fluctuations in insulin-degrading enzyme distribution
    • Sbardella D., et al. Proteasome activity is affected by fluctuations in insulin-degrading enzyme distribution. PLoS ONE 2015, 10:e0132455.
    • (2015) PLoS ONE , vol.10 , pp. e0132455
    • Sbardella, D.1
  • 20
    • 75149166216 scopus 로고    scopus 로고
    • Insulin-degrading enzyme sorting in exosomes: a secretory pathway for a key brain amyloid-β degrading protease
    • Bulloj A., et al. Insulin-degrading enzyme sorting in exosomes: a secretory pathway for a key brain amyloid-β degrading protease. J. Alzheimers Dis. 2010, 19:79-95.
    • (2010) J. Alzheimers Dis. , vol.19 , pp. 79-95
    • Bulloj, A.1
  • 21
    • 78549284024 scopus 로고    scopus 로고
    • Statins promote the degradation of extracellular amyloid β-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (ide) secretion
    • Tamboli I.Y., et al. Statins promote the degradation of extracellular amyloid β-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (ide) secretion. J. Biol. Chem. 2010, 285:37405-37414.
    • (2010) J. Biol. Chem. , vol.285 , pp. 37405-37414
    • Tamboli, I.Y.1
  • 22
    • 84935496189 scopus 로고    scopus 로고
    • CALHM1 ion channel elicits amyloid-β clearance by insulin-degrading enzyme in cell lines and in vivo in the mouse brain
    • Vingtdeux V., et al. CALHM1 ion channel elicits amyloid-β clearance by insulin-degrading enzyme in cell lines and in vivo in the mouse brain. J. Cell Sci. 2015, 128:2330-2338.
    • (2015) J. Cell Sci. , vol.128 , pp. 2330-2338
    • Vingtdeux, V.1
  • 23
    • 79959569095 scopus 로고    scopus 로고
    • Functional relevance of a novel SlyX motif in non-conventional secretion of insulin-degrading enzyme
    • Glebov K., et al. Functional relevance of a novel SlyX motif in non-conventional secretion of insulin-degrading enzyme. J. Biol. Chem. 2011, 286:22711-22715.
    • (2011) J. Biol. Chem. , vol.286 , pp. 22711-22715
    • Glebov, K.1
  • 24
    • 33745863033 scopus 로고    scopus 로고
    • Islet β cell failure in type 2 diabetes
    • Prentki M. Islet β cell failure in type 2 diabetes. J. Clin. Invest. 2006, 116:1802-1812.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1802-1812
    • Prentki, M.1
  • 25
    • 0037390039 scopus 로고    scopus 로고
    • Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo
    • Farris W., et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:4162-4167.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 4162-4167
    • Farris, W.1
  • 26
    • 1642290835 scopus 로고    scopus 로고
    • Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein
    • Farris W., et al. Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. Am. J. Pathol. 2004, 164:1425-1434.
    • (2004) Am. J. Pathol. , vol.164 , pp. 1425-1434
    • Farris, W.1
  • 27
    • 0033636523 scopus 로고    scopus 로고
    • Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction
    • Michael M.D., et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 2000, 6:87-97.
    • (2000) Mol. Cell , vol.6 , pp. 87-97
    • Michael, M.D.1
  • 28
    • 0037947406 scopus 로고    scopus 로고
    • Amyloid-β peptide levels in brain are inversely correlated with insulysin activity levels in vivo
    • Miller B.C., et al. Amyloid-β peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:6221-6226.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 6221-6226
    • Miller, B.C.1
  • 29
    • 84942456143 scopus 로고    scopus 로고
    • Catalytic site inhibition of insulin degrading enzyme by a small molecule induces glucose intolerance in mice
    • Deprez-poulain R., et al. Catalytic site inhibition of insulin degrading enzyme by a small molecule induces glucose intolerance in mice. Nat. Commun. 2015, 6:8250.
    • (2015) Nat. Commun. , vol.6 , pp. 8250
    • Deprez-poulain, R.1
  • 30
    • 84904701506 scopus 로고    scopus 로고
    • Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose
    • Hayes M.R., et al. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu. Rev. Nutr. 2014, 34:237-260.
    • (2014) Annu. Rev. Nutr. , vol.34 , pp. 237-260
    • Hayes, M.R.1
  • 32
    • 84857408980 scopus 로고    scopus 로고
    • Minireview: Glucagon in stress and energy homeostasis
    • Jones B.J., et al. Minireview: Glucagon in stress and energy homeostasis. Endocrinology 2012, 153:1049-1054.
    • (2012) Endocrinology , vol.153 , pp. 1049-1054
    • Jones, B.J.1
  • 33
    • 79958294798 scopus 로고    scopus 로고
    • Deletion of insulin-degrading enzyme elicits antipodal, age-dependent effects on glucose and insulin tolerance
    • Abdul-Hay S.O., et al. Deletion of insulin-degrading enzyme elicits antipodal, age-dependent effects on glucose and insulin tolerance. PLoS ONE 2011, 6:e20818.
    • (2011) PLoS ONE , vol.6 , pp. e20818
    • Abdul-Hay, S.O.1
  • 34
    • 84876779428 scopus 로고    scopus 로고
    • The role of amyloid β in the pathogenesis of Alzheimer's disease
    • Gilbert B.J. The role of amyloid β in the pathogenesis of Alzheimer's disease. J. Clin. Pathol. 2013, 66:362-366.
    • (2013) J. Clin. Pathol. , vol.66 , pp. 362-366
    • Gilbert, B.J.1
  • 35
    • 33746377894 scopus 로고    scopus 로고
    • Protein misfolding, functional amyloid, and human disease
    • Chiti F., Dobson C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75:333-366.
    • (2006) Annu. Rev. Biochem. , vol.75 , pp. 333-366
    • Chiti, F.1    Dobson, C.M.2
  • 36
    • 0346101885 scopus 로고    scopus 로고
    • Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death
    • Leissring M.A., et al. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 2003, 40:1087-1093.
    • (2003) Neuron , vol.40 , pp. 1087-1093
    • Leissring, M.A.1
  • 37
    • 84874806070 scopus 로고    scopus 로고
    • Mechanisms of insulin resistance in obesity
    • Ye J. Mechanisms of insulin resistance in obesity. Front. Med. 2013, 7:14-24.
    • (2013) Front. Med. , vol.7 , pp. 14-24
    • Ye, J.1
  • 38
    • 0035950225 scopus 로고    scopus 로고
    • Clearing the brain's amyloid cobwebs
    • Selkoe D.J. Clearing the brain's amyloid cobwebs. Neuron 2001, 32:177-180.
    • (2001) Neuron , vol.32 , pp. 177-180
    • Selkoe, D.J.1
  • 39
    • 57649178322 scopus 로고    scopus 로고
    • The AβCs of Aβ-cleaving proteases
    • Leissring M.A. The AβCs of Aβ-cleaving proteases. J. Biol. Chem. 2008, 283:29645-29649.
    • (2008) J. Biol. Chem. , vol.283 , pp. 29645-29649
    • Leissring, M.A.1
  • 40
    • 84904187229 scopus 로고    scopus 로고
    • Molecular basis of substrate recognition and degradation by human presequence protease
    • King J.V., et al. Molecular basis of substrate recognition and degradation by human presequence protease. Structure 2014, 22:996-1007.
    • (2014) Structure , vol.22 , pp. 996-1007
    • King, J.V.1
  • 41
    • 0033764737 scopus 로고    scopus 로고
    • The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes
    • Ghosh S., et al. The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes. Am. J. Hum. Genet. 2000, 67:1174-1185.
    • (2000) Am. J. Hum. Genet. , vol.67 , pp. 1174-1185
    • Ghosh, S.1
  • 42
    • 34247244627 scopus 로고    scopus 로고
    • Decreased catalytic activity of the insulin-degrading enzyme in chromosome 10-linked Alzheimer disease families
    • Kim M., et al. Decreased catalytic activity of the insulin-degrading enzyme in chromosome 10-linked Alzheimer disease families. J. Biol. Chem. 2007, 282:7825-7832.
    • (2007) J. Biol. Chem. , vol.282 , pp. 7825-7832
    • Kim, M.1
  • 43
    • 33847176604 scopus 로고    scopus 로고
    • A genome-wide association study identifies novel risk loci for type 2 diabetes
    • Sladek R., et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445:881-885.
    • (2007) Nature , vol.445 , pp. 881-885
    • Sladek, R.1
  • 44
    • 34249895023 scopus 로고    scopus 로고
    • Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes
    • Zeggini E., et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007, 316:1336-1341.
    • (2007) Science , vol.316 , pp. 1336-1341
    • Zeggini, E.1
  • 45
    • 84897407583 scopus 로고    scopus 로고
    • Loss-of-function mutations in SLC30A8 protect against type 2 diabetes
    • Flannick J., et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat. Genet. 2014, 46:357-363.
    • (2014) Nat. Genet. , vol.46 , pp. 357-363
    • Flannick, J.1
  • 46
    • 0034704198 scopus 로고    scopus 로고
    • Evidence for genetic linkage of Alzheimer's disease to chromosome 10q
    • Bertram L., et al. Evidence for genetic linkage of Alzheimer's disease to chromosome 10q. Science 2000, 290:2302-2303.
    • (2000) Science , vol.290 , pp. 2302-2303
    • Bertram, L.1
  • 47
    • 33845892752 scopus 로고    scopus 로고
    • Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database
    • Bertram L., et al. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 2007, 39:17-23.
    • (2007) Nat. Genet. , vol.39 , pp. 17-23
    • Bertram, L.1
  • 48
    • 0242321663 scopus 로고    scopus 로고
    • Genetic variation in a haplotype block spanning IDE influences Alzheimer disease
    • Prince J.A., et al. Genetic variation in a haplotype block spanning IDE influences Alzheimer disease. Hum. Mutat. 2003, 22:363-371.
    • (2003) Hum. Mutat. , vol.22 , pp. 363-371
    • Prince, J.A.1
  • 49
    • 13944276825 scopus 로고    scopus 로고
    • Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective
    • Tanzi R.E., Bertram L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 2005, 120:545-555.
    • (2005) Cell , vol.120 , pp. 545-555
    • Tanzi, R.E.1    Bertram, L.2
  • 50
    • 77649295213 scopus 로고    scopus 로고
    • Concordant association of insulin degrading enzyme gene (IDE) variants with IDE mRNA, Aβ, and Alzheimer's disease
    • Carrasquillo M.M., et al. Concordant association of insulin degrading enzyme gene (IDE) variants with IDE mRNA, Aβ, and Alzheimer's disease. PLoS ONE 2010, 5:e8764.
    • (2010) PLoS ONE , vol.5 , pp. e8764
    • Carrasquillo, M.M.1
  • 52
    • 78649694743 scopus 로고    scopus 로고
    • Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme
    • Ren M., et al. Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. EMBO J. 2010, 29:3952-3966.
    • (2010) EMBO J. , vol.29 , pp. 3952-3966
    • Ren, M.1
  • 53
    • 77951298520 scopus 로고    scopus 로고
    • Production of an antigenic peptide by insulin-degrading enzyme
    • Parmentier N., et al. Production of an antigenic peptide by insulin-degrading enzyme. Nat. Immunol. 2010, 11:449-454.
    • (2010) Nat. Immunol. , vol.11 , pp. 449-454
    • Parmentier, N.1
  • 54
    • 84861851477 scopus 로고    scopus 로고
    • Peptidomics approach to elucidate the proteolytic regulation of bioactive peptides
    • Kim Y-G., et al. Peptidomics approach to elucidate the proteolytic regulation of bioactive peptides. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:8523-8527.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 8523-8527
    • Kim, Y.-G.1
  • 55
    • 84921714353 scopus 로고    scopus 로고
    • Calcitonin gene-related peptide: physiology and pathophysiology
    • Russell F.A., et al. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol. Rev. 2014, 94:1099-1142.
    • (2014) Physiol. Rev. , vol.94 , pp. 1099-1142
    • Russell, F.A.1
  • 56
    • 47749114576 scopus 로고    scopus 로고
    • The catalytic domain of insulin-degrading enzyme forms a denaturant-resistant complex with amyloid β peptide implications for Alzheimer disease
    • Llovera R.E., et al. The catalytic domain of insulin-degrading enzyme forms a denaturant-resistant complex with amyloid β peptide implications for Alzheimer disease. J. Biol. Chem. 2008, 283:17039-17048.
    • (2008) J. Biol. Chem. , vol.283 , pp. 17039-17048
    • Llovera, R.E.1
  • 57
    • 84878253079 scopus 로고    scopus 로고
    • The type 2 diabetes-associated gene ide is required for insulin secretion and suppression of α-synuclein levels in β-cells
    • Steneberg P., et al. The type 2 diabetes-associated gene ide is required for insulin secretion and suppression of α-synuclein levels in β-cells. Diabetes 2013, 62:2004-2014.
    • (2013) Diabetes , vol.62 , pp. 2004-2014
    • Steneberg, P.1
  • 58
    • 84938523810 scopus 로고    scopus 로고
    • Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner
    • Sharma S.K., et al. Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner. Sci. Rep. 2015, 5:12531.
    • (2015) Sci. Rep. , vol.5 , pp. 12531
    • Sharma, S.K.1
  • 59
    • 84933676860 scopus 로고    scopus 로고
    • Type 2 diabetes as a protein misfolding disease
    • Mukherjee A., et al. Type 2 diabetes as a protein misfolding disease. Trends Mol. Med. 2015, 21:439-449.
    • (2015) Trends Mol. Med. , vol.21 , pp. 439-449
    • Mukherjee, A.1
  • 60
    • 67650410543 scopus 로고    scopus 로고
    • Biological and chemical approaches to diseases of proteostasis deficiency
    • Powers E.T., et al. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 2009, 78:959-991.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 959-991
    • Powers, E.T.1
  • 61
    • 73149099387 scopus 로고    scopus 로고
    • Molecular basis for the recognition and cleavages of IGF-II, TGF-alpha, and amylin by human insulin-degrading enzyme
    • Guo Q., et al. Molecular basis for the recognition and cleavages of IGF-II, TGF-alpha, and amylin by human insulin-degrading enzyme. J. Mol. Biol. 2010, 395:430-443.
    • (2010) J. Mol. Biol. , vol.395 , pp. 430-443
    • Guo, Q.1
  • 62
    • 57049166021 scopus 로고    scopus 로고
    • Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme
    • Malito E., et al. Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme. Biochemistry 2008, 47:12822-12834.
    • (2008) Biochemistry , vol.47 , pp. 12822-12834
    • Malito, E.1
  • 63
    • 79959605950 scopus 로고    scopus 로고
    • Identification of the allosteric regulatory site of insulysin
    • Noinaj N., et al. Identification of the allosteric regulatory site of insulysin. PLoS ONE 2011, 6:e20864.
    • (2011) PLoS ONE , vol.6 , pp. e20864
    • Noinaj, N.1
  • 64
    • 33750323423 scopus 로고
    • Effect of insulinase-inhibitor on hypoglycemic action of insulin
    • Mirsky I.A., Perisutti G. Effect of insulinase-inhibitor on hypoglycemic action of insulin. Science 1955, 122:559-560.
    • (1955) Science , vol.122 , pp. 559-560
    • Mirsky, I.A.1    Perisutti, G.2
  • 65
    • 0042822110 scopus 로고    scopus 로고
    • An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures
    • Bennett R.G., et al. An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures. Diabetes 2003, 52:2315-2320.
    • (2003) Diabetes , vol.52 , pp. 2315-2320
    • Bennett, R.G.1
  • 66
    • 77956274306 scopus 로고    scopus 로고
    • Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin
    • Leissring M.A.M., et al. Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin. PLoS ONE 2010, 5:e10504.
    • (2010) PLoS ONE , vol.5 , pp. e10504
    • Leissring, M.A.M.1
  • 67
    • 84898665877 scopus 로고    scopus 로고
    • Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-β hydrolysis
    • Charton J., et al. Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-β hydrolysis. Eur. J. Med. Chem. 2014, 79:184-193.
    • (2014) Eur. J. Med. Chem. , vol.79 , pp. 184-193
    • Charton, J.1
  • 68
    • 84949116723 scopus 로고    scopus 로고
    • Structure-activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme
    • Charton J., et al. Structure-activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme. Eur. J. Biochem. 2015, 90:547-567.
    • (2015) Eur. J. Biochem. , vol.90 , pp. 547-567
    • Charton, J.1
  • 69
    • 84939620729 scopus 로고    scopus 로고
    • Dual exosite-binding inhibitors of insulin-degrading enzyme challenge its role as the primary mediator of insulin clearance in vivo
    • Durham T.B., et al. Dual exosite-binding inhibitors of insulin-degrading enzyme challenge its role as the primary mediator of insulin clearance in vivo. J. Biol. Chem. 2015, 290:20044-20059.
    • (2015) J. Biol. Chem. , vol.290 , pp. 20044-20059
    • Durham, T.B.1
  • 70
    • 84905719411 scopus 로고    scopus 로고
    • Insulin-degrading enzyme inhibition, a novel therapy for type 2 diabetes?
    • Costes S., Butler P.C. Insulin-degrading enzyme inhibition, a novel therapy for type 2 diabetes?. Cell Metab. 2014, 20:201-203.
    • (2014) Cell Metab. , vol.20 , pp. 201-203
    • Costes, S.1    Butler, P.C.2
  • 71
    • 0035902619 scopus 로고    scopus 로고
    • Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease
    • DeMattos R.B., et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:8850-8855.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 8850-8855
    • DeMattos, R.B.1
  • 72
    • 79953836673 scopus 로고    scopus 로고
    • Sink hypothesis and therapeutic strategies for attenuating Aβ levels
    • Zhang Y., Lee D.H. Sink hypothesis and therapeutic strategies for attenuating Aβ levels. Neuroscientist 2011, 17:163-173.
    • (2011) Neuroscientist , vol.17 , pp. 163-173
    • Zhang, Y.1    Lee, D.H.2
  • 73
    • 84943579911 scopus 로고    scopus 로고
    • Delayed-start analysis: Mild Alzheimer's disease patients in solanezumab trials, 3.5 years
    • Liu-Seifert H., et al. Delayed-start analysis: Mild Alzheimer's disease patients in solanezumab trials, 3.5 years. Alzheimers Dement. Transl. Res. Clin. Interv. 2015, 1:111-121.
    • (2015) Alzheimers Dement. Transl. Res. Clin. Interv. , vol.1 , pp. 111-121
    • Liu-Seifert, H.1
  • 74
    • 84893663363 scopus 로고    scopus 로고
    • Insulin-degrading enzyme deficiency in bone marrow cells increases atherosclerosis in LDL receptor-deficient mice
    • Caravaggio J.W., et al. Insulin-degrading enzyme deficiency in bone marrow cells increases atherosclerosis in LDL receptor-deficient mice. Cardiovasc. Pathol. 2013, 22:458-464.
    • (2013) Cardiovasc. Pathol. , vol.22 , pp. 458-464
    • Caravaggio, J.W.1
  • 75
    • 43549100675 scopus 로고    scopus 로고
    • Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis
    • Haataja L., et al. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev. 2008, 29:303-316.
    • (2008) Endocr. Rev. , vol.29 , pp. 303-316
    • Haataja, L.1
  • 76
    • 4043171124 scopus 로고    scopus 로고
    • Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes
    • Hull R.L., et al. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab. 2004, 89:3629-3643.
    • (2004) J. Clin. Endocrinol. Metab. , vol.89 , pp. 3629-3643
    • Hull, R.L.1
  • 77
    • 84952641633 scopus 로고    scopus 로고
    • Selective targeting of extracellular insulin-degrading enzyme by quasi-irreversible thiol-modifying inhibitors
    • Published online October 16, 2015
    • Abdul-Hay S.O., et al. Selective targeting of extracellular insulin-degrading enzyme by quasi-irreversible thiol-modifying inhibitors. ACS Chem. Biol. 2015, Published online October 16, 2015. 10.1021/acschembio.5b00595.
    • (2015) ACS Chem. Biol.
    • Abdul-Hay, S.O.1
  • 79
    • 71749105343 scopus 로고    scopus 로고
    • Protective role of Cys-178 against the inactivation and oligomerization of human insulin-degrading enzyme by oxidation and nitrosylation
    • Ralat L.A., et al. Protective role of Cys-178 against the inactivation and oligomerization of human insulin-degrading enzyme by oxidation and nitrosylation. J. Biol. Chem. 2009, 284:34005-34018.
    • (2009) J. Biol. Chem. , vol.284 , pp. 34005-34018
    • Ralat, L.A.1
  • 80
    • 27944440133 scopus 로고    scopus 로고
    • Susceptibility of amyloid β peptide degrading enzymes to oxidative damage: a potential Alzheimer's disease spiral
    • Shinall H., et al. Susceptibility of amyloid β peptide degrading enzymes to oxidative damage: a potential Alzheimer's disease spiral. Biochemistry 2005, 44:15345-15350.
    • (2005) Biochemistry , vol.44 , pp. 15345-15350
    • Shinall, H.1
  • 81
    • 84941342094 scopus 로고    scopus 로고
    • An extended polyanion activation surface in insulin degrading enzyme
    • Song E.S., et al. An extended polyanion activation surface in insulin degrading enzyme. PLoS ONE 2015, 10:e0133114.
    • (2015) PLoS ONE , vol.10 , pp. e0133114
    • Song, E.S.1
  • 82
    • 67649197985 scopus 로고    scopus 로고
    • Small-molecule activators of insulin-degrading enzyme discovered through high-throughput compound screening
    • Cabrol C., et al. Small-molecule activators of insulin-degrading enzyme discovered through high-throughput compound screening. PLoS ONE 2009, 4:e5274.
    • (2009) PLoS ONE , vol.4 , pp. e5274
    • Cabrol, C.1
  • 83
    • 84947045239 scopus 로고    scopus 로고
    • Statins induce insulin-degrading enzyme secretion from astrocytes via an autophagy-based unconventional secretory pathway
    • Son S.M., et al. Statins induce insulin-degrading enzyme secretion from astrocytes via an autophagy-based unconventional secretory pathway. Mol. Neurodegener. 2015, 10:56.
    • (2015) Mol. Neurodegener. , vol.10 , pp. 56
    • Son, S.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.