메뉴 건너뛰기




Volumn 12, Issue 1, 2016, Pages 43-60

Protein acetylation in metabolism-metabolites and cofactors

Author keywords

[No Author keywords available]

Indexed keywords

3 HYDROXYBUTYRIC ACID; ACETYL COENZYME A; ACYLTRANSFERASE; BUTYRIC ACID; COENZYME A; LYSINE ACETYLTRANSFERASE; LYSINE DEACETYLASE; MALONYL COENZYME A; NICOTINAMIDE; NICOTINAMIDE ADENINE DINUCLEOTIDE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; UNCLASSIFIED DRUG; ZINC; COENZYME; HISTONE ACETYLTRANSFERASE;

EID: 84949624063     PISSN: 17595029     EISSN: 17595037     Source Type: Journal    
DOI: 10.1038/nrendo.2015.181     Document Type: Review
Times cited : (255)

References (264)
  • 1
    • 84904872156 scopus 로고    scopus 로고
    • The growing landscape of lysine acetylation links metabolism and cell signalling
    • Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E., & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536-550 (2014
    • (2014) Nat. Rev. Mol. Cell Biol , vol.15 , pp. 536-550
    • Choudhary, C.1    Weinert, B.T.2    Nishida, Y.3    Verdin, E.4    Mann, M.5
  • 2
    • 84886717428 scopus 로고    scopus 로고
    • Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes
    • Canto, C., Sauve, A. A., & Bai, P. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol. Aspects Med. 34, 1168-1201 (2013
    • (2013) Mol. Aspects Med , vol.34 , pp. 1168-1201
    • Canto, C.1    Sauve, A.A.2    Bai, P.3
  • 3
    • 4344574540 scopus 로고    scopus 로고
    • Large-scale characterization of HeLa cell nuclear phosphoproteins
    • Beausoleil, S. A., et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl Acad. Sci. USA 101, 12130-12135 (2004
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 12130-12135
    • Beausoleil, S.A.1
  • 4
    • 84910679144 scopus 로고    scopus 로고
    • Proteome-wide post-Translational modification statistics: Frequency analysis and curation of the swiss-prot database
    • Khoury, G. A., Baliban, R. C., & Floudas, C. A. Proteome-wide post-Translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep. 1, 90 (2011
    • (2011) Sci. Rep , vol.1 , pp. 90
    • Khoury, G.A.1    Baliban, R.C.2    Floudas, C.A.3
  • 5
    • 84859490749 scopus 로고    scopus 로고
    • Protein N terminal acetyltransferases: When the start matters
    • Starheim, K. K., Gevaert, K., & Arnesen, T. Protein N terminal acetyltransferases: when the start matters. Trends Biochem. Sci. 37, 152-161 (2012
    • (2012) Trends Biochem. Sci , vol.37 , pp. 152-161
    • Starheim, K.K.1    Gevaert, K.2    Arnesen, T.3
  • 6
    • 34547697009 scopus 로고    scopus 로고
    • Cytoskeleton and cellular signalling in the grip of protein N?-And O acetylation
    • Yang, X. J., & Gr?goire, S. Metabolism, cytoskeleton and cellular signalling in the grip of protein N?-And O acetylation. EMBO Rep. 8, 556-562 (2007
    • (2007) EMBO Rep , vol.8 , pp. 556-562
    • Yang, X.J.1    Metabolism, G.S.2
  • 7
    • 84875755814 scopus 로고    scopus 로고
    • Influence of metabolism on epigenetics and disease
    • Kaelin, W. G., & McKnight, S. L. Influence of metabolism on epigenetics and disease. Cell 153, 56-69 (2013
    • (2013) Cell , vol.153 , pp. 56-69
    • Kaelin, W.G.1    McKnight, S.L.2
  • 9
    • 84888327562 scopus 로고    scopus 로고
    • An acetylation rheostat for the control of muscle energy homeostasis
    • Menzies, K., & Auwerx, J. An acetylation rheostat for the control of muscle energy homeostasis. J. Mol. Endocrinol. 51, T101-T113 (2013
    • (2013) J. Mol. Endocrinol , vol.51 , pp. T101-T113
    • Menzies, K.1    Auwerx, J.2
  • 10
    • 33646145721 scopus 로고    scopus 로고
    • Circadian regulator CLOCK is a histone acetyltransferase
    • Doi, M., Hirayama, J., & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497-508 (2006
    • (2006) Cell , vol.125 , pp. 497-508
    • Doi, M.1    Hirayama, J.2    Sassone-Corsi, P.3
  • 11
    • 0016723918 scopus 로고
    • Processing of newly synthesized histone molecules
    • Ruiz-Carrillo, A., Wangh, L. J., & Allfrey, V. G. Processing of newly synthesized histone molecules. Science 190, 117-128 (1975
    • (1975) Science , vol.190 , pp. 117-128
    • Ruiz-Carrillo, A.1    Wangh, L.J.2    Allfrey, V.G.3
  • 12
    • 57749170458 scopus 로고    scopus 로고
    • The many roles of histone deacetylases in development and physiology: Implications for disease and therapy
    • Haberland, M., Montgomery, R. L., & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32-42 (2009
    • (2009) Nat. Rev. Genet , vol.10 , pp. 32-42
    • Haberland, M.1    Montgomery, R.L.2    Olson, E.N.3
  • 13
    • 0038204415 scopus 로고    scopus 로고
    • The diverse functions of histone acetyltransferase complexes
    • Carrozza, M. J., Utley, R. T., Workman, J. L., & Cote, J. The diverse functions of histone acetyltransferase complexes. Trends Genet. 19, 321-329 (2003
    • (2003) Trends Genet , vol.19 , pp. 321-329
    • Carrozza, M.J.1    Utley, R.T.2    Workman, J.L.3    Cote, J.4
  • 15
    • 84900489549 scopus 로고    scopus 로고
    • Transcriptional repression by histone deacetylases in plants
    • Liu, X., et al. Transcriptional repression by histone deacetylases in plants. Mol. Plant 7, 764-772 (2014
    • (2014) Mol. Plant , vol.7 , pp. 764-772
    • Liu, X.1
  • 16
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai, S., Armstrong, C. M., Kaeberlein, M., & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795-800 (2000
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 17
    • 0034703217 scopus 로고    scopus 로고
    • Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
    • Lin, S. J., Defossez, P. A., & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126-2128 (2000
    • (2000) Science , vol.289 , pp. 2126-2128
    • Lin, S.J.1    Defossez, P.A.2    Guarente, L.3
  • 18
    • 84874594425 scopus 로고    scopus 로고
    • The sirtuin family's role in aging and age-Associated pathologies
    • Hall, J. A., Dominy, J. E., Lee, Y., & Puigserver, P. The sirtuin family's role in aging and age-Associated pathologies. J. Clin. Invest. 123, 973-979 (2013
    • (2013) J. Clin. Invest , vol.123 , pp. 973-979
    • Hall, J.A.1    Dominy, J.E.2    Lee, Y.3    Puigserver, P.4
  • 19
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC 1α
    • Lagouge, M., et al Resveratrol Improves Mitochondrial Function and Protects Against Metabolic Disease by Activating SIRT1 and PGC 1α. Cell 127, 1109-1122 (2006
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1
  • 20
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC 1α and SIRT1
    • Rodgers, J T., et Al. Nutrient Control of Glucose Homeostasis Through A Complex of PGC 1α and SIRT1. Nature 434, 113-118 (2005
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1
  • 21
    • 77249156847 scopus 로고    scopus 로고
    • Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
    • Canto, C., et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213-219 (2010
    • (2010) Cell Metab , vol.11 , pp. 213-219
    • Canto, C.1
  • 22
    • 1342264308 scopus 로고    scopus 로고
    • Mammalian SIRT1 represses forkhead transcription factors
    • Motta, M. C., et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563 (2004
    • (2004) Cell , vol.116 , pp. 551-563
    • Motta, M.C.1
  • 23
    • 34948883324 scopus 로고    scopus 로고
    • SIRT1 deacetylates and positively regulates the nuclear receptor LXR
    • Li, X., et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 28, 91-106 (2007
    • (2007) Mol. Cell , vol.28 , pp. 91-106
    • Li, X.1
  • 24
    • 34547906123 scopus 로고    scopus 로고
    • Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1
    • Rodgers, J. T., & Puigserver, P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl Acad. Sci. USA 104, 12861-12866 (2007
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 12861-12866
    • Rodgers, J.T.1    Puigserver, P.2
  • 25
    • 56249100986 scopus 로고    scopus 로고
    • A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
    • Liu, Y., et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456, 269-273 (2008
    • (2008) Nature , vol.456 , pp. 269-273
    • Liu, Y.1
  • 26
    • 84864615516 scopus 로고    scopus 로고
    • Brown remodeling of white adipose tissue by SirT1 dependent deacetylation of PPARγ
    • Qiang, L., et al. Brown remodeling of white adipose tissue by SirT1 dependent deacetylation of Pparγ. Cell 150, 620-632 (2012
    • (2012) Cell , vol.150 , pp. 620-632
    • Qiang, L.1
  • 27
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows, W. C., Lee, S., & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA 103, 10230-10235 (2006
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 10230-10235
    • Hallows, W.C.1    Lee, S.2    Denu, J.M.3
  • 28
    • 84874925761 scopus 로고    scopus 로고
    • Sirtuin 1 mediated effects of exercise and resveratrol on mitochondrial biogenesis
    • Menzies, K. J., Singh, K., Saleem, A., & Hood, D. A. Sirtuin 1 mediated effects of exercise and resveratrol on mitochondrial biogenesis. J. Biol. Chem. 288, 6968-6979 (2013
    • (2013) J. Biol. Chem , vol.288 , pp. 6968-6979
    • Menzies, K.J.1    Singh, K.2    Saleem, A.3    Hood, D.A.4
  • 29
    • 84860477354 scopus 로고    scopus 로고
    • SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
    • Price, N. L., et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675-690 (2012
    • (2012) Cell Metab , vol.15 , pp. 675-690
    • Price, N.L.1
  • 30
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
    • Canto, C., et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060 (2009
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Canto, C.1
  • 31
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver, P., et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839 (1998
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1
  • 32
    • 0035855858 scopus 로고    scopus 로고
    • Control of hepatic gluconeogenesis through the transcriptional coactivator PGC 1
    • Yoon, J C., et Al. Control of Hepatic Gluconeogenesis Through the Transcriptional Coactivator PGC 1. Nature 413, 131-138 (2001
    • (2001) Nature , vol.413 , pp. 131-138
    • Yoon, J.C.1
  • 33
    • 34247259630 scopus 로고    scopus 로고
    • Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC 1α
    • Gerhart-Hines, Z., et al Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC 1α. EMBO J. 26, 1913-1923 (2007
    • (2007) EMBO J. , vol.26 , pp. 1913-1923
    • Gerhart-Hines, Z.1
  • 34
    • 83455206803 scopus 로고    scopus 로고
    • Targeting sirtuin 1 to improve metabolism: All you need is NAD+
    • Cantó, C., & Auwerx, J. Targeting sirtuin 1 to improve metabolism: all you need is NAD+? Pharmacol. Rev. 64, 166-187 (2012
    • (2012) Pharmacol Rev , vol.64 , pp. 166-187
    • Cantó, C.1    Auwerx, J.2
  • 35
    • 79953210362 scopus 로고    scopus 로고
    • Regulation of PGC 1α, a nodal regulator of mitochondrial biogenesis
    • Fernandez-Marcos, P. J., & Auwerx, J. Regulation of PGC 1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93, 884S-890S (2011
    • (2011) Am. J. Clin. Nutr , vol.93 , pp. 884S-890S
    • Fernandez-Marcos, P.J.1    Auwerx, J.2
  • 36
    • 84871676013 scopus 로고    scopus 로고
    • The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis
    • Dominy, J. E. Jr et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol. Cell 48, 900-913 (2012
    • (2012) Mol. Cell , vol.48 , pp. 900-913
    • Dominy, J.E.1
  • 37
    • 74549142287 scopus 로고    scopus 로고
    • The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α
    • Zhong, L., et al The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140, 280-293 (2010
    • (2010) Cell , vol.140 , pp. 280-293
    • Zhong, L.1
  • 38
    • 84905389924 scopus 로고    scopus 로고
    • Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism
    • Masri, S., et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158, 659-672 (2014
    • (2014) Cell , vol.158 , pp. 659-672
    • Masri, S.1
  • 39
    • 84875881601 scopus 로고    scopus 로고
    • SIRT6 regulates TNF α secretion through hydrolysis of long-chain fatty acyl lysine
    • Jiang, H., et al. SIRT6 regulates TNF α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496, 110-113 (2013
    • (2013) Nature , vol.496 , pp. 110-113
    • Jiang, H.1
  • 40
    • 84886686038 scopus 로고    scopus 로고
    • Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
    • Feldman, J. L., Baeza, J., & Denu, J. M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 288, 31350-31356 (2013
    • (2013) J. Biol. Chem , vol.288 , pp. 31350-31356
    • Feldman, J.L.1    Baeza, J.2    Denu, J.M.3
  • 41
    • 84897484512 scopus 로고    scopus 로고
    • SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway
    • Yoshizawa, T., et al. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metab. 19, 712-721 (2014
    • (2014) Cell Metab , vol.19 , pp. 712-721
    • Yoshizawa, T.1
  • 42
    • 84910145057 scopus 로고    scopus 로고
    • A SIRT7 dependent acetylation switch of GABPβ1 controls mitochondrial function
    • Ryu, D., et al. A SIRT7 dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab. (2014
    • (2014) Cell Metab
    • Ryu, D.1
  • 43
    • 84887613799 scopus 로고    scopus 로고
    • SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease
    • Shin, J., et al. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 5, 654-665 (2013
    • (2013) Cell Rep , vol.5 , pp. 654-665
    • Shin, J.1
  • 44
    • 84925265469 scopus 로고    scopus 로고
    • A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging
    • Mohrin, M., et al. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374-1377 (2015
    • (2015) Science , vol.347 , pp. 1374-1377
    • Mohrin, M.1
  • 45
    • 41449083867 scopus 로고    scopus 로고
    • Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
    • Vakhrusheva, O., et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 102, 703-710 (2008
    • (2008) Circ. Res , vol.102 , pp. 703-710
    • Vakhrusheva, O.1
  • 46
    • 34547397081 scopus 로고    scopus 로고
    • SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation
    • Jing, E., Gesta, S., & Kahn, C. R. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 6, 105-114 (2007
    • (2007) Cell Metab , vol.6 , pp. 105-114
    • Jing, E.1    Gesta, S.2    Kahn, C.R.3
  • 47
    • 84882605310 scopus 로고    scopus 로고
    • Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth
    • Lin, R., et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol. Cell 51, 506-518 (2013
    • (2013) Mol. Cell , vol.51 , pp. 506-518
    • Lin, R.1
  • 48
    • 79959906869 scopus 로고    scopus 로고
    • Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase
    • Jiang, W., et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol. Cell 43, 33-44 (2011
    • (2011) Mol. Cell , vol.43 , pp. 33-44
    • Jiang, W.1
  • 49
    • 84866529842 scopus 로고    scopus 로고
    • SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo
    • Bobrowska, A., Donmez, G., Weiss, A., Guarente, L., & Bates, G. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo. PLoS ONE 7, e34805 (2012
    • (2012) PLoS ONE , vol.7 , pp. e34805
    • Bobrowska, A.1    Donmez, G.2    Weiss, A.3    Guarente, L.4    Bates, G.5
  • 50
    • 80055085172 scopus 로고    scopus 로고
    • Sir two homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par 3/atypical protein kinase C (aPKC) signaling
    • Beirowski, B., et al. Sir two homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par 3/atypical protein kinase C (aPKC) signaling. Proc. Natl Acad. Sci. USA 108, E952-E961 (2011
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. E952-E961
    • Beirowski, B.1
  • 51
    • 84875948762 scopus 로고    scopus 로고
    • Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS
    • Taes, I., et al. Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Hum. Mol. Genet. 22, 1783-1790 (2013
    • (2013) Hum. Mol. Genet , vol.22 , pp. 1783-1790
    • Taes, I.1
  • 52
    • 37549002891 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
    • Lombard, D. B., et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell Biol. 27, 8807-8814 (2007
    • (2007) Mol. Cell Biol , vol.27 , pp. 8807-8814
    • Lombard, D.B.1
  • 53
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-Acid oxidation by reversible enzyme deacetylation
    • Hirschey, M. D., et al. SIRT3 regulates mitochondrial fatty-Acid oxidation by reversible enzyme deacetylation. Nature 464, 121-125 (2010
    • (2010) Nature , vol.464 , pp. 121-125
    • Hirschey, M.D.1
  • 54
    • 78649509214 scopus 로고    scopus 로고
    • SIRT3 deacetylates mitochondrial 3 hydroxy 3 methylglutaryl CoA synthase 2 and regulates ketone body production
    • Shimazu, T., et al. SIRT3 deacetylates mitochondrial 3 hydroxy 3 methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 12, 654-661 (2010
    • (2010) Cell Metab , vol.12 , pp. 654-661
    • Shimazu, T.1
  • 55
    • 78651468722 scopus 로고    scopus 로고
    • Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
    • Someya, S., et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802-812 (2010
    • (2010) Cell , vol.143 , pp. 802-812
    • Someya, S.1
  • 56
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • Ahn, B. H., et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA 105, 14447-14452 (2008
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 14447-14452
    • Ahn, B.H.1
  • 57
    • 80052291180 scopus 로고    scopus 로고
    • Sirtuin 3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
    • Jing, E., et al. Sirtuin 3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl Acad. Sci. USA 108, 14608-14613 (2011
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 14608-14613
    • Jing, E.1
  • 58
    • 84861589885 scopus 로고    scopus 로고
    • Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis
    • Fernandez-Marcos, P. J., et al. Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Sci. Rep. 2, 425 (2012
    • (2012) Sci. Rep , vol.2 , pp. 425
    • Fernandez-Marcos, P.J.1
  • 59
    • 84919933749 scopus 로고    scopus 로고
    • Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity
    • Mathias, R. A., et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159, 1615-1625 (2014
    • (2014) Cell , vol.159 , pp. 1615-1625
    • Mathias, R.A.1
  • 60
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells
    • Haigis, M. C., et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell 126, 941-954 (2006
    • (2006) Cell , vol.126 , pp. 941-954
    • Haigis, M.C.1
  • 61
    • 33748199578 scopus 로고    scopus 로고
    • Insulin secretion: SIRT4 gets in on the act
    • Argmann, C., & Auwerx, J. Insulin secretion: SIRT4 gets in on the act. Cell 126, 837-839 (2006
    • (2006) Cell , vol.126 , pp. 837-839
    • Argmann, C.1    Auwerx, J.2
  • 62
    • 84878891625 scopus 로고    scopus 로고
    • SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
    • Laurent, G., et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 50, 686-698 (2013
    • (2013) Mol. Cell , vol.50 , pp. 686-698
    • Laurent, G.1
  • 63
    • 81055122671 scopus 로고    scopus 로고
    • Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
    • Du, J., et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806-809 (2011
    • (2011) Science , vol.334 , pp. 806-809
    • Du, J.1
  • 64
    • 84880791239 scopus 로고    scopus 로고
    • SIRT5 mediated lysine desuccinylation impacts diverse metabolic pathways
    • Park, J., et al. SIRT5 mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50, 919-930 (2013
    • (2013) Mol. Cell , vol.50 , pp. 919-930
    • Park, J.1
  • 65
    • 84889636259 scopus 로고    scopus 로고
    • SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
    • Rardin, M. J., et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 18, 920-933 (2013
    • (2013) Cell Metab , vol.18 , pp. 920-933
    • Rardin, M.J.1
  • 66
    • 84897565291 scopus 로고    scopus 로고
    • Lysine glutarylation is a protein posttranslational modification regulated by SIRT5
    • Tan, M., et al Lysine Glutarylation Is A Protein Posttranslational Modification Regulated by SIRT5. Cell Metab. 19, 605-617 (2014
    • (2014) Cell Metab , vol.19 , pp. 605-617
    • Tan, M.1
  • 67
    • 84885124677 scopus 로고    scopus 로고
    • Metabolic characterization of a Sirt5 deficient mouse model
    • Yu, J., et al. Metabolic characterization of a Sirt5 deficient mouse model. Sci. Rep. 3, 2806 (2013
    • (2013) Sci. Rep , vol.3 , pp. 2806
    • Yu, J.1
  • 68
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • Nakagawa, T., Lomb, D. J., Haigis, M. C., & Guarente, L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137, 560-570 (2009
    • (2009) Cell , vol.137 , pp. 560-570
    • Nakagawa, T.1    Lomb, D.J.2    Haigis, M.C.3    Guarente, L.4
  • 69
    • 84937522438 scopus 로고    scopus 로고
    • NAD+ metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus
    • Canto, C., Menzies, K. J., & Auwerx, J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31-53 (2015
    • (2015) Cell Metab , vol.22 , pp. 31-53
    • Canto, C.1    Menzies, K.J.2    Auwerx, J.3
  • 70
    • 84871650811 scopus 로고    scopus 로고
    • Metabolic reprogramming by class i and II histone deacetylases
    • Mihaylova, M. M., & Shaw, R. J. Metabolic reprogramming by class I and II histone deacetylases. Trends Endocrinol. Metab. 24, 48-57 (2013
    • (2013) Trends Endocrinol. Metab , vol.24 , pp. 48-57
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 72
    • 84871650811 scopus 로고    scopus 로고
    • Metabolic reprogramming by class i and II histone deacetylases
    • Mihaylova, M. M., & Shaw, R. J. Metabolic reprogramming by class I and II histone deacetylases. Trends Endocrinol. Metab. 24, 48-57 (2013
    • (2013) Trends Endocrinol. Metab , vol.24 , pp. 48-57
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 73
    • 80052992257 scopus 로고    scopus 로고
    • Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle
    • Sun, Z., et al. Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle. J. Biol. Chem. 286, 33301-33309 (2011
    • (2011) J. Biol. Chem , vol.286 , pp. 33301-33309
    • Sun, Z.1
  • 74
    • 0036900873 scopus 로고    scopus 로고
    • The retinoblastoma-histone deacetylase 3 complex inhibits PPARγ and adipocyte differentiation
    • Fajas, L., et al. The retinoblastoma-histone deacetylase 3 complex inhibits PPARγ and adipocyte differentiation. Dev. Cell 3, 903-910 (2002
    • (2002) Dev. Cell , vol.3 , pp. 903-910
    • Fajas, L.1
  • 75
    • 55849084700 scopus 로고    scopus 로고
    • Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice
    • Montgomery, R. L., et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J. Clin. Invest. 118, 3588-3597 (2008
    • (2008) J. Clin. Invest , vol.118 , pp. 3588-3597
    • Montgomery, R.L.1
  • 76
    • 33846940901 scopus 로고    scopus 로고
    • Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2
    • Grégoire, S., et al. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol. Cell. Biol. 27, 1280-1295 (2007
    • (2007) Mol. Cell. Biol , vol.27 , pp. 1280-1295
    • Grégoire, S.1
  • 77
    • 79952529158 scopus 로고    scopus 로고
    • A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
    • Feng, D., et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315-1319 (2011
    • (2011) Science , vol.331 , pp. 1315-1319
    • Feng, D.1
  • 78
    • 84862025421 scopus 로고    scopus 로고
    • Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration
    • Sun, Z., et al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat. Med. 18, 934-942 (2012
    • (2012) Nat. Med , vol.18 , pp. 934-942
    • Sun, Z.1
  • 79
    • 41949120723 scopus 로고    scopus 로고
    • Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks
    • Knutson, S. K., et al. Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J. 27, 1017-1028 (2008
    • (2008) EMBO J. , vol.27 , pp. 1017-1028
    • Knutson, S.K.1
  • 80
    • 0037406061 scopus 로고    scopus 로고
    • Class II histone deacetylases: Versatile regulators
    • Verdin, E., Dequiedt, F., & Kasler, H. G. Class II histone deacetylases: versatile regulators. Trends Genet. 19, 286-293 (2003
    • (2003) Trends Genet , vol.19 , pp. 286-293
    • Verdin, E.1    Dequiedt, F.2    Kasler, H.G.3
  • 81
    • 34848858523 scopus 로고    scopus 로고
    • Histone deacetylase degradation and MEF2 activation promote the formation of slow-Twitch myofibers
    • Potthoff, M. J., et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-Twitch myofibers. J. Clin. Invest. 117, 2459-2467 (2007
    • (2007) J. Clin. Invest , vol.117 , pp. 2459-2467
    • Potthoff, M.J.1
  • 82
    • 81055125669 scopus 로고    scopus 로고
    • NCoR1 is a conserved physiological modulator of muscle mass and oxidative function
    • Yamamoto, H., et al. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147, 827-839 (2011
    • (2011) Cell , vol.147 , pp. 827-839
    • Yamamoto, H.1
  • 83
    • 84945488022 scopus 로고    scopus 로고
    • Phosphorylation of the nuclear receptor co-repressor 1 by protein kinase B (PKB/Akt) switches its co-repressor targets in the liver
    • Jo, Y. S., et al. Phosphorylation of the nuclear receptor co-repressor 1 by protein kinase B (PKB/Akt) switches its co-repressor targets in the liver. Hepatology http://dx.doi.org/10.1002/hep.27907
    • Hepatology
    • Jo, Y.S.1
  • 84
    • 79955815135 scopus 로고    scopus 로고
    • Class IIa histone deacetylases are hormone-Activated regulators of FOXO and mammalian glucose homeostasis
    • Mihaylova, M. M., et al. Class IIa histone deacetylases are hormone-Activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607-621 (2011
    • (2011) Cell , vol.145 , pp. 607-621
    • Mihaylova, M.M.1
  • 85
    • 84856541549 scopus 로고    scopus 로고
    • Histone deacetylase 6 (HDAC6) is an essential modifier of glucocorticoid-induced hepatic gluconeogenesis
    • Winkler, R., et al. Histone deacetylase 6 (HDAC6) is an essential modifier of glucocorticoid-induced hepatic gluconeogenesis. Diabetes 61, 513-523 (2012
    • (2012) Diabetes , vol.61 , pp. 513-523
    • Winkler, R.1
  • 86
    • 79954537130 scopus 로고    scopus 로고
    • Fasting and high-fat diet alter histone deacetylase expression in the medial hypothalamus
    • Funato, H., Oda, S., Yokofujita, J., Igarashi, H., & Kuroda, M. Fasting and high-fat diet alter histone deacetylase expression in the medial hypothalamus. PLoS ONE 6, e18950 (2011
    • (2011) PLoS ONE , vol.6 , pp. e18950
    • Funato, H.1    Oda, S.2    Yokofujita, J.3    Igarashi, H.4    Kuroda, M.5
  • 87
    • 78649321082 scopus 로고    scopus 로고
    • Lysine deacetylases are produced in pancreatic β cells and are differentially regulated by proinflammatory cytokines
    • Lundh, M., et al. Lysine deacetylases are produced in pancreatic β cells and are differentially regulated by proinflammatory cytokines. Diabetologia 53, 2569-2578 (2010
    • (2010) Diabetologia , vol.53 , pp. 2569-2578
    • Lundh, M.1
  • 88
    • 33744534726 scopus 로고    scopus 로고
    • GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC 1α
    • Lerin, C., et al GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC 1α. Cell Metab. 3, 429-438 (2006
    • (2006) Cell Metab , vol.3 , pp. 429-438
    • Lerin, C.1
  • 89
    • 84903521363 scopus 로고    scopus 로고
    • Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression
    • Lee, Y., et al. Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 510, 547-551 (2014
    • (2014) Nature , vol.510 , pp. 547-551
    • Lee, Y.1
  • 90
    • 84859563667 scopus 로고    scopus 로고
    • CITED2 links hormonal signaling to PGC 1α acetylation in the regulation of gluconeogenesis
    • Sakai, M., et al. CITED2 links hormonal signaling to PGC 1α acetylation in the regulation of gluconeogenesis. Nat. Med. 18, 612-617 (2012
    • (2012) Nat. Med , vol.18 , pp. 612-617
    • Sakai, M.1
  • 91
    • 55949084664 scopus 로고    scopus 로고
    • The genetic ablation of SRC 3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC 1α
    • Coste, A., et al. The genetic ablation of SRC 3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC 1α. Proc. Natl Acad. Sci. USA 105, 17187-17192 (2008
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 17187-17192
    • Coste, A.1
  • 92
    • 84919841585 scopus 로고    scopus 로고
    • PCAF improves glucose homeostasis by suppressing the gluconeogenic activity of PGC 1α
    • Sun, C., et al PCAF improves glucose homeostasis by suppressing the gluconeogenic activity of PGC 1α. Cell Rep. 9, 2250-2262 (2014
    • (2014) Cell Rep , vol.9 , pp. 2250-2262
    • Sun, C.1
  • 93
    • 84885080311 scopus 로고    scopus 로고
    • Glucagon regulates gluconeogenesis through KAT2B-And WDR5 mediated epigenetic effects
    • Ravnskjaer, K., et al. Glucagon regulates gluconeogenesis through KAT2B-And WDR5 mediated epigenetic effects. J. Clin. Invest. 123, 4318-4328 (2013
    • (2013) J. Clin. Invest , vol.123 , pp. 4318-4328
    • Ravnskjaer, K.1
  • 94
    • 0033623238 scopus 로고    scopus 로고
    • Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development
    • Xu, W., et al. Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development. Nat. Genet. 26, 229-232 (2000
    • (2000) Nat. Genet , vol.26 , pp. 229-232
    • Xu, W.1
  • 95
    • 57049120143 scopus 로고    scopus 로고
    • Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: Implications for histone acetyltransferase evolution and function
    • Wang, L., Tang, Y., Cole, P. A., & Marmorstein, R. Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr. Opin. Struct. Biol. 18, 741-747 (2008
    • (2008) Curr. Opin. Struct. Biol , vol.18 , pp. 741-747
    • Wang, L.1    Tang, Y.2    Cole, P.A.3    Marmorstein, R.4
  • 96
    • 0036478904 scopus 로고    scopus 로고
    • Increased insulin sensitivity despite lipodystrophy in Crebbp heterozygous mice
    • Yamauchi, T., et al. Increased insulin sensitivity despite lipodystrophy in Crebbp heterozygous mice. Nat. Genet. 30, 221-226 (2002
    • (2002) Nat. Genet , vol.30 , pp. 221-226
    • Yamauchi, T.1
  • 97
    • 0037053361 scopus 로고    scopus 로고
    • Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREB-binding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-Activated receptor γ
    • Takahashi, N., et al. Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREB-binding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-Activated receptor γ. J. Biol. Chem. 277, 16906-16912 (2002
    • (2002) J. Biol. Chem , vol.277 , pp. 16906-16912
    • Takahashi, N.1
  • 98
    • 2942729543 scopus 로고    scopus 로고
    • Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein
    • Zhou, X. Y., et al. Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat. Med. 10, 633-637 (2004
    • (2004) Nat. Med , vol.10 , pp. 633-637
    • Zhou, X.Y.1
  • 99
    • 70350606061 scopus 로고    scopus 로고
    • FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states
    • Kemper, J. K., et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 10, 392-404 (2009
    • (2009) Cell Metab , vol.10 , pp. 392-404
    • Kemper, J.K.1
  • 100
    • 0033583023 scopus 로고    scopus 로고
    • P300 interacts with the N and C terminal part of PPARγ2 in a ligand-independent and-dependent manner, respectively
    • Gelman, L., et al. p300 interacts with the N and C terminal part of PPARγ2 in a ligand-independent and-dependent manner, respectively. J. Biol. Chem. 274, 7681-7688 (1999
    • (1999) J. Biol. Chem , vol.274 , pp. 7681-7688
    • Gelman, L.1
  • 101
    • 79953752384 scopus 로고    scopus 로고
    • PARP 1 inhibition increases mitochondrial metabolism through SIRT1 activation
    • Bai, P., et al. PARP 1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461-468 (2011
    • (2011) Cell Metab , vol.13 , pp. 461-468
    • Bai, P.1
  • 102
    • 84862022077 scopus 로고    scopus 로고
    • The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
    • Canto, C., et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838-847 (2012
    • (2012) Cell Metab , vol.15 , pp. 838-847
    • Canto, C.1
  • 103
    • 2442624618 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1 mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition
    • Alano, C. C., Ying, W., & Swanson, R. A. Poly(ADP-ribose) polymerase 1 mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. J. Biol. Chem. 279, 18895-18902 (2004
    • (2004) J. Biol. Chem , vol.279 , pp. 18895-18902
    • Alano, C.C.1    Ying, W.2    Swanson, R.A.3
  • 104
    • 10944270187 scopus 로고    scopus 로고
    • The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells
    • Revollo, J. R., Grimm, A. A., & Imai, S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 279, 50754-50763 (2004
    • (2004) J. Biol. Chem , vol.279 , pp. 50754-50763
    • Revollo, J.R.1    Grimm, A.A.2    Imai, S.3
  • 105
    • 77953631698 scopus 로고    scopus 로고
    • The secret life of NAD+: An old metabolite controlling new metabolic signaling pathways
    • Houtkooper, R. H., Canto, C., Wanders, R. J., & Auwerx, J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31, 194-223 (2010
    • (2010) Endocr. Rev , vol.31 , pp. 194-223
    • Houtkooper, R.H.1    Canto, C.2    Wanders, R.J.3    Auwerx, J.4
  • 106
    • 84865411082 scopus 로고    scopus 로고
    • The dynamic regulation of NAD metabolism in mitochondria
    • Stein, L. R., & Imai, S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 23, 420-428 (2012
    • (2012) Trends Endocrinol. Metab , vol.23 , pp. 420-428
    • Stein, L.R.1    Imai, S.2
  • 107
    • 0029064219 scopus 로고
    • The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions
    • van Roermund, C. W., Elgersma, Y., Singh, N., Wanders, R. J., & Tabak, H. F. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 14, 3480-3486 (1995
    • (1995) EMBO J. , vol.14 , pp. 3480-3486
    • Van Roermund, C.W.1    Elgersma, Y.2    Singh, N.3    Wanders, R.J.4    Tabak, H.F.5
  • 108
    • 0029737904 scopus 로고    scopus 로고
    • Rat liver mitochondria can synthesize nicotinamide adenine dinucleotide from nicotinamide mononucleotide and ATP via a putative matrix nicotinamide mononucleotide adenylyltransferase
    • Barile, M., Passarella, S., Danese, G., & Quagliariello, E. Rat liver mitochondria can synthesize nicotinamide adenine dinucleotide from nicotinamide mononucleotide and ATP via a putative matrix nicotinamide mononucleotide adenylyltransferase. Biochem. Mol. Biol. Int. 38, 297-306 (1996
    • (1996) Biochem. Mol. Biol. Int , vol.38 , pp. 297-306
    • Barile, M.1    Passarella, S.2    Danese, G.3    Quagliariello, E.4
  • 109
    • 27744501798 scopus 로고    scopus 로고
    • Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms
    • Berger, F., Lau, C., Dahlmann, M., & Ziegler, M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 280, 36334-36341 (2005
    • (2005) J. Biol. Chem , vol.280 , pp. 36334-36341
    • Berger, F.1    Lau, C.2    Dahlmann, M.3    Ziegler, M.4
  • 110
    • 34548627517 scopus 로고    scopus 로고
    • Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival
    • Yang, H., et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095-1107 (2007
    • (2007) Cell , vol.130 , pp. 1095-1107
    • Yang, H.1
  • 111
    • 84859506559 scopus 로고    scopus 로고
    • Regulation of poly(ADP-ribose) polymerase 1 dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase
    • Zhang, T., et al. Regulation of poly(ADP-ribose) polymerase 1 dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase. J. Biol. Chem. 287, 12405-12416 (2012
    • (2012) J. Biol. Chem , vol.287 , pp. 12405-12416
    • Zhang, T.1
  • 112
    • 0035951823 scopus 로고    scopus 로고
    • Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart
    • Di Lisa, F., Menabo, R., Canton, M., Barile, M., & Bernardi, P. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J. Biol. Chem. 276, 2571-2575 (2001
    • (2001) J. Biol. Chem , vol.276 , pp. 2571-2575
    • Di Lisa, F.1    Menabo, R.2    Canton, M.3    Barile, M.4    Bernardi, P.5
  • 113
    • 77958569431 scopus 로고    scopus 로고
    • Inhibition of nicotinamide phosphoribosyltransferase: Cellular bioenergetics reveals a mitochondrial insensitive NAD pool
    • Pittelli, M., et al. Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J. Biol. Chem. 285, 34106-34114 (2010
    • (2010) J. Biol. Chem , vol.285 , pp. 34106-34114
    • Pittelli, M.1
  • 114
    • 35848932089 scopus 로고    scopus 로고
    • Differences among cell types in NAD+ compartmentalization: A comparison of neurons, astrocytes, and cardiac myocytes
    • Alano, C. C., et al. Differences among cell types in NAD+ compartmentalization: a comparison of neurons, astrocytes, and cardiac myocytes. J. Neurosci. Res. 85, 3378-3385 (2007
    • (2007) J. Neurosci. Res , vol.85 , pp. 3378-3385
    • Alano, C.C.1
  • 115
    • 0017747012 scopus 로고
    • Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats
    • Tischler, M. E., Friedrichs, D., Coll., K., & Williamson, J. R. Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats. Arch. Biochem. Biophys. 184, 222-236 (1977
    • (1977) Arch. Biochem. Biophys , vol.184 , pp. 222-236
    • Tischler, M.E.1    Friedrichs, D.2    Coll, K.3    Williamson, J.R.4
  • 116
    • 81555203042 scopus 로고    scopus 로고
    • Pharmacological effects of exogenous NAD on mitochondrial bioenergetics DNA repair, and apoptosis
    • Pittelli, M., et al. Pharmacological effects of exogenous NAD on mitochondrial bioenergetics, DNA repair, and apoptosis. Mol. Pharmacol. 80, 1136-1146 (2011
    • (2011) Mol. Pharmacol , vol.80 , pp. 1136-1146
    • Pittelli, M.1
  • 117
    • 50949120914 scopus 로고    scopus 로고
    • Nicotinic acid, nicotinamide, and nicotinamide riboside: A molecular evaluation of NAD+ precursor vitamins in human nutrition
    • Bogan, K. L., & Brenner, C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr. 28, 115-130 (2008
    • (2008) Annu. Rev. Nutr , vol.28 , pp. 115-130
    • Bogan, K.L.1    Brenner, C.2
  • 118
    • 0037829279 scopus 로고    scopus 로고
    • Reconstructing eukaryotic NAD metabolism
    • Rongvaux, A., Andris, F., Van Gool, F., & Leo, O. Reconstructing eukaryotic NAD metabolism. Bioessays 25, 683-690 (2003
    • (2003) Bioessays , vol.25 , pp. 683-690
    • Rongvaux, A.1    Andris, F.2    Van Gool, F.3    Leo, O.4
  • 119
    • 84886398685 scopus 로고    scopus 로고
    • Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection
    • Chi, Y., & Sauve, A. A. Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection. Curr. Opin. Clin. Nutr. Metab. Care 16, 657-661 (2013
    • (2013) Curr. Opin. Clin. Nutr. Metab. Care , vol.16 , pp. 657-661
    • Chi, Y.1    Sauve, A.A.2
  • 120
    • 0020677595 scopus 로고
    • Biochemistry of tryptophan in health and disease
    • Bender, D. A. Biochemistry of tryptophan in health and disease. Mol. Aspects Med. 6, 101-197 (1983
    • (1983) Mol. Aspects Med , vol.6 , pp. 101-197
    • Bender, D.A.1
  • 121
    • 0036856578 scopus 로고    scopus 로고
    • Pre B cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis
    • Rongvaux, A., et al. Pre B cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur. J. Immunol. 32, 3225-3234 (2002
    • (2002) Eur. J. Immunol , vol.32 , pp. 3225-3234
    • Rongvaux, A.1
  • 122
    • 0035808313 scopus 로고    scopus 로고
    • Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and enzymatic properties of human NMN adenylyltransferase
    • Emanuelli, M., et al. Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and enzymatic properties of human NMN adenylyltransferase. J. Biol. Chem. 276, 406-412 (2001
    • (2001) J. Biol. Chem , vol.276 , pp. 406-412
    • Emanuelli, M.1
  • 123
    • 0942279500 scopus 로고    scopus 로고
    • Characterization of human brain nicotinamide 5'-mononucleotide adenylyltransferase 2 and expression in human pancreas
    • Yalowitz, J. A., et al. Characterization of human brain nicotinamide 5'-mononucleotide adenylyltransferase 2 and expression in human pancreas. Biochem. J. 377, 317-326 (2004
    • (2004) Biochem. J. , vol.377 , pp. 317-326
    • Yalowitz, J.A.1
  • 124
    • 0038644836 scopus 로고    scopus 로고
    • Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis
    • Zhang, X., et al. Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. J. Biol. Chem. 278, 13503-13511 (2003
    • (2003) J. Biol. Chem , vol.278 , pp. 13503-13511
    • Zhang, X.1
  • 125
    • 35549002189 scopus 로고    scopus 로고
    • Nampt/PBEF/Visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme
    • Revollo, J. R., et al. Nampt/PBEF/Visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6, 363-375 (2007
    • (2007) Cell Metab , vol.6 , pp. 363-375
    • Revollo, J.R.1
  • 126
    • 43049121395 scopus 로고    scopus 로고
    • Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
    • Fulco, M., et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 14, 661-673 (2008
    • (2008) Dev. Cell , vol.14 , pp. 661-673
    • Fulco, M.1
  • 127
    • 34249696938 scopus 로고    scopus 로고
    • Extension of human cell lifespan by nicotinamide phosphoribosyltransferase
    • van der Veer, E., et al. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J. Biol. Chem. 282, 10841-10845 (2007
    • (2007) J. Biol. Chem , vol.282 , pp. 10841-10845
    • Van Der Veer, E.1
  • 128
    • 58149316660 scopus 로고    scopus 로고
    • Nicotinamide phosphoribosyl transferase/pre B cell colony-enhancing factor/visfatin is required for lymphocyte development and cellular resistance to genotoxic stress
    • Rongvaux, A., et al. Nicotinamide phosphoribosyl transferase/pre B cell colony-enhancing factor/visfatin is required for lymphocyte development and cellular resistance to genotoxic stress. J. Immunol. 181, 4685-4695 (2008
    • (2008) J. Immunol , vol.181 , pp. 4685-4695
    • Rongvaux, A.1
  • 129
    • 67650550813 scopus 로고    scopus 로고
    • Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae
    • Lu, S. P., Kato, M., & Lin, S. J. Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae. J. Biol. Chem. 284, 17110-17119 (2009
    • (2009) J. Biol. Chem , vol.284 , pp. 17110-17119
    • Lu, S.P.1    Kato, M.2    Lin, S.J.3
  • 130
    • 79957549799 scopus 로고    scopus 로고
    • Pathways and subcellular compartmentation of NAD biosynthesis in human cells: From entry of extracellular precursors to mitochondrial NAD generation
    • Nikiforov, A., Dolle, C., Niere, M., & Ziegler, M. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J. Biol. Chem. 286, 21767-21778 (2011
    • (2011) J. Biol. Chem , vol.286 , pp. 21767-21778
    • Nikiforov, A.1    Dolle, C.2    Niere, M.3    Ziegler, M.4
  • 131
    • 34247502715 scopus 로고    scopus 로고
    • Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+
    • Belenky, P., et al Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 129, 473-484 (2007
    • (2007) Cell , vol.129 , pp. 473-484
    • Belenky, P.1
  • 132
    • 2342550554 scopus 로고    scopus 로고
    • Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans
    • Bieganowski, P., & Brenner, C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell 117, 495-502 (2004
    • (2004) Cell , vol.117 , pp. 495-502
    • Bieganowski, P.1    Brenner, C.2
  • 133
    • 84880517634 scopus 로고    scopus 로고
    • The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
    • Mouchiroud, L., et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430-441 (2013
    • (2013) Cell , vol.154 , pp. 430-441
    • Mouchiroud, L.1
  • 134
    • 33748174151 scopus 로고    scopus 로고
    • Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy
    • Sasaki, Y., Araki, T., & Milbrandt, J. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J. Neurosci. 26, 8484-8491 (2006
    • (2006) J. Neurosci , vol.26 , pp. 8484-8491
    • Sasaki, Y.1    Araki, T.2    Milbrandt, J.3
  • 135
    • 84901848955 scopus 로고    scopus 로고
    • Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3
    • Khan, N. A., et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol. Med. 6, 721-731 (2014
    • (2014) EMBO Mol. Med , vol.6 , pp. 721-731
    • Khan, N.A.1
  • 136
    • 84902245774 scopus 로고    scopus 로고
    • NAD+-dependent activation of sirt1 corrects the phenotype in a mouse model of mitochondrial disease
    • Cerutti, R., et al. NAD+-dependent activation of sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 19, 1042-1049 (2014
    • (2014) Cell Metab , vol.19 , pp. 1042-1049
    • Cerutti, R.1
  • 137
    • 0021333746 scopus 로고
    • Poly (ADP-Ribose) synthetase Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain
    • Kameshita, I., Matsuda, Z., Taniguchi, T., & Shizuta, Y. Poly (ADP-Ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain. J. Biol. Chem. 259, 4770-4776 (1984
    • (1984) J. Biol. Chem , vol.259 , pp. 4770-4776
    • Kameshita, I.1    Matsuda, Z.2    Taniguchi, T.3    Shizuta, Y.4
  • 138
    • 78649901987 scopus 로고    scopus 로고
    • Identification of the aryl hydrocarbon receptor target gene TiPARP as a mediator of suppression of hepatic gluconeogenesis by 2 3 7, 8 tetrachlorodibenzo p-dioxin and of nicotinamide as a corrective agent for this effect
    • Diani-Moore, S., et al. Identification of the aryl hydrocarbon receptor target gene TiPARP as a mediator of suppression of hepatic gluconeogenesis by 2, 3, 7, 8 tetrachlorodibenzo p-dioxin and of nicotinamide as a corrective agent for this effect. J. Biol. Chem. 285, 38801-38810 (2010
    • (2010) J. Biol. Chem , vol.285 , pp. 38801-38810
    • Diani-Moore, S.1
  • 139
    • 33644755929 scopus 로고    scopus 로고
    • Generation and characterization of telomere length maintenance in tankyrase 2 deficient mice
    • Chiang, Y. J., et al. Generation and characterization of telomere length maintenance in tankyrase 2 deficient mice. Mol. Cell. Biol. 26, 2037-2043 (2006
    • (2006) Mol. Cell. Biol , vol.26 , pp. 2037-2043
    • Chiang, Y.J.1
  • 140
    • 77956627087 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
    • Asher, G., et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142, 943-953 (2010
    • (2010) Cell , vol.142 , pp. 943-953
    • Asher, G.1
  • 141
    • 50349083286 scopus 로고    scopus 로고
    • Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology
    • Malavasi, F., et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev. 88, 841-886 (2008
    • (2008) Physiol. Rev , vol.88 , pp. 841-886
    • Malavasi, F.1
  • 142
    • 84902270555 scopus 로고    scopus 로고
    • PharmacologicaliInhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle
    • Pirinen, E., et al. PharmacologicaliInhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 19, 1034-1041 (2014
    • (2014) Cell Metab , vol.19 , pp. 1034-1041
    • Pirinen, E.1
  • 143
    • 36049038217 scopus 로고    scopus 로고
    • The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity
    • Barbosa, M. T., et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J. 21, 3629-3639 (2007
    • (2007) FASEB J. , vol.21 , pp. 3629-3639
    • Barbosa, M.T.1
  • 144
    • 33748309231 scopus 로고    scopus 로고
    • Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38
    • Aksoy, P., et al. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. Biochem. Biophys. Res. Commun. 349, 353-359 (2006
    • (2006) Biochem. Biophys. Res. Commun , vol.349 , pp. 353-359
    • Aksoy, P.1
  • 145
    • 33744509311 scopus 로고    scopus 로고
    • Regulation of intracellular levels of NAD: A novel role for CD38
    • Aksoy, P., White, T. A., Thompson, M., & Chini, E. N. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem. Biophys. Res. Comm. 345, 1386-1392 (2006
    • (2006) Biochem. Biophys. Res. Comm , vol.345 , pp. 1386-1392
    • Aksoy, P.1    White, T.A.2    Thompson, M.3    Chini, E.N.4
  • 146
    • 84941124962 scopus 로고    scopus 로고
    • ARTD1 induced poly ADP ribose formation enhances PPARγ ligand binding and co-factor exchange
    • Lehmann, M., et al. ARTD1 induced poly ADP ribose formation enhances PPARγ ligand binding and co-factor exchange. Nucleic Acids Res. 43, 129-142 (2015
    • (2015) Nucleic Acids Res , vol.43 , pp. 129-142
    • Lehmann, M.1
  • 147
    • 46249100836 scopus 로고    scopus 로고
    • Tissue-specific regulation of SIRT1 by calorie restriction
    • Chen, D., et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 22, 1753-1757 (2008
    • (2008) Genes Dev , vol.22 , pp. 1753-1757
    • Chen, D.1
  • 148
    • 73649133942 scopus 로고    scopus 로고
    • Skeletal muscle NAMPT is induced by exercise in humans
    • Costford, S. R., et al. Skeletal muscle NAMPT is induced by exercise in humans. Am. J. Physiol. Endocrinol. Metab. 298, E117-E126 (2010
    • (2010) Am. J. Physiol. Endocrinol. Metab , vol.298 , pp. E117-E126
    • Costford, S.R.1
  • 149
    • 0014082605 scopus 로고
    • The redox state of free nicotinamide-Adenine dinucleotide in the cytoplasm and mitochondria of rat liver
    • Williamson, D. H., Lund, P., & Krebs, H. A. The redox state of free nicotinamide-Adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103, 514-527 (1967
    • (1967) Biochem. J. , vol.103 , pp. 514-527
    • Williamson, D.H.1    Lund, P.2    Krebs, H.A.3
  • 150
    • 79953280488 scopus 로고    scopus 로고
    • Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis
    • Agrimi, G., et al. Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis. Appl. Environ. Microbiol. 77, 2239-2246 (2011
    • (2011) Appl. Environ. Microbiol , vol.77 , pp. 2239-2246
    • Agrimi, G.1
  • 151
    • 84872334045 scopus 로고    scopus 로고
    • Metabolism and the circadian clock converge
    • Eckel-Mahan, K., & Sassone-Corsi, P. Metabolism and the circadian clock converge. Physiol. Rev. 93, 107-135 (2013
    • (2013) Physiol. Rev , vol.93 , pp. 107-135
    • Eckel-Mahan, K.1    Sassone-Corsi, P.2
  • 152
    • 47549088250 scopus 로고    scopus 로고
    • The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • Nakahata, Y., et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329-340 (2008
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1
  • 153
    • 65549103855 scopus 로고    scopus 로고
    • Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
    • Ramsey, K. M., et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324, 651-654 (2009
    • (2009) Science , vol.324 , pp. 651-654
    • Ramsey, K.M.1
  • 154
    • 84878562488 scopus 로고    scopus 로고
    • Endurance training ameliorates the metabolic and performance characteristics of circadian Clock mutant mice
    • Pastore, S., & Hood, D. A. Endurance training ameliorates the metabolic and performance characteristics of circadian Clock mutant mice. J. Appl. Physiol. (1985) 114, 1076-1084 (2013
    • (2013) J. Appl. Physiol 1985) , vol.114 , pp. 1076-1084
    • Pastore, S.1    Hood, D.A.2
  • 156
    • 84884248040 scopus 로고    scopus 로고
    • Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
    • Peek, C. B., et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342, 1243417 (2013
    • (2013) Science , vol.342 , pp. 1243417
    • Peek, C.B.1
  • 157
    • 84879391795 scopus 로고    scopus 로고
    • SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging
    • Chang, H. C., & Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448-1460 (2013
    • (2013) Cell , vol.153 , pp. 1448-1460
    • Chang, H.C.1    Guarente, L.2
  • 158
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher, G., et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317-328 (2008
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1
  • 159
    • 0037160097 scopus 로고    scopus 로고
    • Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
    • Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M., & Sinclair, D. A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277, 45099-45107 (2002
    • (2002) J. Biol. Chem , vol.277 , pp. 45099-45107
    • Bitterman, K.J.1    Anderson, R.M.2    Cohen, H.Y.3    Latorre-Esteves, M.4    Sinclair, D.A.5
  • 160
    • 3343024449 scopus 로고    scopus 로고
    • Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases
    • Borra, M. T., Langer, M. R., Slama, J. T., & Denu, J. M. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases. Biochemistry 43, 9877-9887 (2004
    • (2004) Biochemistry , vol.43 , pp. 9877-9887
    • Borra, M.T.1    Langer, M.R.2    Slama, J.T.3    Denu, J.M.4
  • 161
    • 0038329323 scopus 로고    scopus 로고
    • Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae
    • Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O., & Sinclair, D. A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181-185 (2003
    • (2003) Nature , vol.423 , pp. 181-185
    • Anderson, R.M.1    Bitterman, K.J.2    Wood, J.G.3    Medvedik, O.4    Sinclair, D.A.5
  • 162
    • 33746824192 scopus 로고    scopus 로고
    • Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction
    • Qin, W., et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J. Biol. Chem. 281, 21745-21754 (2006
    • (2006) J. Biol. Chem , vol.281 , pp. 21745-21754
    • Qin, W.1
  • 163
    • 84889594248 scopus 로고    scopus 로고
    • Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes
    • Yang, S. J., et al. Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J. Nutr. Biochem. 25, 66-72 (2014
    • (2014) J. Nutr. Biochem , vol.25 , pp. 66-72
    • Yang, S.J.1
  • 164
    • 0020505507 scopus 로고
    • Metabolic effects of nicotinamide administration in rats
    • Kang-Lee, Y. A., et al. Metabolic effects of nicotinamide administration in rats. J. Nutr. 113, 215-221 (1983
    • (1983) J. Nutr , vol.113 , pp. 215-221
    • Kang-Lee, Y.A.1
  • 165
    • 80051970600 scopus 로고    scopus 로고
    • Metabolic regulation of protein N α acetylation by Bcl-xL promotes cell survival
    • Yi, C. H., et al. Metabolic regulation of protein N α acetylation by Bcl-xL promotes cell survival. Cell 146, 607-620 (2011
    • (2011) Cell , vol.146 , pp. 607-620
    • Yi, C.H.1
  • 166
    • 33745557847 scopus 로고    scopus 로고
    • Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription
    • Takahashi, H., McCaffery, J. M., Irizarry, R. A., & Boeke, J. D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol. Cell 23, 207-217 (2006
    • (2006) Mol. Cell , vol.23 , pp. 207-217
    • Takahashi, H.1    McCaffery, J.M.2    Irizarry, R.A.3    Boeke, J.D.4
  • 167
    • 67651183861 scopus 로고    scopus 로고
    • A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA
    • Friis, R. M., et al. A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res. 37, 3969-3980 (2009
    • (2009) Nucleic Acids Res , vol.37 , pp. 3969-3980
    • Friis, R.M.1
  • 168
    • 66249105703 scopus 로고    scopus 로고
    • ATP-citrate lyase links cellular metabolism to histone acetylation
    • Wellen, K. E., et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076-1080 (2009
    • (2009) Science , vol.324 , pp. 1076-1080
    • Wellen, K.E.1
  • 169
    • 79955960768 scopus 로고    scopus 로고
    • Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes
    • Cai, L., Sutter, B. M., Li, B., & Tu, B. P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426-437 (2011
    • (2011) Mol. Cell , vol.42 , pp. 426-437
    • Cai, L.1    Sutter, B.M.2    Li, B.3    Tu, B.P.4
  • 170
    • 84891711763 scopus 로고    scopus 로고
    • The yeast AMPK homolog SNF1 regulates acetyl coenzyme A homeostasis and histone acetylation
    • Zhang, M., Galdieri, L., & Vancura, A. The yeast AMPK homolog SNF1 regulates acetyl coenzyme A homeostasis and histone acetylation. Mol. Cell Biol. 33, 4701-4717 (2013
    • (2013) Mol. Cell Biol , vol.33 , pp. 4701-4717
    • Zhang, M.1    Galdieri, L.2    Vancura, A.3
  • 171
    • 84885155285 scopus 로고    scopus 로고
    • Widespread and enzyme-independent N?-Acetylation and N?-succinylation of proteins in the chemical conditions of the mitochondrial matrix
    • Wagner, G. R., & Payne, R. M. Widespread and enzyme-independent N?-Acetylation and N?-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288, 29036-29045 (2013
    • (2013) J. Biol. Chem , vol.288 , pp. 29036-29045
    • Wagner, G.R.1    Payne, R.M.2
  • 172
    • 84898012537 scopus 로고    scopus 로고
    • Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae
    • Weinert, B. T., et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol. Syst. Biol. 10, 716 (2014
    • (2014) Mol. Syst. Biol , vol.10 , pp. 716
    • Weinert, B.T.1
  • 173
    • 0014937061 scopus 로고
    • Nonenzymatic acetylation of histones with acetyl-CoA
    • Paik, W. K., Pearson, D., Lee, H. W., & Kim, S. Nonenzymatic acetylation of histones with acetyl-CoA. Biochim. Biophys. Acta 213, 513-522 (1970
    • (1970) Biochim. Biophys. Acta , vol.213 , pp. 513-522
    • Paik, W.K.1    Pearson, D.2    Lee, H.W.3    Kim, S.4
  • 174
    • 0033603555 scopus 로고    scopus 로고
    • Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator
    • Tanner, K. G., et al. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J. Biol. Chem. 274, 18157-18160 (1999
    • (1999) J. Biol. Chem , vol.274 , pp. 18157-18160
    • Tanner, K.G.1
  • 175
    • 0033178866 scopus 로고    scopus 로고
    • Getting across the nuclear pore complex
    • Talcott, B., & Moore, M. S. Getting across the nuclear pore complex. Trends Cell Biol. 9, 312-318 (1999
    • (1999) Trends Cell Biol , vol.9 , pp. 312-318
    • Talcott, B.1    Moore, M.S.2
  • 176
    • 79851490558 scopus 로고    scopus 로고
    • The nuclear pore complex and nuclear transport
    • Wente, S. R., & Rout, M. P. The nuclear pore complex and nuclear transport. Cold Spring Harb. Perspect. Biol. 2, a000562 (2010
    • (2010) Cold Spring Harb. Perspect. Biol , vol.2 , pp. a000562
    • Wente, S.R.1    Rout, M.P.2
  • 177
    • 82455212901 scopus 로고    scopus 로고
    • SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
    • Hirschey, M. D., et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44, 177-190 (2011
    • (2011) Mol. Cell , vol.44 , pp. 177-190
    • Hirschey, M.D.1
  • 178
    • 73949123433 scopus 로고    scopus 로고
    • Calorie restriction alters mitochondrial protein acetylation
    • Schwer, B., et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 8, 604-606 (2009
    • (2009) Aging Cell , vol.8 , pp. 604-606
    • Schwer, B.1
  • 179
    • 84872276165 scopus 로고    scopus 로고
    • Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
    • Hebert, A. S., et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 49, 186-199 (2013
    • (2013) Mol. Cell , vol.49 , pp. 186-199
    • Hebert, A.S.1
  • 180
    • 84902331962 scopus 로고    scopus 로고
    • Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation
    • Pougovkina, O., et al. Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum. Mol. Genet. 23, 3513-3522 (2014
    • (2014) Hum. Mol. Genet , vol.23 , pp. 3513-3522
    • Pougovkina, O.1
  • 181
    • 0027062806 scopus 로고
    • Cloning and disruption of a gene required for growth on acetate but not on ethanol: The acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae
    • De Virgilio, C., et al. Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. Yeast 8, 1043-1051 (1992
    • (1992) Yeast , vol.8 , pp. 1043-1051
    • De Virgilio, C.1
  • 182
    • 0037087575 scopus 로고    scopus 로고
    • Subcellular localization of the yeast proteome
    • Kumar, A., et al. Subcellular localization of the yeast proteome. Genes Dev. 16, 707-719 (2002
    • (2002) Genes Dev , vol.16 , pp. 707-719
    • Kumar, A.1
  • 183
    • 0142184341 scopus 로고    scopus 로고
    • Global analysis of protein localization in budding yeast
    • Huh, W. K., et al. Global analysis of protein localization in budding yeast. Nature 425, 686-691 (2003
    • (2003) Nature , vol.425 , pp. 686-691
    • Huh, W.K.1
  • 184
    • 0029802611 scopus 로고    scopus 로고
    • The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation
    • van den Berg, M. A., et al. The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J. Biol. Chem. 271, 28953-28959 (1996
    • (1996) J. Biol. Chem , vol.271 , pp. 28953-28959
    • Van Den Berg, M.A.1
  • 185
    • 0029118779 scopus 로고
    • Carbon source-dependent regulation of the acetyl-coenzyme A synthetase-encoding gene ACS1 from Saccharomyces cerevisiae
    • Kratzer, S., & Schuller, H. J. Carbon source-dependent regulation of the acetyl-coenzyme A synthetase-encoding gene ACS1 from Saccharomyces cerevisiae. Gene 161, 75-79 (1995
    • (1995) Gene , vol.161 , pp. 75-79
    • Kratzer, S.1    Schuller, H.J.2
  • 186
    • 14544292885 scopus 로고    scopus 로고
    • YPL.db2: The yeast protein localization database, version 2.0
    • Kals, M., Natter, K., Thallinger, G G., Trajanoski, Z., & Kohlwein, S. D. YPL.db2: the Yeast Protein Localization database, version 2.0. Yeast 22, 213-218 (2005
    • (2005) Yeast , vol.22 , pp. 213-218
    • Kals, M.1    Natter, K.2    Thallinger, G.G.3    Trajanoski, Z.4    Kohlwein, S.D.5
  • 187
    • 0035815751 scopus 로고    scopus 로고
    • Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate
    • Fujino, T., Kondo, J., Ishikawa, M., Morikawa, K., & Yamamoto, T. T. Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J. Biol. Chem. 276, 11420-11426 (2001
    • (2001) J. Biol. Chem , vol.276 , pp. 11420-11426
    • Fujino, T.1    Kondo, J.2    Ishikawa, M.3    Morikawa, K.4    Yamamoto, T.T.5
  • 188
    • 0034714382 scopus 로고    scopus 로고
    • Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins
    • Luong, A., Hannah, V. C., Brown, M. S., & Goldstein, J. L. Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J. Biol. Chem. 275, 26458-26466 (2000
    • (2000) J. Biol. Chem , Issue.275 , pp. 26458-26466
    • Luong, A.1    Hannah, V.C.2    Brown, M.S.3    Goldstein, J.L.4
  • 189
    • 77953233003 scopus 로고    scopus 로고
    • Nuclear-cytoplasmic localization of acetyl coenzyme a synthetase 1 in the rat brain
    • Ariyannur, P. S., et al. Nuclear-cytoplasmic localization of acetyl coenzyme a synthetase 1 in the rat brain. J. Comp. Neurol. 518, 2952-2977 (2010
    • (2010) J. Comp. Neurol , vol.518 , pp. 2952-2977
    • Ariyannur, P.S.1
  • 190
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S., & Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl Acad. Sci. USA 103, 10224-10229 (2006
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 10224-10229
    • Schwer, B.1    Bunkenborg, J.2    Verdin, R.O.3    Andersen, J.S.4    Verdin, E.5
  • 191
    • 0037297590 scopus 로고    scopus 로고
    • Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae
    • Starai, V. J., Takahashi, H., Boeke, J. D., & Escalante-Semerena, J. C. Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. Genetics 163, 545-555 (2003
    • (2003) Genetics , vol.163 , pp. 545-555
    • Starai, V.J.1    Takahashi, H.2    Boeke, J.D.3    Escalante-Semerena, J.C.4
  • 192
    • 0027473532 scopus 로고
    • Molecular biology of carrier proteins
    • Kaplan, J. H. Molecular biology of carrier proteins. Cell 72, 13-18 (1993
    • (1993) Cell , vol.72 , pp. 13-18
    • Kaplan, J.H.1
  • 193
    • 84905816638 scopus 로고    scopus 로고
    • Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation
    • Lee, J. V., et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306-319 (2014
    • (2014) Cell Metab , vol.20 , pp. 306-319
    • Lee, J.V.1
  • 195
    • 84919936304 scopus 로고    scopus 로고
    • Acetate dependence of tumors
    • Comerford, S. A., et al. Acetate dependence of tumors. Cell 159, 1591-1602 (2014
    • (2014) Cell , vol.159 , pp. 1591-1602
    • Comerford, S.A.1
  • 196
    • 84919903877 scopus 로고    scopus 로고
    • Acetate is a bioenergetic substrate for human glioblastoma and brain metastases
    • Mashimo, T., et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603-1614 (2014
    • (2014) Cell , vol.159 , pp. 1603-1614
    • Mashimo, T.1
  • 197
    • 0034283589 scopus 로고    scopus 로고
    • Characterization of rat liver malonyl-CoA decarboxylase and the study of its role in regulating fatty acid metabolism
    • Dyck, J. R., et al. Characterization of rat liver malonyl-CoA decarboxylase and the study of its role in regulating fatty acid metabolism. Biochem. J. 350, 599-608 (2000
    • (2000) Biochem. J. , vol.350 , pp. 599-608
    • Dyck, J.R.1
  • 198
    • 0033609919 scopus 로고    scopus 로고
    • MCD encodes peroxisomal and cytoplasmic forms of malonyl-CoA decarboxylase and is mutated in malonyl-CoA decarboxylase deficiency
    • Sacksteder, K. A., Morrell, J. C., Wanders, R. J., Matalon, R., & Gould, S. J. MCD encodes peroxisomal and cytoplasmic forms of malonyl-CoA decarboxylase and is mutated in malonyl-CoA decarboxylase deficiency. J. Biol. Chem. 274, 24461-24468 (1999
    • (1999) J. Biol. Chem , vol.274 , pp. 24461-24468
    • Sacksteder, K.A.1    Morrell, J.C.2    Wanders, R.J.3    Matalon, R.4    Gould, S.J.5
  • 199
    • 0033563243 scopus 로고    scopus 로고
    • Cloning and expression of rat pancreatic β-cell malonyl-CoA decarboxylase
    • Voilley, N., et al. Cloning and expression of rat pancreatic β-cell malonyl-CoA decarboxylase. Biochem. J. 340, 213-217 (1999
    • (1999) Biochem. J. , vol.340 , pp. 213-217
    • Voilley, N.1
  • 200
    • 0035008901 scopus 로고    scopus 로고
    • Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids
    • Young, M. E., et al. Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids. Am. J. Physiol. Endocrinol. Metab. 280, E471-E479 (2001
    • (2001) Am. J. Physiol. Endocrinol. Metab , vol.280 , pp. E471-E479
    • Young, M.E.1
  • 201
    • 0034010557 scopus 로고    scopus 로고
    • Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart
    • Sakamoto, J., Barr, R. L., Kavanagh, K. M., & Lopaschuk, G. D. Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart. Am. J. Physiol. Heart Circ. Physiol. 278, H1196-H1204(2000
    • (2000) Am. J. Physiol. Heart Circ. Physiol , vol.278 , pp. H1196-H1204
    • Sakamoto, J.1    Barr, R.L.2    Kavanagh, K.M.3    Lopaschuk, G.D.4
  • 202
    • 0033855904 scopus 로고    scopus 로고
    • Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle
    • Dean, D., et al. Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle. Diabetes 49, 1295-1300 (2000
    • (2000) Diabetes , vol.49 , pp. 1295-1300
    • Dean, D.1
  • 203
    • 84902306653 scopus 로고    scopus 로고
    • Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation
    • Chow, J. D., et al. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Mol. Metab. 3, 419-431 (2014
    • (2014) Mol. Metab , vol.3 , pp. 419-431
    • Chow, J.D.1
  • 204
    • 84863613036 scopus 로고    scopus 로고
    • Acetyl-CoA carboxylase regulates global histone acetylation
    • Galdieri, L., & Vancura, A. Acetyl-CoA carboxylase regulates global histone acetylation. J. Biol. Chem. 287, 23865-23876 (2012
    • (2012) J. Biol. Chem , vol.287 , pp. 23865-23876
    • Galdieri, L.1    Vancura, A.2
  • 205
    • 84884755154 scopus 로고    scopus 로고
    • Yeast phospholipase C is required for normal acetyl-CoA homeostasis and global histone acetylation
    • Galdieri, L., Chang, J., Mehrotra, S., & Vancura, A. Yeast phospholipase C is required for normal acetyl-CoA homeostasis and global histone acetylation. J. Biol. Chem. 288, 27986-27998 (2013
    • (2013) J. Biol. Chem , vol.288 , pp. 27986-27998
    • Galdieri, L.1    Chang, J.2    Mehrotra, S.3    Vancura, A.4
  • 206
    • 0001262663 scopus 로고    scopus 로고
    • Redundant roles for the TFIID and SAGA complexes in global transcription
    • Lee, T. I., et al. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature 405, 701-704 (2000
    • (2000) Nature , vol.405 , pp. 701-704
    • Lee, T.I.1
  • 207
    • 78651468707 scopus 로고    scopus 로고
    • Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
    • Hallows, W. C., et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 41, 139-149 (2011
    • (2011) Mol. Cell , vol.41 , pp. 139-149
    • Hallows, W.C.1
  • 208
    • 5444240778 scopus 로고    scopus 로고
    • Hepatic gene expression profiles in a long-Term high-fat diet-induced obesity mouse model
    • Kim, S., et al. Hepatic gene expression profiles in a long-Term high-fat diet-induced obesity mouse model. Gene 340, 99-109 (2004
    • (2004) Gene , vol.340 , pp. 99-109
    • Kim, S.1
  • 210
    • 84903954689 scopus 로고    scopus 로고
    • A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation
    • Sutendra, G., et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84-97 (2014
    • (2014) Cell , vol.158 , pp. 84-97
    • Sutendra, G.1
  • 211
    • 0035224979 scopus 로고    scopus 로고
    • Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms
    • Roche, T. E., et al. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog. Nucleic Acid Res. Mol. Biol. 70, 33-75 (2001
    • (2001) Prog. Nucleic Acid Res. Mol. Biol , vol.70 , pp. 33-75
    • Roche, T.E.1
  • 212
    • 0016343539 scopus 로고
    • Regulation of heart muscle pyruvate dehydrogenase kinase
    • Cooper, R. H., Randle, P. J., & Denton, R. M. Regulation of heart muscle pyruvate dehydrogenase kinase. Biochem. J. 143, 625-641 (1974
    • (1974) Biochem. J. , vol.143 , pp. 625-641
    • Cooper, R.H.1    Randle, P.J.2    Denton, R.M.3
  • 213
    • 84891506172 scopus 로고    scopus 로고
    • Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
    • Jing, E., et al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62, 3404-3417 (2013
    • (2013) Diabetes , vol.62 , pp. 3404-3417
    • Jing, E.1
  • 214
    • 84878441741 scopus 로고    scopus 로고
    • ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: A critical role of PDK4
    • Mori, J., et al. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am. J. Physiol. Heart Circ. Physiol. 304, H1103-H1113 (2013
    • (2013) Am. J. Physiol. Heart Circ. Physiol , vol.304 , pp. H1103-H1113
    • Mori, J.1
  • 215
    • 84894263431 scopus 로고    scopus 로고
    • Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex
    • Fan, J., et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol. Cell 53, 534-548 (2014
    • (2014) Mol. Cell , vol.53 , pp. 534-548
    • Fan, J.1
  • 216
    • 33846374117 scopus 로고    scopus 로고
    • Catalytic mechanism of a MYST family histone acetyltransferase
    • Berndsen, C. E., Albaugh, B. N., Tan, S., & Denu, J. M. Catalytic mechanism of a MYST family histone acetyltransferase. Biochemistry 46, 623-629 (2007
    • (2007) Biochemistry , vol.46 , pp. 623-629
    • Berndsen, C.E.1    Albaugh, B.N.2    Tan, S.3    Denu, J.M.4
  • 217
    • 0034698085 scopus 로고    scopus 로고
    • Kinetic mechanism of the histone acetyltransferase GCN5 from yeast
    • Tanner, K. G., Langer, M. R., Kim, Y., & Denu, J. M. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J. Biol. Chem. 275, 22048-22055 (2000
    • (2000) J. Biol. Chem , vol.275 , pp. 22048-22055
    • Tanner, K.G.1    Langer, M.R.2    Kim, Y.3    Denu, J.M.4
  • 218
    • 39149109887 scopus 로고    scopus 로고
    • The structural basis of protein acetylation by the p300/CBP transcriptional coactivator
    • Liu, X., et al. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451, 846-850 (2008
    • (2008) Nature , vol.451 , pp. 846-850
    • Liu, X.1
  • 219
    • 77955033193 scopus 로고    scopus 로고
    • Kinetic mechanism of the Rtt109-Vps75 histone acetyltransferase-chaperone complex
    • Albaugh, B. N., Kolonko, E. M., & Denu, J. M. Kinetic mechanism of the Rtt109-Vps75 histone acetyltransferase-chaperone complex. Biochemistry 49, 6375-6385 (2010
    • (2010) Biochemistry , vol.49 , pp. 6375-6385
    • Albaugh, B.N.1    Kolonko, E.M.2    Denu, J.M.3
  • 220
    • 34249989455 scopus 로고    scopus 로고
    • Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phase HPLC/MS
    • Gao, L., et al. Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phase HPLC/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 853, 303-313 (2007
    • (2007) J. Chromatogr. B Analyt. Technol. Biomed. Life Sci , vol.853 , pp. 303-313
    • Gao, L.1
  • 221
    • 80052460370 scopus 로고    scopus 로고
    • Zinc deprivation mediates alcohol-induced hepatocyte IL 8 analog expression in rodents via an epigenetic mechanism
    • Zhao, Y., et al. Zinc deprivation mediates alcohol-induced hepatocyte IL 8 analog expression in rodents via an epigenetic mechanism. Am. J. Pathol. 179, 693-702 (2011
    • (2011) Am. J. Pathol , vol.179 , pp. 693-702
    • Zhao, Y.1
  • 222
    • 0018894904 scopus 로고
    • Zinc depletion in alcoholic liver diseases
    • Kiilerich, S., et al. Zinc depletion in alcoholic liver diseases. Scand. J. Gastroenterol. 15, 363-367 (1980
    • (1980) Scand. J. Gastroenterol , vol.15 , pp. 363-367
    • Kiilerich, S.1
  • 224
    • 85047692717 scopus 로고    scopus 로고
    • Alcohol-induced myocardial fibrosis in metallothionein-null mice: Prevention by zinc supplementation
    • Wang, L., Zhou, Z., Saari, J. T., & Kang, Y. J. Alcohol-induced myocardial fibrosis in metallothionein-null mice: prevention by zinc supplementation. Am. J. Pathol. 167, 337-344 (2005
    • (2005) Am. J. Pathol , vol.167 , pp. 337-344
    • Wang, L.1    Zhou, Z.2    Saari, J.T.3    Kang, Y.J.4
  • 225
    • 19544364689 scopus 로고    scopus 로고
    • Zinc supplementation prevents alcoholic liver injury in mice through attenuation of oxidative stress
    • Zhou, Z., et al. Zinc supplementation prevents alcoholic liver injury in mice through attenuation of oxidative stress. Am. J. Pathol. 166, 1681-1690 (2005
    • (2005) Am. J. Pathol , vol.166 , pp. 1681-1690
    • Zhou, Z.1
  • 226
    • 77955096525 scopus 로고    scopus 로고
    • Reversible binding of zinc in Plasmodium falciparum Sir2: Structure and activity of the apoenzyme
    • Chakrabarty, S. P., & Balaram, H. Reversible binding of zinc in Plasmodium falciparum Sir2: structure and activity of the apoenzyme. Biochim. Biophys. Acta 1804, 1743-1750 (2010
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 1743-1750
    • Chakrabarty, S.P.1    Balaram, H.2
  • 227
    • 0035960636 scopus 로고    scopus 로고
    • Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii
    • Du, X., et al. Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii. Biochemistry 40, 14166-14172 (2001
    • (2001) Biochemistry , vol.40 , pp. 14166-14172
    • Du, X.1
  • 228
    • 84893263129 scopus 로고    scopus 로고
    • A QM/MM study of the catalytic mechanism of nicotinamidase
    • Sheng, X., & Liu, Y. A QM/MM study of the catalytic mechanism of nicotinamidase. Org. Biomol. Chem. 12, 1265-1277 (2014
    • (2014) Org. Biomol. Chem , vol.12 , pp. 1265-1277
    • Sheng, X.1    Liu, Y.2
  • 229
    • 84934295856 scopus 로고    scopus 로고
    • Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex
    • Nangle, S. N., et al. Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex. eLife 3, e03674 (2014
    • (2014) ELife , vol.3 , pp. e03674
    • Nangle, S.N.1
  • 230
    • 84901358563 scopus 로고    scopus 로고
    • Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation
    • Schmalen, I., et al. Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 157, 1203-1215 (2014
    • (2014) Cell , vol.157 , pp. 1203-1215
    • Schmalen, I.1
  • 231
    • 0037117479 scopus 로고    scopus 로고
    • Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor 1 α
    • Freedman, S. J., et al. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor 1 α. Proc. Natl Acad. Sci. USA 99, 5367-5372 (2002
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 5367-5372
    • Freedman, S.J.1
  • 232
    • 0035097883 scopus 로고    scopus 로고
    • The histone H4 acetyltransferase MOF uses a C2HC zinc finger for substrate recognition
    • Akhtar, A., & Becker, P. B. The histone H4 acetyltransferase MOF uses a C2HC zinc finger for substrate recognition. EMBO Rep. 2, 113-118 (2001
    • (2001) EMBO Rep , vol.2 , pp. 113-118
    • Akhtar, A.1    Becker, P.B.2
  • 233
    • 2342599619 scopus 로고    scopus 로고
    • The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases
    • Yang, X. J. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 32, 959-976 (2004
    • (2004) Nucleic Acids Res , vol.32 , pp. 959-976
    • Yang, X.J.1
  • 234
    • 78650579361 scopus 로고    scopus 로고
    • From the gut to the peripheral tissues: The multiple effects of butyrate
    • Guilloteau, P., et al. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr. Res. Rev. 23, 366-384 (2010
    • (2010) Nutr. Res. Rev , vol.23 , pp. 366-384
    • Guilloteau, P.1
  • 235
    • 0030764592 scopus 로고    scopus 로고
    • Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans
    • Wolever, T. M., Josse, R. G., Leiter, L. A., & Chiasson, J. L. Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans. Metabolism 46, 805-811 (1997
    • (1997) Metabolism , vol.46 , pp. 805-811
    • Wolever, T.M.1    Josse, R.G.2    Leiter, L.A.3    Chiasson, J.L.4
  • 236
    • 0038676409 scopus 로고    scopus 로고
    • Inhibition of histone deacetylase activity by butyrate
    • Davie, J. R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 133, 2485S-2493S (2003
    • (2003) J. Nutr , vol.133 , pp. 2485S-2493S
    • Davie, J.R.1
  • 237
    • 0017898940 scopus 로고
    • Suppression of histone deacetylation in vivo and in vitro by sodium butyrate
    • Boffa, L. C., Vidali, G., Mann, R. S., & Allfrey, V. G. Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. J. Biol. Chem. 253, 3364-3366 (1978
    • (1978) J. Biol. Chem , vol.253 , pp. 3364-3366
    • Boffa, L.C.1    Vidali, G.2    Mann, R.S.3    Allfrey, V.G.4
  • 238
    • 0017864644 scopus 로고
    • The effect of sodium butyrate on histone modification
    • Sealy, L., & Chalkley, R. The effect of sodium butyrate on histone modification. Cell 14, 115-121 (1978
    • (1978) Cell , vol.14 , pp. 115-121
    • Sealy, L.1    Chalkley, R.2
  • 239
    • 0017886958 scopus 로고
    • Sodium butyrate inhibits histone deacetylation in cultured cells
    • Candido, E. P., Reeves, R., & Davie, J. R. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14, 105-113 (1978
    • (1978) Cell , vol.14 , pp. 105-113
    • Candido, E.P.1    Reeves, R.2    Davie, J.R.3
  • 240
    • 33750110683 scopus 로고    scopus 로고
    • Fuel metabolism in starvation
    • Cahill, G. F. Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1-22 (2006
    • (2006) Annu. Rev. Nutr , vol.26 , pp. 1-22
    • Cahill, G.F.1
  • 241
    • 0013964986 scopus 로고
    • Hormone-fuel interrelationships during fasting
    • Cahill, G. F., et al. Hormone-fuel interrelationships during fasting. J. Clin. Invest. 45, 1751-1769 (1966
    • (1966) J. Clin. Invest , vol.45 , pp. 1751-1769
    • Cahill, G.F.1
  • 242
    • 0018876377 scopus 로고
    • Physiological roles of ketone bodies as substrates and signals in mammalian tissues
    • Robinson, A. M., & Williamson, D. H. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol. Rev. 60, 143-187 (1980
    • (1980) Physiol. Rev , vol.60 , pp. 143-187
    • Robinson, A.M.1    Williamson, D.H.2
  • 243
    • 84872166360 scopus 로고    scopus 로고
    • Suppression of oxidative stress by β hydroxybutyrate, an endogenous histone deacetylase inhibitor
    • Shimazu, T., et al. Suppression of oxidative stress by β hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211-214 (2013
    • (2013) Science , vol.339 , pp. 211-214
    • Shimazu, T.1
  • 244
    • 84905908997 scopus 로고    scopus 로고
    • Contribution of defective mitophagy to the neurodegeneration in DNA repair-deficient disorders
    • Scheibye-Knudsen, M., Fang, E. F., Croteau, D. L., & Bohr, V. A. Contribution of defective mitophagy to the neurodegeneration in DNA repair-deficient disorders. Autophagy 10, 1468-1469 (2014
    • (2014) Autophagy , vol.10 , pp. 1468-1469
    • Scheibye-Knudsen, M.1    Fang, E.F.2    Croteau, D.L.3    Bohr, V.A.4
  • 245
    • 84910141322 scopus 로고    scopus 로고
    • Linking DNA damage nad+/sirt1 and aging
    • Guarente, L. Linking DNA damage, NAD+/SIRT1, and aging. Cell Metab. 20, 706-707 (2014
    • (2014) Cell Metab , vol.20 , pp. 706-707
    • Guarente, L.1
  • 246
    • 79955591489 scopus 로고    scopus 로고
    • Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats
    • Braidy, N., et al. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS ONE 6, e19194 (2011
    • (2011) PLoS ONE , vol.6 , pp. e19194
    • Braidy, N.1
  • 247
    • 84893442805 scopus 로고    scopus 로고
    • Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
    • Gomes, A. P., et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624-1638 (2013
    • (2013) Cell , vol.155 , pp. 1624-1638
    • Gomes, A.P.1
  • 248
    • 80053920774 scopus 로고    scopus 로고
    • Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet-And age-induced diabetes in mice
    • Yoshino, J., Mills, K. F., Yoon, M. J., & Imai, S. i. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet-And age-induced diabetes in mice. Cell Metab. 14, 528-536 (2011
    • (2011) Cell Metab , vol.14 , pp. 528-536
    • Yoshino, J.1    Mills, K.F.2    Yoon, M.J.3    Imai, S.I.4
  • 249
    • 84864401965 scopus 로고    scopus 로고
    • Age-Associated changes in oxidative stress and NAD+ metabolism in human tissue
    • Massudi, H., et al. Age-Associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE 7, e42357 (2012
    • (2012) PLoS ONE , vol.7 , pp. e42357
    • Massudi, H.1
  • 250
    • 84894143537 scopus 로고    scopus 로고
    • Partial reversal of skeletal muscle aging by restoration of normal NAD+ levels
    • Mendelsohn, A. R., & Larrick, J. W. Partial reversal of skeletal muscle aging by restoration of normal NAD+ levels. Rejuvenation Res. 17, 62-69 (2014
    • (2014) Rejuvenation Res , vol.17 , pp. 62-69
    • Mendelsohn, A.R.1    Larrick, J.W.2
  • 251
    • 38349112898 scopus 로고    scopus 로고
    • Age-Associated loss of Sirt1 mediated enhancement of glucose-stimulated insulin secretion in β cell-specific Sirt1 overexpressing (BESTO) mice
    • Ramsey, K. M., Mills, K. F., Satoh, A., & Imai, S. i. Age-Associated loss of Sirt1 mediated enhancement of glucose-stimulated insulin secretion in β cell-specific Sirt1 overexpressing (BESTO) mice. Aging Cell 7, 78-88 (2008
    • (2008) Aging Cell , vol.7 , pp. 78-88
    • Ramsey, K.M.1    Mills, K.F.2    Satoh, A.3    Imai, S.I.4
  • 252
    • 84900410413 scopus 로고    scopus 로고
    • Nicotinamide N methyltransferase knockdown protects against diet-induced obesity
    • Kraus, D., et al. Nicotinamide N methyltransferase knockdown protects against diet-induced obesity. Nature 508, 258-262 (2014
    • (2014) Nature , vol.508 , pp. 258-262
    • Kraus, D.1
  • 253
    • 84962030356 scopus 로고    scopus 로고
    • Evidence for a direct effect of the NAD+ precursor Acipimox on muscle mitochondrial function in humans
    • van de Weijer, T., et al. Evidence for a direct effect of the NAD+ precursor Acipimox on muscle mitochondrial function in humans. Diabetes 64, 1193-1201 (2014
    • (2014) Diabetes , vol.64 , pp. 1193-1201
    • Van De Weijer, T.1
  • 254
    • 4043165678 scopus 로고    scopus 로고
    • Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
    • Araki, T., Sasaki, Y., & Milbrandt, J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010-1013 (2004
    • (2004) Science , vol.305 , pp. 1010-1013
    • Araki, T.1    Sasaki, Y.2    Milbrandt, J.3
  • 255
    • 84875245617 scopus 로고    scopus 로고
    • Nicotinamide riboside restores cognition through an upregulation of proliferator-Activated receptor γ coactivator 1α regulated β secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models
    • Gong, B., et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-Activated receptor γ coactivator 1α regulated β secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models. Neurobiol. Aging 34, 1581-1588 (2013
    • (2013) Neurobiol. Aging , vol.34 , pp. 1581-1588
    • Gong, B.1
  • 256
    • 84864452777 scopus 로고    scopus 로고
    • Effects of niacin restriction on sirtuin and PARP responses to photodamage in human skin
    • Benavente, C. A., Schnell, S. A., & Jacobson, E. L. Effects of niacin restriction on sirtuin and PARP responses to photodamage in human skin. PLoS ONE 7, e42276 (2012
    • (2012) PLoS ONE , vol.7 , pp. e42276
    • Benavente, C.A.1    Schnell, S.A.2    Jacobson, E.L.3
  • 257
    • 84919497464 scopus 로고    scopus 로고
    • Inhibition of de novo NAD+ synthesis by oncogenic URI causes liver tumorigenesis through DNA damage
    • Tummala, K. S., et al. Inhibition of de novo NAD+ synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell 26, 826-839 (2014
    • (2014) Cancer Cell , vol.26 , pp. 826-839
    • Tummala, K.S.1
  • 258
    • 84899494248 scopus 로고    scopus 로고
    • Poly (ADP-ribose) polymerase 1 is a key mediator of liver inflammation and fibrosis
    • Mukhopadhyay, P., et al. Poly (ADP-ribose) polymerase 1 is a key mediator of liver inflammation and fibrosis. Hepatology 59, 1998-2009 (2014
    • (2014) Hepatology , vol.59 , pp. 1998-2009
    • Mukhopadhyay, P.1
  • 259
    • 84875431269 scopus 로고    scopus 로고
    • Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: Implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome
    • Escande, C., et al. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 62, 1084-1093 (2013
    • (2013) Diabetes , vol.62 , pp. 1084-1093
    • Escande, C.1
  • 260
    • 84862205290 scopus 로고    scopus 로고
    • Effects of zinc supplementation on diabetes mellitus: A systematic review and meta-Analysis.Diabetol
    • Jayawardena, R., et al. Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-Analysis.Diabetol. Metab. Syndr. 4, 13 (2012
    • (2012) Metab. Syndr , vol.4 , pp. 13
    • Jayawardena, R.1
  • 261
    • 0018399737 scopus 로고    scopus 로고
    • Oxidation of cytosolic NADH formed during aerobic metabolism in mammalian cells
    • Dawson, A. G. Oxidation of cytosolic NADH formed during aerobic metabolism in mammalian cells. Trends Biochem. Sci. 4, 171-176
    • Trends Biochem. Sci , vol.4 , pp. 171-176
    • Dawson, A.G.1
  • 262
    • 84921405747 scopus 로고    scopus 로고
    • Site-specific reactivity of nonenzymatic lysine acetylation
    • Baeza, J., Smallegan, M. J., & Denu, J. M. Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem. Biol. 10, 122-128 (2015
    • (2015) ACS Chem. Biol , vol.10 , pp. 122-128
    • Baeza, J.1    Smallegan, M.J.2    Denu, J.M.3
  • 263
    • 84942028125 scopus 로고    scopus 로고
    • Nonenzymatic protein acetylation detected by NAPPA protein arrays
    • Olia, A. S., et al. Nonenzymatic protein acetylation detected by NAPPA protein arrays. ACS Chem. Biol. 10, 2034-2047 (2015
    • (2015) ACS Chem. Biol , vol.10 , pp. 2034-2047
    • Olia, A.S.1
  • 264
    • 84880426255 scopus 로고    scopus 로고
    • Acetyl-phosphate is a critical determinant of lysine acetylation in E coli
    • Weinert, B. T., et al. Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol. Cell 51, 265-272 (2013
    • (2013) Mol. Cell , vol.51 , pp. 265-272
    • Weinert, B.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.