메뉴 건너뛰기




Volumn 25, Issue 1, 2015, Pages 37-45

Cellular and metabolic functions for autophagy in cancer cells

Author keywords

Anoikis; Autophagy; Cancer; Invasion; Metabolism; Unfolded protein response

Indexed keywords

ANOIKIS; AUTOPHAGOSOME; AUTOPHAGY; CANCER CELL; CANCER GROWTH; CARCINOGENESIS; CELL FUNCTION; CELL INVASION; CELL MATURATION; CELL METABOLISM; CELL PROLIFERATION; CELL SURVIVAL; HUMAN; METASTASIS; NONHUMAN; REVIEW; UNFOLDED PROTEIN RESPONSE; ANIMAL; DISEASE COURSE; DISEASE MODEL; METABOLISM; MOUSE; NEOPLASM; PATHOLOGY; PATHOPHYSIOLOGY; PHYSIOLOGY; SIGNAL TRANSDUCTION;

EID: 84918827750     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2014.09.001     Document Type: Review
Times cited : (214)

References (88)
  • 1
    • 84878562770 scopus 로고    scopus 로고
    • Autophagic processes in yeast: mechanism, machinery and regulation
    • Reggiori F., Klionsky D.J. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 2013, 194:341-361.
    • (2013) Genetics , vol.194 , pp. 341-361
    • Reggiori, F.1    Klionsky, D.J.2
  • 2
    • 77951214016 scopus 로고    scopus 로고
    • Mammalian autophagy: core molecular machinery and signaling regulation
    • Yang Z., Klionsky D.J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 2010, 22:124-131.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 124-131
    • Yang, Z.1    Klionsky, D.J.2
  • 3
    • 72549095406 scopus 로고    scopus 로고
    • Regulation mechanisms and signaling pathways of autophagy
    • He C., Klionsky D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 2009, 43:67-93.
    • (2009) Annu. Rev. Genet. , vol.43 , pp. 67-93
    • He, C.1    Klionsky, D.J.2
  • 4
    • 84875892111 scopus 로고    scopus 로고
    • Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease
    • Murrow L., Debnath J. Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu. Rev. Pathol. 2013, 8:105-137.
    • (2013) Annu. Rev. Pathol. , vol.8 , pp. 105-137
    • Murrow, L.1    Debnath, J.2
  • 5
    • 80053634368 scopus 로고    scopus 로고
    • The dynamic nature of autophagy in cancer
    • Kimmelman A.C. The dynamic nature of autophagy in cancer. Genes Dev. 2011, 25:1999-2010.
    • (2011) Genes Dev. , vol.25 , pp. 1999-2010
    • Kimmelman, A.C.1
  • 6
    • 84861526009 scopus 로고    scopus 로고
    • Deconvoluting the context-dependent role for autophagy in cancer
    • White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer 2012, 12:401-410.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 401-410
    • White, E.1
  • 7
    • 84890018924 scopus 로고    scopus 로고
    • Autophagy-mediated tumor promotion
    • Guo J.Y., et al. Autophagy-mediated tumor promotion. Cell 2013, 155:1216-1219.
    • (2013) Cell , vol.155 , pp. 1216-1219
    • Guo, J.Y.1
  • 8
    • 0345166111 scopus 로고    scopus 로고
    • Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
    • Yue Z., et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:15077-15082.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 15077-15082
    • Yue, Z.1
  • 9
    • 9144240441 scopus 로고    scopus 로고
    • Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
    • Qu X., et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 2003, 112:1809-1820.
    • (2003) J. Clin. Invest. , vol.112 , pp. 1809-1820
    • Qu, X.1
  • 10
    • 0344142468 scopus 로고    scopus 로고
    • Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21
    • Aita V.M., et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 1999, 59:59-65.
    • (1999) Genomics , vol.59 , pp. 59-65
    • Aita, V.M.1
  • 11
    • 0000906170 scopus 로고    scopus 로고
    • Induction of autophagy and inhibition of tumorigenesis by beclin 1
    • Liang X.H., et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402:672-676.
    • (1999) Nature , vol.402 , pp. 672-676
    • Liang, X.H.1
  • 12
    • 84902177842 scopus 로고    scopus 로고
    • Mutational landscape of the essential autophagy gene BECN1 in human cancers
    • Laddha S.V., et al. Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol. Cancer Res. 2014, 12:485-490.
    • (2014) Mol. Cancer Res. , vol.12 , pp. 485-490
    • Laddha, S.V.1
  • 13
    • 79955377420 scopus 로고    scopus 로고
    • Autophagy-deficient mice develop multiple liver tumors
    • Takamura A., et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011, 25:795-800.
    • (2011) Genes Dev. , vol.25 , pp. 795-800
    • Takamura, A.1
  • 14
    • 79955492012 scopus 로고    scopus 로고
    • Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells
    • Inami Y., et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell Biol. 2011, 193:275-284.
    • (2011) J. Cell Biol. , vol.193 , pp. 275-284
    • Inami, Y.1
  • 15
    • 84892882660 scopus 로고    scopus 로고
    • A dual role for autophagy in a murine model of lung cancer
    • Rao S., et al. A dual role for autophagy in a murine model of lung cancer. Nat. Commun. 2014, 5:3056.
    • (2014) Nat. Commun. , vol.5 , pp. 3056
    • Rao, S.1
  • 16
    • 84890432985 scopus 로고    scopus 로고
    • P53 status determines the role of autophagy in pancreatic tumour development
    • Rosenfeldt M.T., et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 2013, 504:296-300.
    • (2013) Nature , vol.504 , pp. 296-300
    • Rosenfeldt, M.T.1
  • 17
    • 84905499163 scopus 로고    scopus 로고
    • Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations
    • Yang A., et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 2014, 4:905-913.
    • (2014) Cancer Discov. , vol.4 , pp. 905-913
    • Yang, A.1
  • 18
    • 84885350394 scopus 로고    scopus 로고
    • Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors
    • Strohecker A.M., et al. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov. 2013, 3:1272-1285.
    • (2013) Cancer Discov. , vol.3 , pp. 1272-1285
    • Strohecker, A.M.1
  • 19
    • 84858604270 scopus 로고    scopus 로고
    • Metabolic reprogramming: a cancer hallmark even warburg did not anticipate
    • Ward P.S., Thompson C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012, 21:297-308.
    • (2012) Cancer Cell , vol.21 , pp. 297-308
    • Ward, P.S.1    Thompson, C.B.2
  • 20
    • 78751511180 scopus 로고    scopus 로고
    • Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation
    • Lock R., et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell 2011, 22:165-178.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 165-178
    • Lock, R.1
  • 21
    • 79960401862 scopus 로고    scopus 로고
    • Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis
    • Wei H., et al. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev. 2011, 25:1510-1527.
    • (2011) Genes Dev. , vol.25 , pp. 1510-1527
    • Wei, H.1
  • 22
    • 79952228407 scopus 로고    scopus 로고
    • Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
    • Guo J.Y., et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011, 25:460-470.
    • (2011) Genes Dev. , vol.25 , pp. 460-470
    • Guo, J.Y.1
  • 23
    • 79952229430 scopus 로고    scopus 로고
    • Pancreatic cancers require autophagy for tumor growth
    • Yang S., et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011, 25:717-729.
    • (2011) Genes Dev. , vol.25 , pp. 717-729
    • Yang, S.1
  • 24
    • 84879777723 scopus 로고    scopus 로고
    • Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis
    • Guo J.Y., et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 2013, 27:1447-1461.
    • (2013) Genes Dev. , vol.27 , pp. 1447-1461
    • Guo, J.Y.1
  • 25
    • 84905497318 scopus 로고    scopus 로고
    • Autophagy is required for glucose homeostasis and lung tumor maintenance
    • Karsli-Uzunbas G., et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 2014, 4:914-927.
    • (2014) Cancer Discov. , vol.4 , pp. 914-927
    • Karsli-Uzunbas, G.1
  • 26
    • 84904048411 scopus 로고    scopus 로고
    • Autophagy inhibition improves chemosensitivity in BRAFV600E brain tumors
    • Levy J.M., et al. Autophagy inhibition improves chemosensitivity in BRAFV600E brain tumors. Cancer Discov. 2014, 4:773-780.
    • (2014) Cancer Discov. , vol.4 , pp. 773-780
    • Levy, J.M.1
  • 27
    • 84894105147 scopus 로고    scopus 로고
    • Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition
    • Roberts D.J., et al. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol. Cell 2014, 53:521-533.
    • (2014) Mol. Cell , vol.53 , pp. 521-533
    • Roberts, D.J.1
  • 28
    • 84885448124 scopus 로고    scopus 로고
    • Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells
    • Yang Z., et al. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J. Exp. Med. 2013, 210:2119-2134.
    • (2013) J. Exp. Med. , vol.210 , pp. 2119-2134
    • Yang, Z.1
  • 29
    • 79960006190 scopus 로고    scopus 로고
    • 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression
    • Hu S., et al. 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab. 2011, 14:131-142.
    • (2011) Cell Metab. , vol.14 , pp. 131-142
    • Hu, S.1
  • 30
    • 84863080675 scopus 로고    scopus 로고
    • Measurement of mitochondrial oxygen consumption using a Clark electrode
    • Li Z., Graham B.H. Measurement of mitochondrial oxygen consumption using a Clark electrode. Methods Mol. Biol. 2012, 837:63-72.
    • (2012) Methods Mol. Biol. , vol.837 , pp. 63-72
    • Li, Z.1    Graham, B.H.2
  • 31
    • 84870735655 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress sensing in the unfolded protein response
    • Gardner B.M., et al. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol. 2013, 5:a013169.
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5 , pp. a013169
    • Gardner, B.M.1
  • 32
    • 84870546460 scopus 로고    scopus 로고
    • ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth
    • Hart L.S., et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Invest. 2012, 122:4621-4634.
    • (2012) J. Clin. Invest. , vol.122 , pp. 4621-4634
    • Hart, L.S.1
  • 33
    • 84884636654 scopus 로고    scopus 로고
    • Myc-driven overgrowth requires unfolded protein response-mediated induction of autophagy and antioxidant responses in Drosophila melanogaster
    • Nagy P., et al. Myc-driven overgrowth requires unfolded protein response-mediated induction of autophagy and antioxidant responses in Drosophila melanogaster. PLoS Genet. 2013, 9:e1003664.
    • (2013) PLoS Genet. , vol.9 , pp. e1003664
    • Nagy, P.1
  • 34
    • 74949118681 scopus 로고    scopus 로고
    • The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5
    • Rouschop K.M., et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Invest. 2010, 120:127-141.
    • (2010) J. Clin. Invest. , vol.120 , pp. 127-141
    • Rouschop, K.M.1
  • 35
    • 84871429513 scopus 로고    scopus 로고
    • Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival
    • Pike L.R., et al. Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival. Biochem. J. 2013, 449:389-400.
    • (2013) Biochem. J. , vol.449 , pp. 389-400
    • Pike, L.R.1
  • 36
    • 80052342419 scopus 로고    scopus 로고
    • PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment
    • Avivar-Valderas A., et al. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol. Cell. Biol. 2011, 31:3616-3629.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 3616-3629
    • Avivar-Valderas, A.1
  • 37
    • 84896757312 scopus 로고    scopus 로고
    • Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma
    • Ma X.H., et al. Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J. Clin. Invest. 2014, 124:1406-1417.
    • (2014) J. Clin. Invest. , vol.124 , pp. 1406-1417
    • Ma, X.H.1
  • 38
    • 84867540151 scopus 로고    scopus 로고
    • C-Myc and cancer metabolism
    • Miller D.M., et al. c-Myc and cancer metabolism. Clin. Cancer Res. 2012, 18:5546-5553.
    • (2012) Clin. Cancer Res. , vol.18 , pp. 5546-5553
    • Miller, D.M.1
  • 39
    • 80054686286 scopus 로고    scopus 로고
    • Tumor metastasis: molecular insights and evolving paradigms
    • Valastyan S., Weinberg R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011, 147:275-292.
    • (2011) Cell , vol.147 , pp. 275-292
    • Valastyan, S.1    Weinberg, R.A.2
  • 40
    • 80053157914 scopus 로고    scopus 로고
    • Unravelling the complexity of metastasis - molecular understanding and targeted therapies
    • Sethi N., Kang Y. Unravelling the complexity of metastasis - molecular understanding and targeted therapies. Nat. Rev. Cancer 2011, 11:735-748.
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 735-748
    • Sethi, N.1    Kang, Y.2
  • 41
    • 84887621878 scopus 로고    scopus 로고
    • Anoikis molecular pathways and its role in cancer progression
    • Paoli P., et al. Anoikis molecular pathways and its role in cancer progression. Biochim. Biophys. Acta 2013, 1833:3481-3498.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 3481-3498
    • Paoli, P.1
  • 42
    • 81855169565 scopus 로고    scopus 로고
    • Cancer invasion and the microenvironment: plasticity and reciprocity
    • Friedl P., Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 2011, 147:992-1009.
    • (2011) Cell , vol.147 , pp. 992-1009
    • Friedl, P.1    Alexander, S.2
  • 43
    • 84888361416 scopus 로고    scopus 로고
    • Crossing the endothelial barrier during metastasis
    • Reymond N., et al. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer 2013, 13:858-870.
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 858-870
    • Reymond, N.1
  • 44
    • 41449109334 scopus 로고    scopus 로고
    • Induction of autophagy during extracellular matrix detachment promotes cell survival
    • Fung C., et al. Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol. Biol. Cell 2008, 19:797-806.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 797-806
    • Fung, C.1
  • 45
    • 84878015338 scopus 로고    scopus 로고
    • Autophagy restricts proliferation driven by oncogenic phosphatidylinositol 3-kinase in three-dimensional culture
    • Chen N., et al. Autophagy restricts proliferation driven by oncogenic phosphatidylinositol 3-kinase in three-dimensional culture. Oncogene 2013, 32:2543-2554.
    • (2013) Oncogene , vol.32 , pp. 2543-2554
    • Chen, N.1
  • 46
    • 84890850438 scopus 로고    scopus 로고
    • Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells
    • Peng Y.F., et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 2013, 9:2056-2068.
    • (2013) Autophagy , vol.9 , pp. 2056-2068
    • Peng, Y.F.1
  • 47
    • 84861394761 scopus 로고    scopus 로고
    • Inhibition of autophagy impairs tumor cell invasion in an organotypic model
    • Macintosh R.L., et al. Inhibition of autophagy impairs tumor cell invasion in an organotypic model. Cell Cycle 2012, 11:2022-2029.
    • (2012) Cell Cycle , vol.11 , pp. 2022-2029
    • Macintosh, R.L.1
  • 48
    • 84873740471 scopus 로고    scopus 로고
    • The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells
    • Galavotti S., et al. The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells. Oncogene 2013, 32:699-712.
    • (2013) Oncogene , vol.32 , pp. 699-712
    • Galavotti, S.1
  • 49
    • 77951239243 scopus 로고    scopus 로고
    • Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas
    • Beckner M.E., et al. Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas. Int. J. Cancer 2010, 126:2282-2295.
    • (2010) Int. J. Cancer , vol.126 , pp. 2282-2295
    • Beckner, M.E.1
  • 50
    • 84878997506 scopus 로고    scopus 로고
    • Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition
    • Li J., et al. Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis 2013, 34:1343-1351.
    • (2013) Carcinogenesis , vol.34 , pp. 1343-1351
    • Li, J.1
  • 51
    • 84897946801 scopus 로고    scopus 로고
    • Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion
    • Lock R., et al. Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov. 2014, 4:466-479.
    • (2014) Cancer Discov. , vol.4 , pp. 466-479
    • Lock, R.1
  • 52
    • 84894482142 scopus 로고    scopus 로고
    • Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination
    • Zhan Z., et al. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy 2014, 10:257-268.
    • (2014) Autophagy , vol.10 , pp. 257-268
    • Zhan, Z.1
  • 53
    • 84864295258 scopus 로고    scopus 로고
    • Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation
    • Deretic V., et al. Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol. 2012, 22:397-406.
    • (2012) Trends Cell Biol. , vol.22 , pp. 397-406
    • Deretic, V.1
  • 54
    • 84898070133 scopus 로고    scopus 로고
    • Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-beta (TGF-beta) signaling promoting SMAD3 activation and fibrosis via Gremlin protein
    • O'Reilly S., et al. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-beta (TGF-beta) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. J. Biol. Chem. 2014, 289:9952-9960.
    • (2014) J. Biol. Chem. , vol.289 , pp. 9952-9960
    • O'Reilly, S.1
  • 55
    • 84903481496 scopus 로고    scopus 로고
    • Regulation of cell proliferation and migration by p62 through stabilization of Twist1
    • Qiang L., et al. Regulation of cell proliferation and migration by p62 through stabilization of Twist1. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:9241-9246.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 9241-9246
    • Qiang, L.1
  • 56
    • 84885915873 scopus 로고    scopus 로고
    • Epithelial-mesenchymal plasticity in carcinoma metastasis
    • Tsai J.H., Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013, 27:2192-2206.
    • (2013) Genes Dev. , vol.27 , pp. 2192-2206
    • Tsai, J.H.1    Yang, J.2
  • 57
    • 84892859905 scopus 로고    scopus 로고
    • Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
    • Rogov V., et al. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 2014, 53:167-178.
    • (2014) Mol. Cell , vol.53 , pp. 167-178
    • Rogov, V.1
  • 58
    • 84899746695 scopus 로고    scopus 로고
    • Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
    • Mancias J.D., et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014, 509:105-109.
    • (2014) Nature , vol.509 , pp. 105-109
    • Mancias, J.D.1
  • 59
    • 84868567192 scopus 로고    scopus 로고
    • When autophagy meets cancer through p62/SQSTM1
    • Puissant A., et al. When autophagy meets cancer through p62/SQSTM1. Am. J. Cancer Res. 2012, 2:397-413.
    • (2012) Am. J. Cancer Res. , vol.2 , pp. 397-413
    • Puissant, A.1
  • 60
    • 84869495080 scopus 로고    scopus 로고
    • P62/SQSTM1/A170: physiology and pathology
    • Komatsu M., et al. p62/SQSTM1/A170: physiology and pathology. Pharmacol. Res. 2012, 66:457-462.
    • (2012) Pharmacol. Res. , vol.66 , pp. 457-462
    • Komatsu, M.1
  • 61
    • 41249084239 scopus 로고    scopus 로고
    • The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis
    • Duran A., et al. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 2008, 13:343-354.
    • (2008) Cancer Cell , vol.13 , pp. 343-354
    • Duran, A.1
  • 62
    • 84855946746 scopus 로고    scopus 로고
    • KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma
    • Ling J., et al. KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 2012, 21:105-120.
    • (2012) Cancer Cell , vol.21 , pp. 105-120
    • Ling, J.1
  • 63
    • 66449099090 scopus 로고    scopus 로고
    • Autophagy suppresses tumorigenesis through elimination of p62
    • Mathew R., et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009, 137:1062-1075.
    • (2009) Cell , vol.137 , pp. 1062-1075
    • Mathew, R.1
  • 64
    • 84901782394 scopus 로고    scopus 로고
    • P62/SQSTM1 synergizes with autophagy for tumor growth in vivo
    • Wei H., et al. p62/SQSTM1 synergizes with autophagy for tumor growth in vivo. Genes Dev. 2014, 28:1204-1216.
    • (2014) Genes Dev. , vol.28 , pp. 1204-1216
    • Wei, H.1
  • 65
    • 77649265091 scopus 로고    scopus 로고
    • The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
    • Komatsu M., et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 2010, 12:213-223.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 213-223
    • Komatsu, M.1
  • 66
    • 84883830467 scopus 로고    scopus 로고
    • Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy
    • Ichimura Y., et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 2013, 51:618-631.
    • (2013) Mol. Cell , vol.51 , pp. 618-631
    • Ichimura, Y.1
  • 67
    • 80053586265 scopus 로고    scopus 로고
    • P62 is a key regulator of nutrient sensing in the mTORC1 pathway
    • Duran A., et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol. Cell 2011, 44:134-146.
    • (2011) Mol. Cell , vol.44 , pp. 134-146
    • Duran, A.1
  • 68
    • 84881553725 scopus 로고    scopus 로고
    • K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells
    • Linares J.F., et al. K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol. Cell 2013, 51:283-296.
    • (2013) Mol. Cell , vol.51 , pp. 283-296
    • Linares, J.F.1
  • 69
    • 84870527124 scopus 로고    scopus 로고
    • TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-kappaB signalling
    • Newman A.C., et al. TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-kappaB signalling. PLoS ONE 2012, 7:e50672.
    • (2012) PLoS ONE , vol.7 , pp. e50672
    • Newman, A.C.1
  • 70
    • 84904256742 scopus 로고    scopus 로고
    • Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression
    • Liu Z., et al. Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression. Cancer Cell 2014, 26:106-120.
    • (2014) Cancer Cell , vol.26 , pp. 106-120
    • Liu, Z.1
  • 71
    • 34547924464 scopus 로고    scopus 로고
    • Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP
    • Zhu G., et al. Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP. Curr. Biol. 2007, 17:1438-1443.
    • (2007) Curr. Biol. , vol.17 , pp. 1438-1443
    • Zhu, G.1
  • 72
    • 84889968303 scopus 로고    scopus 로고
    • P38(MAPK)-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling
    • Rubio N., et al. p38(MAPK)-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling. Free Radic. Biol. Med. 2014, 67:292-303.
    • (2014) Free Radic. Biol. Med. , vol.67 , pp. 292-303
    • Rubio, N.1
  • 73
    • 80053564250 scopus 로고    scopus 로고
    • Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity
    • Kuo T.C., et al. Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat. Cell Biol. 2011, 13:1214-1223.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1214-1223
    • Kuo, T.C.1
  • 74
    • 79951847989 scopus 로고    scopus 로고
    • Principles and current strategies for targeting autophagy for cancer treatment
    • Amaravadi R.K., et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 2011, 17:654-666.
    • (2011) Clin. Cancer Res. , vol.17 , pp. 654-666
    • Amaravadi, R.K.1
  • 75
    • 84905826586 scopus 로고    scopus 로고
    • Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma
    • Barnard R.A., et al. Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy 2014, 10:1415-1425.
    • (2014) Autophagy , vol.10 , pp. 1415-1425
    • Barnard, R.A.1
  • 76
    • 84904062324 scopus 로고    scopus 로고
    • Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors
    • Mahalingam D., et al. Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 2014, 10:1403-1414.
    • (2014) Autophagy , vol.10 , pp. 1403-1414
    • Mahalingam, D.1
  • 77
    • 84905826525 scopus 로고    scopus 로고
    • Combined MTOR and autophagy inhibition: Phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma
    • Rangwala R., et al. Combined MTOR and autophagy inhibition: Phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 2014, 10:1391-1402.
    • (2014) Autophagy , vol.10 , pp. 1391-1402
    • Rangwala, R.1
  • 78
    • 84904062323 scopus 로고    scopus 로고
    • Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma
    • Rangwala R., et al. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 2014, 10:1369-1379.
    • (2014) Autophagy , vol.10 , pp. 1369-1379
    • Rangwala, R.1
  • 79
    • 84904062322 scopus 로고    scopus 로고
    • A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme
    • Rosenfeld M.R., et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 2014, 10:1359-1368.
    • (2014) Autophagy , vol.10 , pp. 1359-1368
    • Rosenfeld, M.R.1
  • 80
    • 84905494696 scopus 로고    scopus 로고
    • Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma
    • Vogl D.T., et al. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 2014, 10:1380-1390.
    • (2014) Autophagy , vol.10 , pp. 1380-1390
    • Vogl, D.T.1
  • 81
    • 84901933891 scopus 로고    scopus 로고
    • Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma
    • Wolpin B.M., et al. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 2014, 19:637-638.
    • (2014) Oncologist , vol.19 , pp. 637-638
    • Wolpin, B.M.1
  • 82
    • 77951221542 scopus 로고    scopus 로고
    • The role of the Atg1/ULK1 complex in autophagy regulation
    • Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 2010, 22:132-139.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 132-139
    • Mizushima, N.1
  • 83
    • 70350449062 scopus 로고    scopus 로고
    • MTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex
    • Chan E.Y. mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex. Sci. Signal. 2009, 2:pe51.
    • (2009) Sci. Signal. , vol.2 , pp. pe51
    • Chan, E.Y.1
  • 84
    • 59249089394 scopus 로고    scopus 로고
    • Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
    • Itakura E., et al. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 2008, 19:5360-5372.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 5360-5372
    • Itakura, E.1
  • 85
    • 51049118332 scopus 로고    scopus 로고
    • The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series
    • Geng J., Klionsky D.J. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 2008, 9:859-864.
    • (2008) EMBO Rep. , vol.9 , pp. 859-864
    • Geng, J.1    Klionsky, D.J.2
  • 86
    • 84862295360 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy
    • Klionsky D.J., et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8:445-544.
    • (2012) Autophagy , vol.8 , pp. 445-544
    • Klionsky, D.J.1
  • 87
    • 84892875805 scopus 로고    scopus 로고
    • At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy
    • Shen H.M., Mizushima N. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem. Sci. 2014, 39:61-71.
    • (2014) Trends Biochem. Sci. , vol.39 , pp. 61-71
    • Shen, H.M.1    Mizushima, N.2
  • 88
    • 84893823338 scopus 로고    scopus 로고
    • Regulation of autophagy by the Rab GTPase network
    • Ao X., et al. Regulation of autophagy by the Rab GTPase network. Cell Death Differ. 2014, 21:348-358.
    • (2014) Cell Death Differ. , vol.21 , pp. 348-358
    • Ao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.