메뉴 건너뛰기




Volumn 205, Issue 4, 2014, Pages 435-445

Organellophagy: Eliminating cellular building blocks via selective autophagy

Author keywords

[No Author keywords available]

Indexed keywords

ATG PROTEIN; FAT DROPLET; HEAT SHOCK COGNATE PROTEIN 70; PROTEIN; UBIQUITIN PROTEIN LIGASE; UBIQUITIN PROTEIN LIGASE E3; UNCLASSIFIED DRUG;

EID: 84901801108     PISSN: 00219525     EISSN: 15408140     Source Type: Journal    
DOI: 10.1083/jcb.201402054     Document Type: Review
Times cited : (172)

References (132)
  • 2
    • 84871005673 scopus 로고    scopus 로고
    • The pathways of mitophagy for quality control and clearance of mitochondria
    • Ashrafi, G., and T.L. Schwarz. 2013. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20: 31-42. http://dx.doi.org/10.1038/cdd.2012.81
    • (2013) Cell Death Differ. , vol.20 , pp. 31-42
    • Ashrafi, G.1    Schwarz, T.L.2
  • 3
    • 0037044768 scopus 로고    scopus 로고
    • Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha
    • Bellu, A.R., F.A. Salomons, J.A. Kiel, M. Veenhuis, and I.J. Van Der Klei. 2002. Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha. J. Biol. Chem. 277: 42875-42880. http://dx.doi.org/10.1074/jbc. M205437200
    • (2002) J. Biol. Chem. , vol.277 , pp. 42875-42880
    • Bellu, A.R.1    Salomons, F.A.2    Kiel, J.A.3    Veenhuis, M.4    Van Der Klei, I.J.5
  • 4
    • 33845480131 scopus 로고    scopus 로고
    • Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response
    • Bernales, S., K.L. McDonald, and P. Walter. 2006. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4: e423. http://dx.doi.org/10.1371/journal.pbio.0040423
    • (2006) PLoS Biol. , vol.4
    • Bernales, S.1    McDonald, K.L.2    Walter, P.3
  • 5
    • 84883414890 scopus 로고    scopus 로고
    • The LIR motif-crucial for selective autophagy
    • Birgisdottir, A.B., T. Lamark, and T. Johansen. 2013. The LIR motif-crucial for selective autophagy. J. Cell Sci. 126: 3237-3247.
    • (2013) J. Cell Sci. , vol.126 , pp. 3237-3247
    • Birgisdottir, A.B.1    Lamark, T.2    Johansen, T.3
  • 6
    • 84894326290 scopus 로고    scopus 로고
    • Mitochondrial ER contacts are crucial for mitophagy in yeast
    • Böckler, S., and B. Westermann. 2014. Mitochondrial ER contacts are crucial for mitophagy in yeast. Dev. Cell. 28: 450-458. http://dx.doi.org/10.1016/j.devcel.2014.01.012
    • (2014) Dev. Cell. , vol.28 , pp. 450-458
    • Böckler, S.1    Westermann, B.2
  • 7
    • 54949137644 scopus 로고    scopus 로고
    • Lysosomal membrane permeabilization in cell death
    • Boya, P., and G. Kroemer. 2008. Lysosomal membrane permeabilization in cell death. Oncogene. 27: 6434-6451. http://dx.doi.org/10.1038/onc.2008.310
    • (2008) Oncogene. , vol.27 , pp. 6434-6451
    • Boya, P.1    Kroemer, G.2
  • 8
    • 0031694197 scopus 로고    scopus 로고
    • Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments
    • Campbell, C.L., and P.E. Thorsness. 1998. Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments. J. Cell Sci. 111: 2455-2464.
    • (1998) J. Cell Sci. , vol.111 , pp. 2455-2464
    • Campbell, C.L.1    Thorsness, P.E.2
  • 9
    • 79960649509 scopus 로고    scopus 로고
    • Autoregulation of Parkin activity through its ubiquitinlike domain
    • Chaugule, V.K., L. Burchell, K.R. Barber, A. Sidhu, S.J. Leslie, G.S. Shaw, and H. Walden. 2011. Autoregulation of Parkin activity through its ubiquitinlike domain. EMBO J. 30: 2853-2867. http://dx.doi.org/10.1038/emboj.2011.204
    • (2011) EMBO J. , vol.30 , pp. 2853-2867
    • Chaugule, V.K.1    Burchell, L.2    Barber, K.R.3    Sidhu, A.4    Leslie, S.J.5    Shaw, G.S.6    Walden, H.7
  • 10
    • 84899912073 scopus 로고    scopus 로고
    • A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
    • Chen, G., Z. Han, D. Feng, Y. Chen, L. Chen, H. Wu, L. Huang, C. Zhou, X. Cai, C. Fu, et al. 2014. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell. 54: 362-377. http://dx.doi.org/10.1016/j.molcel.2014.02.034
    • (2014) Mol. Cell. , vol.54 , pp. 362-377
    • Chen, G.1    Han, Z.2    Feng, D.3    Chen, Y.4    Chen, L.5    Wu, H.6    Huang, L.7    Zhou, C.8    Cai, X.9    Fu, C.10
  • 11
    • 84876531457 scopus 로고    scopus 로고
    • PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
    • Chen, Y., and G.W. Dorn II. 2013. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 340: 471-475. http://dx.doi.org/10.1126/science.1231031
    • (2013) Science. , vol.340 , pp. 471-475
    • Chen, Y.1    Dorn II, G.W.2
  • 12
    • 79957517961 scopus 로고    scopus 로고
    • Parkin mediates apparent E2-independent monoubiquitination in vitro and contains an intrinsic activity that catalyzes polyubiquitination
    • Chew, K.C., N. Matsuda, K. Saisho, G.G. Lim, C. Chai, H.M. Tan, K. Tanaka, and K.L. Lim. 2011. Parkin mediates apparent E2-independent monoubiquitination in vitro and contains an intrinsic activity that catalyzes polyubiquitination. PLoS ONE. 6: e19720. http://dx.doi.org/10.1371/journal.pone.0019720
    • (2011) PLoS ONE. , vol.6
    • Chew, K.C.1    Matsuda, N.2    Saisho, K.3    Lim, G.G.4    Chai, C.5    Tan, H.M.6    Tanaka, K.7    Lim, K.L.8
  • 13
    • 84891741302 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy: roles in disease and aging
    • Cuervo, A.M., and E. Wong. 2014. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24: 92-104. http://dx.doi.org/10.1038/cr.2013.153
    • (2014) Cell Res. , vol.24 , pp. 92-104
    • Cuervo, A.M.1    Wong, E.2
  • 14
    • 78650154466 scopus 로고    scopus 로고
    • Microautophagy of the nucleus coincides with a vacuolar diffusion barrier at nuclear-vacuolar junctions
    • Dawaliby, R., and A. Mayer. 2010. Microautophagy of the nucleus coincides with a vacuolar diffusion barrier at nuclear-vacuolar junctions. Mol. Biol. Cell. 21: 4173-4183. http://dx.doi.org/10.1091/mbc. E09-09-0782
    • (2010) Mol. Biol. Cell. , vol.21 , pp. 4173-4183
    • Dawaliby, R.1    Mayer, A.2
  • 17
    • 84870909942 scopus 로고    scopus 로고
    • Macroautophagy-aided elimination of chromatin: sorting of waste, sorting of fate?
    • Erenpreisa, J., A. Huna, K. Salmina, T.R. Jackson, and M.S. Cragg. 2012. Macroautophagy-aided elimination of chromatin: sorting of waste, sorting of fate? Autophagy. 8: 1877-1881. http://dx.doi.org/10.4161/auto.21610
    • (2012) Autophagy. , vol.8 , pp. 1877-1881
    • Erenpreisa, J.1    Huna, A.2    Salmina, K.3    Jackson, T.R.4    Cragg, M.S.5
  • 18
    • 42049094041 scopus 로고    scopus 로고
    • PpAtg30 tags peroxisomes for turnover by selective autophagy
    • Farré, J.C., R. Manjithaya, R.D. Mathewson, and S. Subramani. 2008. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell. 14: 365-376. http://dx.doi.org/10.1016/j.devcel.2007.12.011
    • (2008) Dev. Cell. , vol.14 , pp. 365-376
    • Farré, J.C.1    Manjithaya, R.2    Mathewson, R.D.3    Subramani, S.4
  • 19
    • 84877579321 scopus 로고    scopus 로고
    • Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11
    • Farré, J.C., A. Burkenroad, S.F. Burnett, and S. Subramani. 2013. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep. 14: 441-449. http://dx.doi.org/10.1038/embor.2013.40
    • (2013) EMBO Rep. , vol.14 , pp. 441-449
    • Farré, J.C.1    Burkenroad, A.2    Burnett, S.F.3    Subramani, S.4
  • 20
    • 84879606527 scopus 로고    scopus 로고
    • Molecular signaling toward mitophagy and its physiological significance
    • Feng, D., L. Liu, Y. Zhu, and Q. Chen. 2013. Molecular signaling toward mitophagy and its physiological significance. Exp. Cell Res. 319: 1697-1705. http://dx.doi.org/10.1016/j.yexcr.2013.03.034
    • (2013) Exp. Cell Res. , vol.319 , pp. 1697-1705
    • Feng, D.1    Liu, L.2    Zhu, Y.3    Chen, Q.4
  • 21
    • 84891747382 scopus 로고    scopus 로고
    • The machinery of macroautophagy
    • Feng, Y., D. He, Z. Yao, and D.J. Klionsky. 2014. The machinery of macroautophagy. Cell Res. 24: 24-41. http://dx.doi.org/10.1038/cr.2013.168
    • (2014) Cell Res. , vol.24 , pp. 24-41
    • Feng, Y.1    He, D.2    Yao, Z.3    Klionsky, D.J.4
  • 22
    • 84876524198 scopus 로고    scopus 로고
    • Regulation of mitophagy by the Gp78 E3 ubiquitin ligase
    • Fu, M., P. St-Pierre, J. Shankar, P.T. Wang, B. Joshi, and I.R. Nabi. 2013. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol. Biol. Cell. 24: 1153-1162. http://dx.doi.org/10.1091/mbc. E12-08-0607
    • (2013) Mol. Biol. Cell. , vol.24 , pp. 1153-1162
    • Fu, M.1    St-Pierre, P.2    Shankar, J.3    Wang, P.T.4    Joshi, B.5    Nabi, I.R.6
  • 23
    • 84881506338 scopus 로고    scopus 로고
    • The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
    • Ge, L., D. Melville, M. Zhang, and R. Schekman. 2013. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife. 2: e00947. http://dx.doi.org/10.7554/eLife.00947
    • (2013) Elife. , vol.2
    • Ge, L.1    Melville, D.2    Zhang, M.3    Schekman, R.4
  • 24
    • 78649463381 scopus 로고    scopus 로고
    • Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkindependent manner upon induction of mitophagy
    • Gegg, M.E., J.M. Cooper, K.Y. Chau, M. Rojo, A.H. Schapira, and J.W. Taanman. 2010. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkindependent manner upon induction of mitophagy. Hum. Mol. Genet. 19: 4861-4870. http://dx.doi.org/10.1093/hmg/ddq419
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 4861-4870
    • Gegg, M.E.1    Cooper, J.M.2    Chau, K.Y.3    Rojo, M.4    Schapira, A.H.5    Taanman, J.W.6
  • 26
    • 79960493052 scopus 로고    scopus 로고
    • Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1
    • Glauser, L., S. Sonnay, K. Stafa, and D.J. Moore. 2011. Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J. Neurochem. 118: 636-645. http://dx.doi.org/10.1111/j.1471-4159.2011.07318.x
    • (2011) J. Neurochem. , vol.118 , pp. 636-645
    • Glauser, L.1    Sonnay, S.2    Stafa, K.3    Moore, D.J.4
  • 27
    • 84884487128 scopus 로고    scopus 로고
    • ER exit sites are physical and functional core autophagosome biogenesis components
    • Graef, M., J.R. Friedman, C. Graham, M. Babu, and J. Nunnari. 2013. ER exit sites are physical and functional core autophagosome biogenesis components. Mol. Biol. Cell. 24: 2918-2931. http://dx.doi.org/10.1091/mbc.E13-07-0381
    • (2013) Mol. Biol. Cell. , vol.24 , pp. 2918-2931
    • Graef, M.1    Friedman, J.R.2    Graham, C.3    Babu, M.4    Nunnari, J.5
  • 29
    • 12444343145 scopus 로고    scopus 로고
    • Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast
    • Hamasaki, M., T. Noda, M. Baba, and Y. Ohsumi. 2005. Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic. 6: 56-65. http://dx.doi.org/10.1111/j.1600-0854.2004.00245.x
    • (2005) Traffic. , vol.6 , pp. 56-65
    • Hamasaki, M.1    Noda, T.2    Baba, M.3    Ohsumi, Y.4
  • 31
    • 55149097659 scopus 로고    scopus 로고
    • The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes
    • Hara-Kuge, S., and Y. Fujiki. 2008. The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes. Exp. Cell Res. 314: 3531-3541. http://dx.doi.org/10.1016/j.yexcr.2008.09.015
    • (2008) Exp. Cell Res. , vol.314 , pp. 3531-3541
    • Hara-Kuge, S.1    Fujiki, Y.2
  • 33
    • 84880108306 scopus 로고    scopus 로고
    • Spatiotemporally controlled induction of autophagy-mediated lysosome turnover
    • Hung, Y.H., L.M. Chen, J.Y. Yang, and W.Y. Yang. 2013. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat Commun. 4: 2111. http://dx.doi.org/10.1038/ncomms3111
    • (2013) Nat Commun. , vol.4 , pp. 2111
    • Hung, Y.H.1    Chen, L.M.2    Yang, J.Y.3    Yang, W.Y.4
  • 35
    • 84857850213 scopus 로고    scopus 로고
    • Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
    • Itakura, E., C. Kishi-Itakura, I. Koyama-Honda, and N. Mizushima. 2012. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J. Cell Sci. 125: 1488-1499. http://dx.doi.org/10.1242/jcs.094110
    • (2012) J. Cell Sci. , vol.125 , pp. 1488-1499
    • Itakura, E.1    Kishi-Itakura, C.2    Koyama-Honda, I.3    Mizushima, N.4
  • 36
    • 84861204926 scopus 로고    scopus 로고
    • PINK1-and Parkin-mediated mitophagy at a glance
    • Jin, S.M., and R.J. Youle. 2012. PINK1-and Parkin-mediated mitophagy at a glance. J. Cell Sci. 125: 795-799. http://dx.doi.org/10.1242/jcs.093849
    • (2012) J. Cell Sci. , vol.125 , pp. 795-799
    • Jin, S.M.1    Youle, R.J.2
  • 37
    • 78649685455 scopus 로고    scopus 로고
    • Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
    • Jin, S.M., M. Lazarou, C. Wang, L.A. Kane, D.P. Narendra, and R.J. Youle. 2010. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191: 933-942. http://dx.doi.org/10.1083/jcb.201008084
    • (2010) J. Cell Biol. , vol.191 , pp. 933-942
    • Jin, S.M.1    Lazarou, M.2    Wang, C.3    Kane, L.A.4    Narendra, D.P.5    Youle, R.J.6
  • 38
    • 79952355107 scopus 로고    scopus 로고
    • Selective autophagy mediated by autophagic adapter proteins
    • Johansen, T., and T. Lamark. 2011. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 7: 279-296. http://dx.doi.org/10.4161/auto.7.3.14487
    • (2011) Autophagy. , vol.7 , pp. 279-296
    • Johansen, T.1    Lamark, T.2
  • 39
  • 40
    • 67650264633 scopus 로고    scopus 로고
    • Atg32 is a mitochondrial protein that confers selectivity during mitophagy
    • Kanki, T., K. Wang, Y. Cao, M. Baba, and D.J. Klionsky. 2009. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell. 17: 98-109. http://dx.doi.org/10.1016/j.devcel.2009.06.014
    • (2009) Dev. Cell. , vol.17 , pp. 98-109
    • Kanki, T.1    Wang, K.2    Cao, Y.3    Baba, M.4    Klionsky, D.J.5
  • 42
    • 77950371695 scopus 로고    scopus 로고
    • PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy
    • Kawajiri, S., S. Saiki, S. Sato, F. Sato, T. Hatano, H. Eguchi, and N. Hattori. 2010. PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett. 584: 1073-1079. http://dx.doi.org/10.1016/j.febslet.2010.02.016
    • (2010) FEBS Lett. , vol.584 , pp. 1073-1079
    • Kawajiri, S.1    Saiki, S.2    Sato, S.3    Sato, F.4    Hatano, T.5    Eguchi, H.6    Hattori, N.7
  • 45
    • 58549084167 scopus 로고    scopus 로고
    • Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes
    • Kim, P.K., D.W. Hailey, R.T. Mullen, and J. Lippincott-Schwartz. 2008. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl. Acad. Sci. USA. 105: 20567-20574. http://dx.doi.org/10.1073/pnas.0810611105
    • (2008) Proc. Natl. Acad. Sci. USA. , vol.105 , pp. 20567-20574
    • Kim, P.K.1    Hailey, D.W.2    Mullen, R.T.3    Lippincott-Schwartz, J.4
  • 47
    • 84864267876 scopus 로고    scopus 로고
    • PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
    • Kondapalli, C., A. Kazlauskaite, N. Zhang, H.I. Woodroof, D.G. Campbell, R. Gourlay, L. Burchell, H. Walden, T.J. Macartney, M. Deak, et al. 2012. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2: 120080. http://dx.doi.org/10.1098/rsob.120080
    • (2012) Open Biol. , vol.2 , pp. 120080
    • Kondapalli, C.1    Kazlauskaite, A.2    Zhang, N.3    Woodroof, H.I.4    Campbell, D.G.5    Gourlay, R.6    Burchell, L.7    Walden, H.8    Macartney, T.J.9    Deak, M.10
  • 50
    • 50249128591 scopus 로고    scopus 로고
    • Is the Rsp5 ubiquitin ligase involved in the regulation of ribophagy?
    • Kraft, C., and M. Peter. 2008. Is the Rsp5 ubiquitin ligase involved in the regulation of ribophagy? Autophagy. 4: 838-840.
    • (2008) Autophagy. , vol.4 , pp. 838-840
    • Kraft, C.1    Peter, M.2
  • 51
    • 43049138051 scopus 로고    scopus 로고
    • Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease
    • Kraft, C., A. Deplazes, M. Sohrmann, and M. Peter. 2008. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 10: 602-610. http://dx.doi.org/10.1038/ncb1723
    • (2008) Nat. Cell Biol. , vol.10 , pp. 602-610
    • Kraft, C.1    Deplazes, A.2    Sohrmann, M.3    Peter, M.4
  • 54
    • 84888380983 scopus 로고    scopus 로고
    • The autophagosome: origins unknown, biogenesis complex
    • Lamb, C.A., T. Yoshimori, and S.A. Tooze. 2013. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14: 759-774. http://dx.doi.org/10.1038/nrm3696
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 759-774
    • Lamb, C.A.1    Yoshimori, T.2    Tooze, S.A.3
  • 55
    • 84857032953 scopus 로고    scopus 로고
    • Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
    • Lazarou, M., S.M. Jin, L.A. Kane, and R.J. Youle. 2012. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell. 22: 320-333. http://dx.doi.org/10.1016/j.devcel.2011.12.014
    • (2012) Dev. Cell. , vol.22 , pp. 320-333
    • Lazarou, M.1    Jin, S.M.2    Kane, L.A.3    Youle, R.J.4
  • 56
    • 84873045973 scopus 로고    scopus 로고
    • PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
    • Lazarou, M., D.P. Narendra, S.M. Jin, E. Tekle, S. Banerjee, and R.J. Youle. 2013. PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J. Cell Biol. 200: 163-172. http://dx.doi.org/10.1083/jcb.201210111
    • (2013) J. Cell Biol. , vol.200 , pp. 163-172
    • Lazarou, M.1    Narendra, D.P.2    Jin, S.M.3    Tekle, E.4    Banerjee, S.5    Youle, R.J.6
  • 57
    • 77952326081 scopus 로고    scopus 로고
    • Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy
    • Lee, J.Y., Y. Nagano, J.P. Taylor, K.L. Lim, and T.P. Yao. 2010. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J. Cell Biol. 189: 671-679. http://dx.doi.org/10.1083/jcb.201001039
    • (2010) J. Cell Biol. , vol.189 , pp. 671-679
    • Lee, J.Y.1    Nagano, Y.2    Taylor, J.P.3    Lim, K.L.4    Yao, T.P.5
  • 58
    • 84859161154 scopus 로고    scopus 로고
    • Microautophagy: lesser-known self-eating
    • Li, W.W., J. Li, and J.K. Bao. 2012. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69: 1125-1136. http://dx.doi.org/10.1007/s00018-011-0865-5
    • (2012) Cell. Mol. Life Sci. , vol.69 , pp. 1125-1136
    • Li, W.W.1    Li, J.2    Bao, J.K.3
  • 59
    • 84884754771 scopus 로고    scopus 로고
    • Regulation of ER-phagy by a Ypt/Rab GTPase module
    • Lipatova, Z., A.H. Shah, J.J. Kim, J.W. Mulholland, and N. Segev. 2013. Regulation of ER-phagy by a Ypt/Rab GTPase module. Mol. Biol. Cell. 24: 3133-3144. http://dx.doi.org/10.1091/mbc. E13-05-0269
    • (2013) Mol. Biol. Cell. , vol.24 , pp. 3133-3144
    • Lipatova, Z.1    Shah, A.H.2    Kim, J.J.3    Mulholland, J.W.4    Segev, N.5
  • 60
    • 84870995648 scopus 로고    scopus 로고
    • Regulation of lipid stores and metabolism by lipophagy
    • Liu, K., and M.J. Czaja. 2013. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20: 3-11. http://dx.doi.org/10.1038/cdd.2012.63
    • (2013) Cell Death Differ. , vol.20 , pp. 3-11
    • Liu, K.1    Czaja, M.J.2
  • 61
    • 84862789618 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
    • Liu, L., D. Feng, G. Chen, M. Chen, Q. Zheng, P. Song, Q. Ma, C. Zhu, R. Wang, W. Qi, et al. 2012. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14: 177-185. http://dx.doi.org/10.1038/ncb2422
    • (2012) Nat. Cell Biol. , vol.14 , pp. 177-185
    • Liu, L.1    Feng, D.2    Chen, G.3    Chen, M.4    Zheng, Q.5    Song, P.6    Ma, Q.7    Zhu, C.8    Wang, R.9    Qi, W.10
  • 63
    • 84880863470 scopus 로고    scopus 로고
    • Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events
    • Manivannan, S., R. de Boer, M. Veenhuis, and I.J. van der Klei. 2013. Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events. Autophagy. 9: 1044-1056. http://dx.doi.org/10.4161/auto.24543
    • (2013) Autophagy. , vol.9 , pp. 1044-1056
    • Manivannan, S.1    de Boer, R.2    Veenhuis, M.3    van der Klei, I.J.4
  • 64
    • 77951168347 scopus 로고    scopus 로고
    • A yeast MAPK cascade regulates pexophagy but not other autophagy pathways
    • Manjithaya, R., S. Jain, J.C. Farré, and S. Subramani. 2010a. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J. Cell Biol. 189: 303-310. http://dx.doi.org/10.1083/jcb.200909154
    • (2010) J. Cell Biol. , vol.189 , pp. 303-310
    • Manjithaya, R.1    Jain, S.2    Farré, J.C.3    Subramani, S.4
  • 65
    • 77950470469 scopus 로고    scopus 로고
    • Molecular mechanism and physiological role of pexophagy
    • Manjithaya, R., T.Y. Nazarko, J.C. Farré, and S. Subramani. 2010b. Molecular mechanism and physiological role of pexophagy. FEBS Lett. 584: 1367-1373. http://dx.doi.org/10.1016/j.febslet.2010.01.019
    • (2010) FEBS Lett. , vol.584 , pp. 1367-1373
    • Manjithaya, R.1    Nazarko, T.Y.2    Farré, J.C.3    Subramani, S.4
  • 66
    • 79958219318 scopus 로고    scopus 로고
    • Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae
    • Mao, K., K. Wang, M. Zhao, T. Xu, and D.J. Klionsky. 2011. Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J. Cell Biol. 193: 755-767. http://dx.doi.org/10.1083/jcb.201102092
    • (2011) J. Cell Biol. , vol.193 , pp. 755-767
    • Mao, K.1    Wang, K.2    Zhao, M.3    Xu, T.4    Klionsky, D.J.5
  • 67
    • 84898400392 scopus 로고    scopus 로고
    • The progression of peroxisomal degradation through autophagy requires peroxisomal division
    • Mao, K., X. Liu, Y. Feng, and D.J. Klionsky. 2014. The progression of peroxisomal degradation through autophagy requires peroxisomal division. Autophagy. 10: 652-661. http://dx.doi.org/10.4161/auto.27852
    • (2014) Autophagy. , vol.10 , pp. 652-661
    • Mao, K.1    Liu, X.2    Feng, Y.3    Klionsky, D.J.4
  • 68
    • 77951181836 scopus 로고    scopus 로고
    • PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
    • Matsuda, N., S. Sato, K. Shiba, K. Okatsu, K. Saisho, C.A. Gautier, Y.S. Sou, S. Saiki, S. Kawajiri, F. Sato, et al. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189: 211-221. http://dx.doi.org/10.1083/jcb.200910140
    • (2010) J. Cell Biol. , vol.189 , pp. 211-221
    • Matsuda, N.1    Sato, S.2    Shiba, K.3    Okatsu, K.4    Saisho, K.5    Gautier, C.A.6    Sou, Y.S.7    Saiki, S.8    Kawajiri, S.9    Sato, F.10
  • 69
    • 79955667485 scopus 로고    scopus 로고
    • The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking
    • Meissner, C., H. Lorenz, A. Weihofen, D.J. Selkoe, and M.K. Lemberg. 2011. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 117: 856-867. http://dx.doi.org/10.1111/j.1471-4159.2011.07253.x
    • (2011) J. Neurochem. , vol.117 , pp. 856-867
    • Meissner, C.1    Lorenz, H.2    Weihofen, A.3    Selkoe, D.J.4    Lemberg, M.K.5
  • 70
    • 84885441274 scopus 로고    scopus 로고
    • Nucleophagy at a glance
    • Mijaljica, D., and R.J. Devenish. 2013. Nucleophagy at a glance. J. Cell Sci. 126: 4325-4330. http://dx.doi.org/10.1242/jcs.133090
    • (2013) J. Cell Sci. , vol.126 , pp. 4325-4330
    • Mijaljica, D.1    Devenish, R.J.2
  • 71
    • 84863095978 scopus 로고    scopus 로고
    • A late form of nucleophagy in Saccharomyces cerevisiae
    • Mijaljica, D., M. Prescott, and R.J. Devenish. 2012. A late form of nucleophagy in Saccharomyces cerevisiae. PLoS ONE. 7: e40013. http://dx.doi.org/10.1371/journal.pone.0040013
    • (2012) PLoS ONE. , vol.7
    • Mijaljica, D.1    Prescott, M.2    Devenish, R.J.3
  • 72
    • 84866244791 scopus 로고    scopus 로고
    • Autophagy in protein and organelle turnover
    • Mizushima, N. 2011. Autophagy in protein and organelle turnover. Cold Spring Harb. Symp. Quant. Biol. 76: 397-402. http://dx.doi.org/10.1101/sqb.2011.76.011023
    • (2011) Cold Spring Harb. Symp. Quant. Biol. , vol.76 , pp. 397-402
    • Mizushima, N.1
  • 73
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: renovation of cells and tissues
    • Mizushima, N., and M. Komatsu. 2011. Autophagy: renovation of cells and tissues. Cell. 147: 728-741. http://dx.doi.org/10.1016/j.cell.2011.10.026
    • (2011) Cell. , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 74
    • 80054025654 scopus 로고    scopus 로고
    • The role of Atg proteins in autophagosome formation
    • Mizushima, N., T. Yoshimori, and Y. Ohsumi. 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27: 107-132. http://dx.doi.org/10.1146/annurev-cellbio-092910-154005
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 107-132
    • Mizushima, N.1    Yoshimori, T.2    Ohsumi, Y.3
  • 75
    • 84863843241 scopus 로고    scopus 로고
    • Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae
    • Motley, A.M., J.M. Nuttall, and E.H. Hettema. 2012. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 31: 2852-2868. http://dx.doi.org/10.1038/emboj.2012.151
    • (2012) EMBO J. , vol.31 , pp. 2852-2868
    • Motley, A.M.1    Nuttall, J.M.2    Hettema, E.H.3
  • 76
    • 58149314211 scopus 로고    scopus 로고
    • Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
    • Narendra, D., A. Tanaka, D.F. Suen, and R.J. Youle. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183: 795-803. http://dx.doi.org/10.1083/jcb.200809125
    • (2008) J. Cell Biol. , vol.183 , pp. 795-803
    • Narendra, D.1    Tanaka, A.2    Suen, D.F.3    Youle, R.J.4
  • 77
    • 78649300971 scopus 로고    scopus 로고
    • p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
    • Narendra, D., L.A. Kane, D.N. Hauser, I.M. Fearnley, and R.J. Youle. 2010a. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy. 6: 1090-1106. http://dx.doi.org/10.4161/auto.6.8.13426
    • (2010) Autophagy. , vol.6 , pp. 1090-1106
    • Narendra, D.1    Kane, L.A.2    Hauser, D.N.3    Fearnley, I.M.4    Youle, R.J.5
  • 79
    • 84868575932 scopus 로고    scopus 로고
    • Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism
    • Narendra, D., J.E. Walker, and R. Youle. 2012. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb. Perspect. Biol. 4: a011338. http://dx.doi.org/10.1101/cshperspect.a011338
    • (2012) Cold Spring Harb. Perspect. Biol. , vol.4
    • Narendra, D.1    Walker, J.E.2    Youle, R.3
  • 80
    • 77950484269 scopus 로고    scopus 로고
    • Atg8-family interacting motif crucial for selective autophagy
    • Noda, N.N., Y. Ohsumi, and F. Inagaki. 2010. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 584: 1379-1385. http://dx.doi.org/10.1016/j.febslet.2010.01.018
    • (2010) FEBS Lett. , vol.584 , pp. 1379-1385
    • Noda, N.N.1    Ohsumi, Y.2    Inagaki, F.3
  • 82
    • 84858376953 scopus 로고    scopus 로고
    • Mitochondria: in sickness and in health
    • Nunnari, J., and A. Suomalainen. 2012. Mitochondria: in sickness and in health. Cell. 148: 1145-1159. http://dx.doi.org/10.1016/j.cell.2012.02.035
    • (2012) Cell. , vol.148 , pp. 1145-1159
    • Nunnari, J.1    Suomalainen, A.2
  • 83
    • 84899719244 scopus 로고    scopus 로고
    • Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae
    • Nuttall, J.M., A.M. Motley, and E.H. Hettema. 2014. Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae. Autophagy. 10: 835-845. http://dx.doi.org/10.4161/auto.28259
    • (2014) Autophagy. , vol.10 , pp. 835-845
    • Nuttall, J.M.1    Motley, A.M.2    Hettema, E.H.3
  • 84
    • 84859429500 scopus 로고    scopus 로고
    • Mitochondria and autophagy: critical interplay between the two homeostats
    • Okamoto, K., and N. Kondo-Okamoto. 2012. Mitochondria and autophagy: critical interplay between the two homeostats. Biochim. Biophys. Acta. 1820: 595-600. http://dx.doi.org/10.1016/j.bbagen.2011.08.001
    • (2012) Biochim. Biophys. Acta. , vol.1820 , pp. 595-600
    • Okamoto, K.1    Kondo-Okamoto, N.2
  • 85
    • 67650246357 scopus 로고    scopus 로고
    • Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
    • Okamoto, K., N. Kondo-Okamoto, and Y. Ohsumi. 2009. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell. 17: 87-97. http://dx.doi.org/10.1016/j.devcel.2009.06.013
    • (2009) Dev. Cell. , vol.17 , pp. 87-97
    • Okamoto, K.1    Kondo-Okamoto, N.2    Ohsumi, Y.3
  • 87
    • 84866072587 scopus 로고    scopus 로고
    • PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
    • Okatsu, K., T. Oka, M. Iguchi, K. Imamura, H. Kosako, N. Tani, M. Kimura, E. Go, F. Koyano, M. Funayama, et al. 2012. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun. 3: 1016. http://dx.doi.org/10.1038/ncomms2016
    • (2012) Nat Commun. , vol.3 , pp. 1016
    • Okatsu, K.1    Oka, T.2    Iguchi, M.3    Imamura, K.4    Kosako, H.5    Tani, N.6    Kimura, M.7    Go, E.8    Koyano, F.9    Funayama, M.10
  • 88
    • 84890957474 scopus 로고    scopus 로고
    • A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment
    • Okatsu, K., M. Uno, F. Koyano, E. Go, M. Kimura, T. Oka, K. Tanaka, and N. Matsuda. 2013. A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment. J. Biol. Chem. 288: 36372-36384. http://dx.doi.org/10.1074/jbc. M113.509653
    • (2013) J. Biol. Chem. , vol.288 , pp. 36372-36384
    • Okatsu, K.1    Uno, M.2    Koyano, F.3    Go, E.4    Kimura, M.5    Oka, T.6    Tanaka, K.7    Matsuda, N.8
  • 89
    • 77955259144 scopus 로고    scopus 로고
    • Peroxisomes as dynamic organelles: autophagic degradation
    • Oku, M., and Y. Sakai. 2010. Peroxisomes as dynamic organelles: autophagic degradation. FEBS J. 277: 3289-3294. http://dx.doi.org/10.1111/j.1742-4658.2010.07741.x
    • (2010) FEBS J. , vol.277 , pp. 3289-3294
    • Oku, M.1    Sakai, Y.2
  • 92
    • 84896265496 scopus 로고    scopus 로고
    • Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy
    • Ossareh-Nazari, B., C.A. Niño, M.H. Bengtson, J.W. Lee, C.A. Joazeiro, and C. Dargemont. 2014. Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. J. Cell Biol. 204: 909-917. http://dx.doi.org/10.1083/jcb.201308139
    • (2014) J. Cell Biol. , vol.204 , pp. 909-917
    • Ossareh-Nazari, B.1    Niño, C.A.2    Bengtson, M.H.3    Lee, J.W.4    Joazeiro, C.A.5    Dargemont, C.6
  • 94
    • 77955029885 scopus 로고    scopus 로고
    • Effect of endogenous mutant and wildtype PINK1 on Parkin in fibroblasts from Parkinson disease patients
    • Rakovic, A., A. Grünewald, P. Seibler, A. Ramirez, N. Kock, S. Orolicki, K. Lohmann, and C. Klein. 2010. Effect of endogenous mutant and wildtype PINK1 on Parkin in fibroblasts from Parkinson disease patients. Hum. Mol. Genet. 19: 3124-3137. http://dx.doi.org/10.1093/hmg/ddq215
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 3124-3137
    • Rakovic, A.1    Grünewald, A.2    Seibler, P.3    Ramirez, A.4    Kock, N.5    Orolicki, S.6    Lohmann, K.7    Klein, C.8
  • 99
    • 84892859905 scopus 로고    scopus 로고
    • Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
    • Rogov, V., V. Dötsch, T. Johansen, and V. Kirkin. 2014. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell. 53: 167-178. http://dx.doi.org/10.1016/j.molcel.2013.12.014
    • (2014) Mol. Cell. , vol.53 , pp. 167-178
    • Rogov, V.1    Dötsch, V.2    Johansen, T.3    Kirkin, V.4
  • 101
    • 84876296881 scopus 로고    scopus 로고
    • Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
    • Sarraf, S.A., M. Raman, V. Guarani-Pereira, M.E. Sowa, E.L. Huttlin, S.P. Gygi, and J.W. Harper. 2013. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 496: 372-376. http://dx.doi.org/10.1038/nature12043
    • (2013) Nature. , vol.496 , pp. 372-376
    • Sarraf, S.A.1    Raman, M.2    Guarani-Pereira, V.3    Sowa, M.E.4    Huttlin, E.L.5    Gygi, S.P.6    Harper, J.W.7
  • 103
    • 84870980670 scopus 로고    scopus 로고
    • Ubiquitination and selective autophagy
    • Shaid, S., C.H. Brandts, H. Serve, and I. Dikic. 2013. Ubiquitination and selective autophagy. Cell Death Differ. 20: 21-30. http://dx.doi.org/10.1038/cdd.2012.72
    • (2013) Cell Death Differ. , vol.20 , pp. 21-30
    • Shaid, S.1    Brandts, C.H.2    Serve, H.3    Dikic, I.4
  • 105
    • 84871891737 scopus 로고    scopus 로고
    • PINK1-mediated phosphorylation of the Parkin ubiquitinlike domain primes mitochondrial translocation of Parkin and regulates mitophagy
    • Shiba-Fukushima, K., Y. Imai, S. Yoshida, Y. Ishihama, T. Kanao, S. Sato, and N. Hattori. 2012. PINK1-mediated phosphorylation of the Parkin ubiquitinlike domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep. 2: 1002. http://dx.doi.org/10.1038/srep01002
    • (2012) Sci Rep. , vol.2 , pp. 1002
    • Shiba-Fukushima, K.1    Imai, Y.2    Yoshida, S.3    Ishihama, Y.4    Kanao, T.5    Sato, S.6    Hattori, N.7
  • 106
    • 79960878784 scopus 로고    scopus 로고
    • Atg8: an autophagy-related ubiquitin-like protein family
    • Shpilka, T., H. Weidberg, S. Pietrokovski, and Z. Elazar. 2011. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol. 12: 226. http://dx.doi.org/10.1186/gb-2011-12-7-226
    • (2011) Genome Biol. , vol.12 , pp. 226
    • Shpilka, T.1    Weidberg, H.2    Pietrokovski, S.3    Elazar, Z.4
  • 110
    • 84871002139 scopus 로고    scopus 로고
    • Selective autophagy in budding yeast
    • Suzuki, K. 2013. Selective autophagy in budding yeast. Cell Death Differ. 20: 43-48. http://dx.doi.org/10.1038/cdd.2012.73
    • (2013) Cell Death Differ. , vol.20 , pp. 43-48
    • Suzuki, K.1
  • 111
    • 84880019176 scopus 로고    scopus 로고
    • Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae
    • Suzuki, K., M. Akioka, C. Kondo-Kakuta, H. Yamamoto, and Y. Ohsumi. 2013. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. 126: 2534-2544. http://dx.doi.org/10.1242/jcs.122960
    • (2013) J. Cell Sci. , vol.126 , pp. 2534-2544
    • Suzuki, K.1    Akioka, M.2    Kondo-Kakuta, C.3    Yamamoto, H.4    Ohsumi, Y.5
  • 112
    • 0026668042 scopus 로고
    • Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
    • Takeshige, K., M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi. 1992. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119: 301-311. http://dx.doi.org/10.1083/jcb.119.2.301
    • (1992) J. Cell Biol. , vol.119 , pp. 301-311
    • Takeshige, K.1    Baba, M.2    Tsuboi, S.3    Noda, T.4    Ohsumi, Y.5
  • 113
    • 84888350190 scopus 로고    scopus 로고
    • The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway
    • Tan, D., Y. Cai, J. Wang, J. Zhang, S. Menon, H.T. Chou, S. Ferro-Novick, K.M. Reinisch, and T. Walz. 2013. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. Proc. Natl. Acad. Sci. USA. 110: 19432-19437. http://dx.doi.org/10.1073/pnas.1316356110
    • (2013) Proc. Natl. Acad. Sci. USA. , vol.110 , pp. 19432-19437
    • Tan, D.1    Cai, Y.2    Wang, J.3    Zhang, J.4    Menon, S.5    Chou, H.T.6    Ferro-Novick, S.7    Reinisch, K.M.8    Walz, T.9
  • 114
    • 78650729600 scopus 로고    scopus 로고
    • Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
    • Tanaka, A., M.M. Cleland, S. Xu, D.P. Narendra, D.F. Suen, M. Karbowski, and R.J. Youle. 2010. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191: 1367-1380. http://dx.doi.org/10.1083/jcb.201007013
    • (2010) J. Cell Biol. , vol.191 , pp. 1367-1380
    • Tanaka, A.1    Cleland, M.M.2    Xu, S.3    Narendra, D.P.4    Suen, D.F.5    Karbowski, M.6    Youle, R.J.7
  • 117
    • 33845329876 scopus 로고    scopus 로고
    • The significance of peroxisomes in methanol metabolism in methylotrophic yeast
    • van der Klei, I.J., H. Yurimoto, Y. Sakai, and M. Veenhuis. 2006. The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim. Biophys. Acta. 1763: 1453-1462. http://dx.doi.org/10.1016/j.bbamcr.2006.07.016
    • (2006) Biochim. Biophys. Acta. , vol.1763 , pp. 1453-1462
    • van der Klei, I.J.1    Yurimoto, H.2    Sakai, Y.3    Veenhuis, M.4
  • 119
    • 84861913952 scopus 로고    scopus 로고
    • Lipid droplets and cellular lipid metabolism
    • Walther, T.C., and R.V. Farese Jr. 2012. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81: 687-714. http://dx.doi.org/10.1146/annurev-biochem-061009-102430
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 687-714
    • Walther, T.C.1    Farese Jr., R.V.2
  • 120
    • 84887472941 scopus 로고    scopus 로고
    • Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy
    • Wang, K., M. Jin, X. Liu, and D.J. Klionsky. 2013. Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy. Autophagy. 9: 1828-1836. http://dx.doi.org/10.4161/auto.26281
    • (2013) Autophagy. , vol.9 , pp. 1828-1836
    • Wang, K.1    Jin, M.2    Liu, X.3    Klionsky, D.J.4
  • 121
    • 84881477223 scopus 로고    scopus 로고
    • Structure of the human Parkin ligase domain in an autoinhibited state
    • Wauer, T., and D. Komander. 2013. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32: 2099-2112. http://dx.doi.org/10.1038/emboj.2013.125
    • (2013) EMBO J. , vol.32 , pp. 2099-2112
    • Wauer, T.1    Komander, D.2
  • 122
    • 79959415069 scopus 로고    scopus 로고
    • Biogenesis and cargo selectivity of autophagosomes
    • Weidberg, H., E. Shvets, and Z. Elazar. 2011. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 80: 125-156. http://dx.doi.org/10.1146/annurev-biochem-052709-094552
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 125-156
    • Weidberg, H.1    Shvets, E.2    Elazar, Z.3
  • 123
    • 84885327315 scopus 로고    scopus 로고
    • Uth1 is a mitochondrial inner membrane protein dispensable for post-log-phase and rapamycin-induced mitophagy
    • Welter, E., M. Montino, R. Reinhold, P. Schlotterhose, R. Krick, J. Dudek, P. Rehling, and M. Thumm. 2013. Uth1 is a mitochondrial inner membrane protein dispensable for post-log-phase and rapamycin-induced mitophagy. FEBS J. 280: 4970-4982. http://dx.doi.org/10.1111/febs.12468
    • (2013) FEBS J. , vol.280 , pp. 4970-4982
    • Welter, E.1    Montino, M.2    Reinhold, R.3    Schlotterhose, P.4    Krick, R.5    Dudek, J.6    Rehling, P.7    Thumm, M.8
  • 124
    • 84891461247 scopus 로고    scopus 로고
    • The LC3 interactome at a glance
    • Wild, P., D.G. McEwan, and I. Dikic. 2014. The LC3 interactome at a glance. J. Cell Sci. 127: 3-9. http://dx.doi.org/10.1242/jcs.140426
    • (2014) J. Cell Sci. , vol.127 , pp. 3-9
    • Wild, P.1    McEwan, D.G.2    Dikic, I.3
  • 125
    • 84882641004 scopus 로고    scopus 로고
    • Pexophagy-linked degradation of the peroxisomal membrane protein Pex3p involves the ubiquitin-proteasome system
    • Williams, C., and I.J. van der Klei. 2013. Pexophagy-linked degradation of the peroxisomal membrane protein Pex3p involves the ubiquitin-proteasome system. Biochem. Biophys. Res. Commun. 438: 395-401. http://dx.doi.org/10.1016/j.bbrc.2013.07.086
    • (2013) Biochem. Biophys. Res. Commun. , vol.438 , pp. 395-401
    • Williams, C.1    van der Klei, I.J.2
  • 126
    • 84899789746 scopus 로고    scopus 로고
    • ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy
    • Wu, W., W. Tian, Z. Hu, G. Chen, L. Huang, W. Li, X. Zhang, P. Xue, C. Zhou, L. Liu, et al. 2014. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 15: 566-575. http://dx.doi.org/10.1002/embr.201438501
    • (2014) EMBO Rep. , vol.15 , pp. 566-575
    • Wu, W.1    Tian, W.2    Hu, Z.3    Chen, G.4    Huang, L.5    Li, W.6    Zhang, X.7    Xue, P.8    Zhou, C.9    Liu, L.10
  • 127
    • 84887453820 scopus 로고    scopus 로고
    • PINK1 is degraded through the N-end rule pathway
    • Yamano, K., and R.J. Youle. 2013. PINK1 is degraded through the N-end rule pathway. Autophagy. 9: 1758-1769. http://dx.doi.org/10.4161/auto.24633
    • (2013) Autophagy. , vol.9 , pp. 1758-1769
    • Yamano, K.1    Youle, R.J.2
  • 128
    • 84898652320 scopus 로고    scopus 로고
    • Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy
    • Yamano, K., A.I. Fogel, C. Wang, A.M. van der Bliek, and R.J. Youle. 2014. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. Elife. 3: e01612. http://dx.doi.org/10.7554/eLife.01612
    • (2014) Elife. , vol.3
    • Yamano, K.1    Fogel, A.I.2    Wang, C.3    van der Bliek, A.M.4    Youle, R.J.5
  • 131
    • 84879885169 scopus 로고    scopus 로고
    • Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism
    • Zheng, X., and T. Hunter. 2013. Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res. 23: 886-897. http://dx.doi.org/10.1038/cr.2013.66
    • (2013) Cell Res. , vol.23 , pp. 886-897
    • Zheng, X.1    Hunter, T.2
  • 132
    • 84872291490 scopus 로고    scopus 로고
    • Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis
    • Zhu, Y., S. Massen, M. Terenzio, V. Lang, S. Chen-Lindner, R. Eils, I. Novak, I. Dikic, A. Hamacher-Brady, and N.R. Brady. 2013. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J. Biol. Chem. 288: 1099-1113. http://dx.doi.org/10.1074/jbc. M112.399345
    • (2013) J. Biol. Chem. , vol.288 , pp. 1099-1113
    • Zhu, Y.1    Massen, S.2    Terenzio, M.3    Lang, V.4    Chen-Lindner, S.5    Eils, R.6    Novak, I.7    Dikic, I.8    Hamacher-Brady, A.9    Brady, N.R.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.