-
1
-
-
80052197610
-
Phosphorylation of Serine 114 on Atg32 mediates mitophagy
-
Aoki, Y., T. Kanki, Y. Hirota, Y. Kurihara, T. Saigusa, T. Uchiumi, and D. Kang. 2011. Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol. Biol. Cell. 22: 3206-3217. http://dx.doi.org/10.1091/mbc. E11-02-0145
-
(2011)
Mol. Biol. Cell.
, vol.22
, pp. 3206-3217
-
-
Aoki, Y.1
Kanki, T.2
Hirota, Y.3
Kurihara, Y.4
Saigusa, T.5
Uchiumi, T.6
Kang, D.7
-
2
-
-
84871005673
-
The pathways of mitophagy for quality control and clearance of mitochondria
-
Ashrafi, G., and T.L. Schwarz. 2013. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20: 31-42. http://dx.doi.org/10.1038/cdd.2012.81
-
(2013)
Cell Death Differ.
, vol.20
, pp. 31-42
-
-
Ashrafi, G.1
Schwarz, T.L.2
-
3
-
-
0037044768
-
Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha
-
Bellu, A.R., F.A. Salomons, J.A. Kiel, M. Veenhuis, and I.J. Van Der Klei. 2002. Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha. J. Biol. Chem. 277: 42875-42880. http://dx.doi.org/10.1074/jbc. M205437200
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 42875-42880
-
-
Bellu, A.R.1
Salomons, F.A.2
Kiel, J.A.3
Veenhuis, M.4
Van Der Klei, I.J.5
-
4
-
-
33845480131
-
Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response
-
Bernales, S., K.L. McDonald, and P. Walter. 2006. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4: e423. http://dx.doi.org/10.1371/journal.pbio.0040423
-
(2006)
PLoS Biol.
, vol.4
-
-
Bernales, S.1
McDonald, K.L.2
Walter, P.3
-
5
-
-
84883414890
-
The LIR motif-crucial for selective autophagy
-
Birgisdottir, A.B., T. Lamark, and T. Johansen. 2013. The LIR motif-crucial for selective autophagy. J. Cell Sci. 126: 3237-3247.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 3237-3247
-
-
Birgisdottir, A.B.1
Lamark, T.2
Johansen, T.3
-
6
-
-
84894326290
-
Mitochondrial ER contacts are crucial for mitophagy in yeast
-
Böckler, S., and B. Westermann. 2014. Mitochondrial ER contacts are crucial for mitophagy in yeast. Dev. Cell. 28: 450-458. http://dx.doi.org/10.1016/j.devcel.2014.01.012
-
(2014)
Dev. Cell.
, vol.28
, pp. 450-458
-
-
Böckler, S.1
Westermann, B.2
-
7
-
-
54949137644
-
Lysosomal membrane permeabilization in cell death
-
Boya, P., and G. Kroemer. 2008. Lysosomal membrane permeabilization in cell death. Oncogene. 27: 6434-6451. http://dx.doi.org/10.1038/onc.2008.310
-
(2008)
Oncogene.
, vol.27
, pp. 6434-6451
-
-
Boya, P.1
Kroemer, G.2
-
8
-
-
0031694197
-
Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments
-
Campbell, C.L., and P.E. Thorsness. 1998. Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments. J. Cell Sci. 111: 2455-2464.
-
(1998)
J. Cell Sci.
, vol.111
, pp. 2455-2464
-
-
Campbell, C.L.1
Thorsness, P.E.2
-
9
-
-
79960649509
-
Autoregulation of Parkin activity through its ubiquitinlike domain
-
Chaugule, V.K., L. Burchell, K.R. Barber, A. Sidhu, S.J. Leslie, G.S. Shaw, and H. Walden. 2011. Autoregulation of Parkin activity through its ubiquitinlike domain. EMBO J. 30: 2853-2867. http://dx.doi.org/10.1038/emboj.2011.204
-
(2011)
EMBO J.
, vol.30
, pp. 2853-2867
-
-
Chaugule, V.K.1
Burchell, L.2
Barber, K.R.3
Sidhu, A.4
Leslie, S.J.5
Shaw, G.S.6
Walden, H.7
-
10
-
-
84899912073
-
A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
-
Chen, G., Z. Han, D. Feng, Y. Chen, L. Chen, H. Wu, L. Huang, C. Zhou, X. Cai, C. Fu, et al. 2014. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell. 54: 362-377. http://dx.doi.org/10.1016/j.molcel.2014.02.034
-
(2014)
Mol. Cell.
, vol.54
, pp. 362-377
-
-
Chen, G.1
Han, Z.2
Feng, D.3
Chen, Y.4
Chen, L.5
Wu, H.6
Huang, L.7
Zhou, C.8
Cai, X.9
Fu, C.10
-
11
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
Chen, Y., and G.W. Dorn II. 2013. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 340: 471-475. http://dx.doi.org/10.1126/science.1231031
-
(2013)
Science.
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn II, G.W.2
-
12
-
-
79957517961
-
Parkin mediates apparent E2-independent monoubiquitination in vitro and contains an intrinsic activity that catalyzes polyubiquitination
-
Chew, K.C., N. Matsuda, K. Saisho, G.G. Lim, C. Chai, H.M. Tan, K. Tanaka, and K.L. Lim. 2011. Parkin mediates apparent E2-independent monoubiquitination in vitro and contains an intrinsic activity that catalyzes polyubiquitination. PLoS ONE. 6: e19720. http://dx.doi.org/10.1371/journal.pone.0019720
-
(2011)
PLoS ONE.
, vol.6
-
-
Chew, K.C.1
Matsuda, N.2
Saisho, K.3
Lim, G.G.4
Chai, C.5
Tan, H.M.6
Tanaka, K.7
Lim, K.L.8
-
13
-
-
84891741302
-
Chaperone-mediated autophagy: roles in disease and aging
-
Cuervo, A.M., and E. Wong. 2014. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24: 92-104. http://dx.doi.org/10.1038/cr.2013.153
-
(2014)
Cell Res.
, vol.24
, pp. 92-104
-
-
Cuervo, A.M.1
Wong, E.2
-
14
-
-
78650154466
-
Microautophagy of the nucleus coincides with a vacuolar diffusion barrier at nuclear-vacuolar junctions
-
Dawaliby, R., and A. Mayer. 2010. Microautophagy of the nucleus coincides with a vacuolar diffusion barrier at nuclear-vacuolar junctions. Mol. Biol. Cell. 21: 4173-4183. http://dx.doi.org/10.1091/mbc. E09-09-0782
-
(2010)
Mol. Biol. Cell.
, vol.21
, pp. 4173-4183
-
-
Dawaliby, R.1
Mayer, A.2
-
15
-
-
79551574736
-
PINK1 cleavage at position A103 by the mitochondrial protease PARL
-
Deas, E., H. Plun-Favreau, S. Gandhi, H. Desmond, S. Kjaer, S.H. Loh, A.E. Renton, R.J. Harvey, A.J. Whitworth, L.M. Martins, et al. 2011. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 20: 867-879. http://dx.doi.org/10.1093/hmg/ddq526
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 867-879
-
-
Deas, E.1
Plun-Favreau, H.2
Gandhi, S.3
Desmond, H.4
Kjaer, S.5
Loh, S.H.6
Renton, A.E.7
Harvey, R.J.8
Whitworth, A.J.9
Martins, L.M.10
-
16
-
-
84876345355
-
NBR1 acts as an autophagy receptor for peroxisomes
-
Deosaran, E., K.B. Larsen, R. Hua, G. Sargent, Y. Wang, S. Kim, T. Lamark, M. Jauregui, K. Law, J. Lippincott-Schwartz, et al. 2013. NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci. 126: 939-952. http://dx.doi.org/10.1242/jcs.114819
-
(2013)
J. Cell Sci.
, vol.126
, pp. 939-952
-
-
Deosaran, E.1
Larsen, K.B.2
Hua, R.3
Sargent, G.4
Wang, Y.5
Kim, S.6
Lamark, T.7
Jauregui, M.8
Law, K.9
Lippincott-Schwartz, J.10
-
17
-
-
84870909942
-
Macroautophagy-aided elimination of chromatin: sorting of waste, sorting of fate?
-
Erenpreisa, J., A. Huna, K. Salmina, T.R. Jackson, and M.S. Cragg. 2012. Macroautophagy-aided elimination of chromatin: sorting of waste, sorting of fate? Autophagy. 8: 1877-1881. http://dx.doi.org/10.4161/auto.21610
-
(2012)
Autophagy.
, vol.8
, pp. 1877-1881
-
-
Erenpreisa, J.1
Huna, A.2
Salmina, K.3
Jackson, T.R.4
Cragg, M.S.5
-
18
-
-
42049094041
-
PpAtg30 tags peroxisomes for turnover by selective autophagy
-
Farré, J.C., R. Manjithaya, R.D. Mathewson, and S. Subramani. 2008. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell. 14: 365-376. http://dx.doi.org/10.1016/j.devcel.2007.12.011
-
(2008)
Dev. Cell.
, vol.14
, pp. 365-376
-
-
Farré, J.C.1
Manjithaya, R.2
Mathewson, R.D.3
Subramani, S.4
-
19
-
-
84877579321
-
Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11
-
Farré, J.C., A. Burkenroad, S.F. Burnett, and S. Subramani. 2013. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep. 14: 441-449. http://dx.doi.org/10.1038/embor.2013.40
-
(2013)
EMBO Rep.
, vol.14
, pp. 441-449
-
-
Farré, J.C.1
Burkenroad, A.2
Burnett, S.F.3
Subramani, S.4
-
20
-
-
84879606527
-
Molecular signaling toward mitophagy and its physiological significance
-
Feng, D., L. Liu, Y. Zhu, and Q. Chen. 2013. Molecular signaling toward mitophagy and its physiological significance. Exp. Cell Res. 319: 1697-1705. http://dx.doi.org/10.1016/j.yexcr.2013.03.034
-
(2013)
Exp. Cell Res.
, vol.319
, pp. 1697-1705
-
-
Feng, D.1
Liu, L.2
Zhu, Y.3
Chen, Q.4
-
21
-
-
84891747382
-
The machinery of macroautophagy
-
Feng, Y., D. He, Z. Yao, and D.J. Klionsky. 2014. The machinery of macroautophagy. Cell Res. 24: 24-41. http://dx.doi.org/10.1038/cr.2013.168
-
(2014)
Cell Res.
, vol.24
, pp. 24-41
-
-
Feng, Y.1
He, D.2
Yao, Z.3
Klionsky, D.J.4
-
22
-
-
84876524198
-
Regulation of mitophagy by the Gp78 E3 ubiquitin ligase
-
Fu, M., P. St-Pierre, J. Shankar, P.T. Wang, B. Joshi, and I.R. Nabi. 2013. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol. Biol. Cell. 24: 1153-1162. http://dx.doi.org/10.1091/mbc. E12-08-0607
-
(2013)
Mol. Biol. Cell.
, vol.24
, pp. 1153-1162
-
-
Fu, M.1
St-Pierre, P.2
Shankar, J.3
Wang, P.T.4
Joshi, B.5
Nabi, I.R.6
-
23
-
-
84881506338
-
The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
-
Ge, L., D. Melville, M. Zhang, and R. Schekman. 2013. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife. 2: e00947. http://dx.doi.org/10.7554/eLife.00947
-
(2013)
Elife.
, vol.2
-
-
Ge, L.1
Melville, D.2
Zhang, M.3
Schekman, R.4
-
24
-
-
78649463381
-
Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkindependent manner upon induction of mitophagy
-
Gegg, M.E., J.M. Cooper, K.Y. Chau, M. Rojo, A.H. Schapira, and J.W. Taanman. 2010. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkindependent manner upon induction of mitophagy. Hum. Mol. Genet. 19: 4861-4870. http://dx.doi.org/10.1093/hmg/ddq419
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 4861-4870
-
-
Gegg, M.E.1
Cooper, J.M.2
Chau, K.Y.3
Rojo, M.4
Schapira, A.H.5
Taanman, J.W.6
-
25
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler, S., K.M. Holmström, D. Skujat, F.C. Fiesel, O.C. Rothfuss, P.J. Kahle, and W. Springer. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12: 119-131. http://dx.doi.org/10.1038/ncb2012
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmström, K.M.2
Skujat, D.3
Fiesel, F.C.4
Rothfuss, O.C.5
Kahle, P.J.6
Springer, W.7
-
26
-
-
79960493052
-
Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1
-
Glauser, L., S. Sonnay, K. Stafa, and D.J. Moore. 2011. Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J. Neurochem. 118: 636-645. http://dx.doi.org/10.1111/j.1471-4159.2011.07318.x
-
(2011)
J. Neurochem.
, vol.118
, pp. 636-645
-
-
Glauser, L.1
Sonnay, S.2
Stafa, K.3
Moore, D.J.4
-
27
-
-
84884487128
-
ER exit sites are physical and functional core autophagosome biogenesis components
-
Graef, M., J.R. Friedman, C. Graham, M. Babu, and J. Nunnari. 2013. ER exit sites are physical and functional core autophagosome biogenesis components. Mol. Biol. Cell. 24: 2918-2931. http://dx.doi.org/10.1091/mbc.E13-07-0381
-
(2013)
Mol. Biol. Cell.
, vol.24
, pp. 2918-2931
-
-
Graef, M.1
Friedman, J.R.2
Graham, C.3
Babu, M.4
Nunnari, J.5
-
28
-
-
84859428688
-
Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
-
Greene, A.W., K. Grenier, M.A. Aguileta, S. Muise, R. Farazifard, M.E. Haque, H.M. McBride, D.S. Park, and E.A. Fon. 2012. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 13: 378-385. http://dx.doi.org/10.1038/embor.2012.14
-
(2012)
EMBO Rep.
, vol.13
, pp. 378-385
-
-
Greene, A.W.1
Grenier, K.2
Aguileta, M.A.3
Muise, S.4
Farazifard, R.5
Haque, M.E.6
McBride, H.M.7
Park, D.S.8
Fon, E.A.9
-
29
-
-
12444343145
-
Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast
-
Hamasaki, M., T. Noda, M. Baba, and Y. Ohsumi. 2005. Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic. 6: 56-65. http://dx.doi.org/10.1111/j.1600-0854.2004.00245.x
-
(2005)
Traffic.
, vol.6
, pp. 56-65
-
-
Hamasaki, M.1
Noda, T.2
Baba, M.3
Ohsumi, Y.4
-
30
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
Hamasaki, M., N. Furuta, A. Matsuda, A. Nezu, A. Yamamoto, N. Fujita, H. Oomori, T. Noda, T. Haraguchi, Y. Hiraoka, et al. 2013. Autophagosomes form at ER-mitochondria contact sites. Nature. 495: 389-393. http://dx.doi.org/10.1038/nature11910
-
(2013)
Nature.
, vol.495
, pp. 389-393
-
-
Hamasaki, M.1
Furuta, N.2
Matsuda, A.3
Nezu, A.4
Yamamoto, A.5
Fujita, N.6
Oomori, H.7
Noda, T.8
Haraguchi, T.9
Hiraoka, Y.10
-
31
-
-
55149097659
-
The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes
-
Hara-Kuge, S., and Y. Fujiki. 2008. The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes. Exp. Cell Res. 314: 3531-3541. http://dx.doi.org/10.1016/j.yexcr.2008.09.015
-
(2008)
Exp. Cell Res.
, vol.314
, pp. 3531-3541
-
-
Hara-Kuge, S.1
Fujiki, Y.2
-
32
-
-
84890429468
-
High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
-
Hasson, S.A., L.A. Kane, K. Yamano, C.H. Huang, D.A. Sliter, E. Buehler, C. Wang, S.M. Heman-Ackah, T. Hessa, R. Guha, et al. 2013. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature. 504: 291-295. http://dx.doi.org/10.1038/nature12748
-
(2013)
Nature.
, vol.504
, pp. 291-295
-
-
Hasson, S.A.1
Kane, L.A.2
Yamano, K.3
Huang, C.H.4
Sliter, D.A.5
Buehler, E.6
Wang, C.7
Heman-Ackah, S.M.8
Hessa, T.9
Guha, R.10
-
33
-
-
84880108306
-
Spatiotemporally controlled induction of autophagy-mediated lysosome turnover
-
Hung, Y.H., L.M. Chen, J.Y. Yang, and W.Y. Yang. 2013. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat Commun. 4: 2111. http://dx.doi.org/10.1038/ncomms3111
-
(2013)
Nat Commun.
, vol.4
, pp. 2111
-
-
Hung, Y.H.1
Chen, L.M.2
Yang, J.Y.3
Yang, W.Y.4
-
34
-
-
84881260124
-
Parkin-catalyzed ubiquitinester transfer is triggered by PINK1-dependent phosphorylation
-
Iguchi, M., Y. Kujuro, K. Okatsu, F. Koyano, H. Kosako, M. Kimura, N. Suzuki, S. Uchiyama, K. Tanaka, and N. Matsuda. 2013. Parkin-catalyzed ubiquitinester transfer is triggered by PINK1-dependent phosphorylation. J. Biol. Chem. 288: 22019-22032. http://dx.doi.org/10.1074/jbc. M113.467530
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 22019-22032
-
-
Iguchi, M.1
Kujuro, Y.2
Okatsu, K.3
Koyano, F.4
Kosako, H.5
Kimura, M.6
Suzuki, N.7
Uchiyama, S.8
Tanaka, K.9
Matsuda, N.10
-
35
-
-
84857850213
-
Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
-
Itakura, E., C. Kishi-Itakura, I. Koyama-Honda, and N. Mizushima. 2012. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J. Cell Sci. 125: 1488-1499. http://dx.doi.org/10.1242/jcs.094110
-
(2012)
J. Cell Sci.
, vol.125
, pp. 1488-1499
-
-
Itakura, E.1
Kishi-Itakura, C.2
Koyama-Honda, I.3
Mizushima, N.4
-
36
-
-
84861204926
-
PINK1-and Parkin-mediated mitophagy at a glance
-
Jin, S.M., and R.J. Youle. 2012. PINK1-and Parkin-mediated mitophagy at a glance. J. Cell Sci. 125: 795-799. http://dx.doi.org/10.1242/jcs.093849
-
(2012)
J. Cell Sci.
, vol.125
, pp. 795-799
-
-
Jin, S.M.1
Youle, R.J.2
-
37
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
-
Jin, S.M., M. Lazarou, C. Wang, L.A. Kane, D.P. Narendra, and R.J. Youle. 2010. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191: 933-942. http://dx.doi.org/10.1083/jcb.201008084
-
(2010)
J. Cell Biol.
, vol.191
, pp. 933-942
-
-
Jin, S.M.1
Lazarou, M.2
Wang, C.3
Kane, L.A.4
Narendra, D.P.5
Youle, R.J.6
-
38
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins
-
Johansen, T., and T. Lamark. 2011. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 7: 279-296. http://dx.doi.org/10.4161/auto.7.3.14487
-
(2011)
Autophagy.
, vol.7
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
39
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane, L.A., M. Lazarou, A.I. Fogel, Y. Li, K. Yamano, S.A. Sarraf, S. Banerjee, and R.J. Youle. 2014. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205: 143-153. http://dx.doi.org/10.1083/jcb.201402104
-
(2014)
J. Cell Biol.
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
Sarraf, S.A.6
Banerjee, S.7
Youle, R.J.8
-
40
-
-
67650264633
-
Atg32 is a mitochondrial protein that confers selectivity during mitophagy
-
Kanki, T., K. Wang, Y. Cao, M. Baba, and D.J. Klionsky. 2009. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell. 17: 98-109. http://dx.doi.org/10.1016/j.devcel.2009.06.014
-
(2009)
Dev. Cell.
, vol.17
, pp. 98-109
-
-
Kanki, T.1
Wang, K.2
Cao, Y.3
Baba, M.4
Klionsky, D.J.5
-
41
-
-
84883487916
-
Casein kinase 2 is essential for mitophagy
-
Kanki, T., Y. Kurihara, X. Jin, T. Goda, Y. Ono, M. Aihara, Y. Hirota, T. Saigusa, Y. Aoki, T. Uchiumi, and D. Kang. 2013. Casein kinase 2 is essential for mitophagy. EMBO Rep. 14: 788-794. http://dx.doi.org/10.1038/embor.2013.114
-
(2013)
EMBO Rep.
, vol.14
, pp. 788-794
-
-
Kanki, T.1
Kurihara, Y.2
Jin, X.3
Goda, T.4
Ono, Y.5
Aihara, M.6
Hirota, Y.7
Saigusa, T.8
Aoki, Y.9
Uchiumi, T.10
Kang, D.11
-
42
-
-
77950371695
-
PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy
-
Kawajiri, S., S. Saiki, S. Sato, F. Sato, T. Hatano, H. Eguchi, and N. Hattori. 2010. PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett. 584: 1073-1079. http://dx.doi.org/10.1016/j.febslet.2010.02.016
-
(2010)
FEBS Lett.
, vol.584
, pp. 1073-1079
-
-
Kawajiri, S.1
Saiki, S.2
Sato, S.3
Sato, F.4
Hatano, T.5
Eguchi, H.6
Hattori, N.7
-
43
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
Kazlauskaite, A., C. Kondapalli, R. Gourlay, D.G. Campbell, M.S. Ritorto, K. Hofmann, D.R. Alessi, A. Knebel, M. Trost, and M.M. Muqit. 2014. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460: 127-139. http://dx.doi.org/10.1042/BJ20140334
-
(2014)
Biochem. J.
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
Kondapalli, C.2
Gourlay, R.3
Campbell, D.G.4
Ritorto, M.S.5
Hofmann, K.6
Alessi, D.R.7
Knebel, A.8
Trost, M.9
Muqit, M.M.10
-
44
-
-
84891791144
-
Autophagosomes contribute to intracellular lipid distribution in enterocytes
-
Khaldoun, S.A., M.A. Emond-Boisjoly, D. Chateau, V. Carrière, M. Lacasa, M. Rousset, S. Demignot, and E. Morel. 2014. Autophagosomes contribute to intracellular lipid distribution in enterocytes. Mol. Biol. Cell. 25: 118-132. http://dx.doi.org/10.1091/mbc. E13-06-0324
-
(2014)
Mol. Biol. Cell.
, vol.25
, pp. 118-132
-
-
Khaldoun, S.A.1
Emond-Boisjoly, M.A.2
Chateau, D.3
Carrière, V.4
Lacasa, M.5
Rousset, M.6
Demignot, S.7
Morel, E.8
-
45
-
-
58549084167
-
Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes
-
Kim, P.K., D.W. Hailey, R.T. Mullen, and J. Lippincott-Schwartz. 2008. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl. Acad. Sci. USA. 105: 20567-20574. http://dx.doi.org/10.1073/pnas.0810611105
-
(2008)
Proc. Natl. Acad. Sci. USA.
, vol.105
, pp. 20567-20574
-
-
Kim, P.K.1
Hailey, D.W.2
Mullen, R.T.3
Lippincott-Schwartz, J.4
-
46
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
Kitada, T., S. Asakawa, N. Hattori, H. Matsumine, Y. Yamamura, S. Minoshima, M. Yokochi, Y. Mizuno, and N. Shimizu. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 392: 605-608. http://dx.doi.org/10.1038/33416
-
(1998)
Nature.
, vol.392
, pp. 605-608
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
Matsumine, H.4
Yamamura, Y.5
Minoshima, S.6
Yokochi, M.7
Mizuno, Y.8
Shimizu, N.9
-
47
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
-
Kondapalli, C., A. Kazlauskaite, N. Zhang, H.I. Woodroof, D.G. Campbell, R. Gourlay, L. Burchell, H. Walden, T.J. Macartney, M. Deak, et al. 2012. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2: 120080. http://dx.doi.org/10.1098/rsob.120080
-
(2012)
Open Biol.
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
Kazlauskaite, A.2
Zhang, N.3
Woodroof, H.I.4
Campbell, D.G.5
Gourlay, R.6
Burchell, L.7
Walden, H.8
Macartney, T.J.9
Deak, M.10
-
48
-
-
84858988067
-
Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy
-
Kondo-Okamoto, N., N.N. Noda, S.W. Suzuki, H. Nakatogawa, I. Takahashi, M. Matsunami, A. Hashimoto, F. Inagaki, Y. Ohsumi, and K. Okamoto. 2012. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem. 287: 10631-10638. http://dx.doi.org/10.1074/jbc. M111.299917
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 10631-10638
-
-
Kondo-Okamoto, N.1
Noda, N.N.2
Suzuki, S.W.3
Nakatogawa, H.4
Takahashi, I.5
Matsunami, M.6
Hashimoto, A.7
Inagaki, F.8
Ohsumi, Y.9
Okamoto, K.10
-
49
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano, F., K. Okatsu, H. Kosako, Y. Tamura, E. Go, M. Kimura, Y. Kimura, H. Tsuchiya, H. Yoshihara, T. Hirokawa, et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. http://dx.doi.org/10.1038/nature13392
-
(2014)
Nature.
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
Kimura, Y.7
Tsuchiya, H.8
Yoshihara, H.9
Hirokawa, T.10
-
50
-
-
50249128591
-
Is the Rsp5 ubiquitin ligase involved in the regulation of ribophagy?
-
Kraft, C., and M. Peter. 2008. Is the Rsp5 ubiquitin ligase involved in the regulation of ribophagy? Autophagy. 4: 838-840.
-
(2008)
Autophagy.
, vol.4
, pp. 838-840
-
-
Kraft, C.1
Peter, M.2
-
51
-
-
43049138051
-
Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease
-
Kraft, C., A. Deplazes, M. Sohrmann, and M. Peter. 2008. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 10: 602-610. http://dx.doi.org/10.1038/ncb1723
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 602-610
-
-
Kraft, C.1
Deplazes, A.2
Sohrmann, M.3
Peter, M.4
-
52
-
-
57349198328
-
Piecemeal microautophagy of the nucleus requires the core macroautophagy genes
-
Krick, R., Y. Muehe, T. Prick, S. Bremer, P. Schlotterhose, E.L. Eskelinen, J. Millen, D.S. Goldfarb, and M. Thumm. 2008. Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol. Biol. Cell. 19: 4492-4505. http://dx.doi.org/10.1091/mbc. E08-04-0363
-
(2008)
Mol. Biol. Cell.
, vol.19
, pp. 4492-4505
-
-
Krick, R.1
Muehe, Y.2
Prick, T.3
Bremer, S.4
Schlotterhose, P.5
Eskelinen, E.L.6
Millen, J.7
Goldfarb, D.S.8
Thumm, M.9
-
53
-
-
58149084405
-
Ordered organelle degradation during starvation-induced autophagy
-
Kristensen, A.R., S. Schandorff, M. Høyer-Hansen, M.O. Nielsen, M. Jäättelä, J. Dengjel, and J.S. Andersen. 2008. Ordered organelle degradation during starvation-induced autophagy. Mol. Cell. Proteomics. 7: 2419-2428. http://dx.doi.org/10.1074/mcp. M800184-MCP200
-
(2008)
Mol. Cell. Proteomics.
, vol.7
, pp. 2419-2428
-
-
Kristensen, A.R.1
Schandorff, S.2
Høyer-Hansen, M.3
Nielsen, M.O.4
Jäättelä, M.5
Dengjel, J.6
Andersen, J.S.7
-
54
-
-
84888380983
-
The autophagosome: origins unknown, biogenesis complex
-
Lamb, C.A., T. Yoshimori, and S.A. Tooze. 2013. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14: 759-774. http://dx.doi.org/10.1038/nrm3696
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 759-774
-
-
Lamb, C.A.1
Yoshimori, T.2
Tooze, S.A.3
-
55
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
-
Lazarou, M., S.M. Jin, L.A. Kane, and R.J. Youle. 2012. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell. 22: 320-333. http://dx.doi.org/10.1016/j.devcel.2011.12.014
-
(2012)
Dev. Cell.
, vol.22
, pp. 320-333
-
-
Lazarou, M.1
Jin, S.M.2
Kane, L.A.3
Youle, R.J.4
-
56
-
-
84873045973
-
PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
-
Lazarou, M., D.P. Narendra, S.M. Jin, E. Tekle, S. Banerjee, and R.J. Youle. 2013. PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J. Cell Biol. 200: 163-172. http://dx.doi.org/10.1083/jcb.201210111
-
(2013)
J. Cell Biol.
, vol.200
, pp. 163-172
-
-
Lazarou, M.1
Narendra, D.P.2
Jin, S.M.3
Tekle, E.4
Banerjee, S.5
Youle, R.J.6
-
57
-
-
77952326081
-
Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy
-
Lee, J.Y., Y. Nagano, J.P. Taylor, K.L. Lim, and T.P. Yao. 2010. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J. Cell Biol. 189: 671-679. http://dx.doi.org/10.1083/jcb.201001039
-
(2010)
J. Cell Biol.
, vol.189
, pp. 671-679
-
-
Lee, J.Y.1
Nagano, Y.2
Taylor, J.P.3
Lim, K.L.4
Yao, T.P.5
-
58
-
-
84859161154
-
Microautophagy: lesser-known self-eating
-
Li, W.W., J. Li, and J.K. Bao. 2012. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69: 1125-1136. http://dx.doi.org/10.1007/s00018-011-0865-5
-
(2012)
Cell. Mol. Life Sci.
, vol.69
, pp. 1125-1136
-
-
Li, W.W.1
Li, J.2
Bao, J.K.3
-
59
-
-
84884754771
-
Regulation of ER-phagy by a Ypt/Rab GTPase module
-
Lipatova, Z., A.H. Shah, J.J. Kim, J.W. Mulholland, and N. Segev. 2013. Regulation of ER-phagy by a Ypt/Rab GTPase module. Mol. Biol. Cell. 24: 3133-3144. http://dx.doi.org/10.1091/mbc. E13-05-0269
-
(2013)
Mol. Biol. Cell.
, vol.24
, pp. 3133-3144
-
-
Lipatova, Z.1
Shah, A.H.2
Kim, J.J.3
Mulholland, J.W.4
Segev, N.5
-
60
-
-
84870995648
-
Regulation of lipid stores and metabolism by lipophagy
-
Liu, K., and M.J. Czaja. 2013. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20: 3-11. http://dx.doi.org/10.1038/cdd.2012.63
-
(2013)
Cell Death Differ.
, vol.20
, pp. 3-11
-
-
Liu, K.1
Czaja, M.J.2
-
61
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu, L., D. Feng, G. Chen, M. Chen, Q. Zheng, P. Song, Q. Ma, C. Zhu, R. Wang, W. Qi, et al. 2012. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14: 177-185. http://dx.doi.org/10.1038/ncb2422
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 177-185
-
-
Liu, L.1
Feng, D.2
Chen, G.3
Chen, M.4
Zheng, Q.5
Song, P.6
Ma, Q.7
Zhu, C.8
Wang, R.9
Qi, W.10
-
62
-
-
84883291965
-
Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
-
Maejima, I., A. Takahashi, H. Omori, T. Kimura, Y. Takabatake, T. Saitoh, A. Yamamoto, M. Hamasaki, T. Noda, Y. Isaka, and T. Yoshimori. 2013. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32: 2336-2347. http://dx.doi.org/10.1038/emboj.2013.171
-
(2013)
EMBO J.
, vol.32
, pp. 2336-2347
-
-
Maejima, I.1
Takahashi, A.2
Omori, H.3
Kimura, T.4
Takabatake, Y.5
Saitoh, T.6
Yamamoto, A.7
Hamasaki, M.8
Noda, T.9
Isaka, Y.10
Yoshimori, T.11
-
63
-
-
84880863470
-
Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events
-
Manivannan, S., R. de Boer, M. Veenhuis, and I.J. van der Klei. 2013. Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events. Autophagy. 9: 1044-1056. http://dx.doi.org/10.4161/auto.24543
-
(2013)
Autophagy.
, vol.9
, pp. 1044-1056
-
-
Manivannan, S.1
de Boer, R.2
Veenhuis, M.3
van der Klei, I.J.4
-
64
-
-
77951168347
-
A yeast MAPK cascade regulates pexophagy but not other autophagy pathways
-
Manjithaya, R., S. Jain, J.C. Farré, and S. Subramani. 2010a. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J. Cell Biol. 189: 303-310. http://dx.doi.org/10.1083/jcb.200909154
-
(2010)
J. Cell Biol.
, vol.189
, pp. 303-310
-
-
Manjithaya, R.1
Jain, S.2
Farré, J.C.3
Subramani, S.4
-
65
-
-
77950470469
-
Molecular mechanism and physiological role of pexophagy
-
Manjithaya, R., T.Y. Nazarko, J.C. Farré, and S. Subramani. 2010b. Molecular mechanism and physiological role of pexophagy. FEBS Lett. 584: 1367-1373. http://dx.doi.org/10.1016/j.febslet.2010.01.019
-
(2010)
FEBS Lett.
, vol.584
, pp. 1367-1373
-
-
Manjithaya, R.1
Nazarko, T.Y.2
Farré, J.C.3
Subramani, S.4
-
66
-
-
79958219318
-
Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae
-
Mao, K., K. Wang, M. Zhao, T. Xu, and D.J. Klionsky. 2011. Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J. Cell Biol. 193: 755-767. http://dx.doi.org/10.1083/jcb.201102092
-
(2011)
J. Cell Biol.
, vol.193
, pp. 755-767
-
-
Mao, K.1
Wang, K.2
Zhao, M.3
Xu, T.4
Klionsky, D.J.5
-
67
-
-
84898400392
-
The progression of peroxisomal degradation through autophagy requires peroxisomal division
-
Mao, K., X. Liu, Y. Feng, and D.J. Klionsky. 2014. The progression of peroxisomal degradation through autophagy requires peroxisomal division. Autophagy. 10: 652-661. http://dx.doi.org/10.4161/auto.27852
-
(2014)
Autophagy.
, vol.10
, pp. 652-661
-
-
Mao, K.1
Liu, X.2
Feng, Y.3
Klionsky, D.J.4
-
68
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda, N., S. Sato, K. Shiba, K. Okatsu, K. Saisho, C.A. Gautier, Y.S. Sou, S. Saiki, S. Kawajiri, F. Sato, et al. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189: 211-221. http://dx.doi.org/10.1083/jcb.200910140
-
(2010)
J. Cell Biol.
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
Okatsu, K.4
Saisho, K.5
Gautier, C.A.6
Sou, Y.S.7
Saiki, S.8
Kawajiri, S.9
Sato, F.10
-
69
-
-
79955667485
-
The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking
-
Meissner, C., H. Lorenz, A. Weihofen, D.J. Selkoe, and M.K. Lemberg. 2011. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 117: 856-867. http://dx.doi.org/10.1111/j.1471-4159.2011.07253.x
-
(2011)
J. Neurochem.
, vol.117
, pp. 856-867
-
-
Meissner, C.1
Lorenz, H.2
Weihofen, A.3
Selkoe, D.J.4
Lemberg, M.K.5
-
70
-
-
84885441274
-
Nucleophagy at a glance
-
Mijaljica, D., and R.J. Devenish. 2013. Nucleophagy at a glance. J. Cell Sci. 126: 4325-4330. http://dx.doi.org/10.1242/jcs.133090
-
(2013)
J. Cell Sci.
, vol.126
, pp. 4325-4330
-
-
Mijaljica, D.1
Devenish, R.J.2
-
71
-
-
84863095978
-
A late form of nucleophagy in Saccharomyces cerevisiae
-
Mijaljica, D., M. Prescott, and R.J. Devenish. 2012. A late form of nucleophagy in Saccharomyces cerevisiae. PLoS ONE. 7: e40013. http://dx.doi.org/10.1371/journal.pone.0040013
-
(2012)
PLoS ONE.
, vol.7
-
-
Mijaljica, D.1
Prescott, M.2
Devenish, R.J.3
-
72
-
-
84866244791
-
Autophagy in protein and organelle turnover
-
Mizushima, N. 2011. Autophagy in protein and organelle turnover. Cold Spring Harb. Symp. Quant. Biol. 76: 397-402. http://dx.doi.org/10.1101/sqb.2011.76.011023
-
(2011)
Cold Spring Harb. Symp. Quant. Biol.
, vol.76
, pp. 397-402
-
-
Mizushima, N.1
-
73
-
-
81055144784
-
Autophagy: renovation of cells and tissues
-
Mizushima, N., and M. Komatsu. 2011. Autophagy: renovation of cells and tissues. Cell. 147: 728-741. http://dx.doi.org/10.1016/j.cell.2011.10.026
-
(2011)
Cell.
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
74
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
Mizushima, N., T. Yoshimori, and Y. Ohsumi. 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27: 107-132. http://dx.doi.org/10.1146/annurev-cellbio-092910-154005
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
Yoshimori, T.2
Ohsumi, Y.3
-
75
-
-
84863843241
-
Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae
-
Motley, A.M., J.M. Nuttall, and E.H. Hettema. 2012. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 31: 2852-2868. http://dx.doi.org/10.1038/emboj.2012.151
-
(2012)
EMBO J.
, vol.31
, pp. 2852-2868
-
-
Motley, A.M.1
Nuttall, J.M.2
Hettema, E.H.3
-
76
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra, D., A. Tanaka, D.F. Suen, and R.J. Youle. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183: 795-803. http://dx.doi.org/10.1083/jcb.200809125
-
(2008)
J. Cell Biol.
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
77
-
-
78649300971
-
p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
-
Narendra, D., L.A. Kane, D.N. Hauser, I.M. Fearnley, and R.J. Youle. 2010a. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy. 6: 1090-1106. http://dx.doi.org/10.4161/auto.6.8.13426
-
(2010)
Autophagy.
, vol.6
, pp. 1090-1106
-
-
Narendra, D.1
Kane, L.A.2
Hauser, D.N.3
Fearnley, I.M.4
Youle, R.J.5
-
78
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra, D.P., S.M. Jin, A. Tanaka, D.F. Suen, C.A. Gautier, J. Shen, M.R. Cookson, and R.J. Youle. 2010b. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8: e1000298. http://dx.doi.org/10.1371/journal.pbio.1000298
-
(2010)
PLoS Biol.
, vol.8
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
79
-
-
84868575932
-
Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism
-
Narendra, D., J.E. Walker, and R. Youle. 2012. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb. Perspect. Biol. 4: a011338. http://dx.doi.org/10.1101/cshperspect.a011338
-
(2012)
Cold Spring Harb. Perspect. Biol.
, vol.4
-
-
Narendra, D.1
Walker, J.E.2
Youle, R.3
-
80
-
-
77950484269
-
Atg8-family interacting motif crucial for selective autophagy
-
Noda, N.N., Y. Ohsumi, and F. Inagaki. 2010. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 584: 1379-1385. http://dx.doi.org/10.1016/j.febslet.2010.01.018
-
(2010)
FEBS Lett.
, vol.584
, pp. 1379-1385
-
-
Noda, N.N.1
Ohsumi, Y.2
Inagaki, F.3
-
81
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak, I., V. Kirkin, D.G. McEwan, J. Zhang, P. Wild, A. Rozenknop, V. Rogov, F. Löhr, D. Popovic, A. Occhipinti, et al. 2010. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11: 45-51. http://dx.doi.org/10.1038/embor.2009.256
-
(2010)
EMBO Rep.
, vol.11
, pp. 45-51
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
Zhang, J.4
Wild, P.5
Rozenknop, A.6
Rogov, V.7
Löhr, F.8
Popovic, D.9
Occhipinti, A.10
-
82
-
-
84858376953
-
Mitochondria: in sickness and in health
-
Nunnari, J., and A. Suomalainen. 2012. Mitochondria: in sickness and in health. Cell. 148: 1145-1159. http://dx.doi.org/10.1016/j.cell.2012.02.035
-
(2012)
Cell.
, vol.148
, pp. 1145-1159
-
-
Nunnari, J.1
Suomalainen, A.2
-
83
-
-
84899719244
-
Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae
-
Nuttall, J.M., A.M. Motley, and E.H. Hettema. 2014. Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae. Autophagy. 10: 835-845. http://dx.doi.org/10.4161/auto.28259
-
(2014)
Autophagy.
, vol.10
, pp. 835-845
-
-
Nuttall, J.M.1
Motley, A.M.2
Hettema, E.H.3
-
84
-
-
84859429500
-
Mitochondria and autophagy: critical interplay between the two homeostats
-
Okamoto, K., and N. Kondo-Okamoto. 2012. Mitochondria and autophagy: critical interplay between the two homeostats. Biochim. Biophys. Acta. 1820: 595-600. http://dx.doi.org/10.1016/j.bbagen.2011.08.001
-
(2012)
Biochim. Biophys. Acta.
, vol.1820
, pp. 595-600
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
-
85
-
-
67650246357
-
Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
-
Okamoto, K., N. Kondo-Okamoto, and Y. Ohsumi. 2009. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell. 17: 87-97. http://dx.doi.org/10.1016/j.devcel.2009.06.013
-
(2009)
Dev. Cell.
, vol.17
, pp. 87-97
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
86
-
-
77954695260
-
p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria
-
Okatsu, K., K. Saisho, M. Shimanuki, K. Nakada, H. Shitara, Y.S. Sou, M. Kimura, S. Sato, N. Hattori, M. Komatsu, et al. 2010. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells. 15: 887-900.
-
(2010)
Genes Cells.
, vol.15
, pp. 887-900
-
-
Okatsu, K.1
Saisho, K.2
Shimanuki, M.3
Nakada, K.4
Shitara, H.5
Sou, Y.S.6
Kimura, M.7
Sato, S.8
Hattori, N.9
Komatsu, M.10
-
87
-
-
84866072587
-
PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
-
Okatsu, K., T. Oka, M. Iguchi, K. Imamura, H. Kosako, N. Tani, M. Kimura, E. Go, F. Koyano, M. Funayama, et al. 2012. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun. 3: 1016. http://dx.doi.org/10.1038/ncomms2016
-
(2012)
Nat Commun.
, vol.3
, pp. 1016
-
-
Okatsu, K.1
Oka, T.2
Iguchi, M.3
Imamura, K.4
Kosako, H.5
Tani, N.6
Kimura, M.7
Go, E.8
Koyano, F.9
Funayama, M.10
-
88
-
-
84890957474
-
A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment
-
Okatsu, K., M. Uno, F. Koyano, E. Go, M. Kimura, T. Oka, K. Tanaka, and N. Matsuda. 2013. A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment. J. Biol. Chem. 288: 36372-36384. http://dx.doi.org/10.1074/jbc. M113.509653
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 36372-36384
-
-
Okatsu, K.1
Uno, M.2
Koyano, F.3
Go, E.4
Kimura, M.5
Oka, T.6
Tanaka, K.7
Matsuda, N.8
-
89
-
-
77955259144
-
Peroxisomes as dynamic organelles: autophagic degradation
-
Oku, M., and Y. Sakai. 2010. Peroxisomes as dynamic organelles: autophagic degradation. FEBS J. 277: 3289-3294. http://dx.doi.org/10.1111/j.1742-4658.2010.07741.x
-
(2010)
FEBS J.
, vol.277
, pp. 3289-3294
-
-
Oku, M.1
Sakai, Y.2
-
90
-
-
82555187810
-
Image-based genome-wide siRNA screen identifies selective autophagy factors
-
Orvedahl, A., R. Sumpter Jr., G. Xiao, A. Ng, Z. Zou, Y. Tang, M. Narimatsu, C. Gilpin, Q. Sun, M. Roth, et al. 2011. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature. 480: 113-117. http://dx.doi.org/10.1038/nature10546
-
(2011)
Nature.
, vol.480
, pp. 113-117
-
-
Orvedahl, A.1
Sumpter Jr., R.2
Xiao, G.3
Ng, A.4
Zou, Z.5
Tang, Y.6
Narimatsu, M.7
Gilpin, C.8
Sun, Q.9
Roth, M.10
-
91
-
-
77954212973
-
Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy
-
Ossareh-Nazari, B., M. Bonizec, M. Cohen, S. Dokudovskaya, F. Delalande, C. Schaeffer, A. Van Dorsselaer, and C. Dargemont. 2010. Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep. 11: 548-554. http://dx.doi.org/10.1038/embor.2010.74
-
(2010)
EMBO Rep.
, vol.11
, pp. 548-554
-
-
Ossareh-Nazari, B.1
Bonizec, M.2
Cohen, M.3
Dokudovskaya, S.4
Delalande, F.5
Schaeffer, C.6
Van Dorsselaer, A.7
Dargemont, C.8
-
92
-
-
84896265496
-
Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy
-
Ossareh-Nazari, B., C.A. Niño, M.H. Bengtson, J.W. Lee, C.A. Joazeiro, and C. Dargemont. 2014. Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. J. Cell Biol. 204: 909-917. http://dx.doi.org/10.1083/jcb.201308139
-
(2014)
J. Cell Biol.
, vol.204
, pp. 909-917
-
-
Ossareh-Nazari, B.1
Niño, C.A.2
Bengtson, M.H.3
Lee, J.W.4
Joazeiro, C.A.5
Dargemont, C.6
-
93
-
-
69449083200
-
Autophagic degradation of nuclear components in mammalian cells
-
Park, Y.E., Y.K. Hayashi, G. Bonne, T. Arimura, S. Noguchi, I. Nonaka, and I. Nishino. 2009. Autophagic degradation of nuclear components in mammalian cells. Autophagy. 5: 795-804.
-
(2009)
Autophagy.
, vol.5
, pp. 795-804
-
-
Park, Y.E.1
Hayashi, Y.K.2
Bonne, G.3
Arimura, T.4
Noguchi, S.5
Nonaka, I.6
Nishino, I.7
-
94
-
-
77955029885
-
Effect of endogenous mutant and wildtype PINK1 on Parkin in fibroblasts from Parkinson disease patients
-
Rakovic, A., A. Grünewald, P. Seibler, A. Ramirez, N. Kock, S. Orolicki, K. Lohmann, and C. Klein. 2010. Effect of endogenous mutant and wildtype PINK1 on Parkin in fibroblasts from Parkinson disease patients. Hum. Mol. Genet. 19: 3124-3137. http://dx.doi.org/10.1093/hmg/ddq215
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 3124-3137
-
-
Rakovic, A.1
Grünewald, A.2
Seibler, P.3
Ramirez, A.4
Kock, N.5
Orolicki, S.6
Lohmann, K.7
Klein, C.8
-
95
-
-
79952369437
-
Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts
-
Rakovic, A., A. Grünewald, J. Kottwitz, N. Brüggemann, P.P. Pramstaller, K. Lohmann, and C. Klein. 2011. Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts. PLoS ONE. 6: e16746. http://dx.doi.org/10.1371/journal.pone.0016746
-
(2011)
PLoS ONE.
, vol.6
-
-
Rakovic, A.1
Grünewald, A.2
Kottwitz, J.3
Brüggemann, N.4
Pramstaller, P.P.5
Lohmann, K.6
Klein, C.7
-
96
-
-
84855712059
-
Autophagic removal of micronuclei
-
Rello-Varona, S., D. Lissa, S. Shen, M. Niso-Santano, L. Senovilla, G. Mariño, I. Vitale, M. Jemaá, F. Harper, G. Pierron, et al. 2012. Autophagic removal of micronuclei. Cell Cycle. 11: 170-176. http://dx.doi.org/10.4161/cc.11.1.18564
-
(2012)
Cell Cycle.
, vol.11
, pp. 170-176
-
-
Rello-Varona, S.1
Lissa, D.2
Shen, S.3
Niso-Santano, M.4
Senovilla, L.5
Mariño, G.6
Vitale, I.7
Jemaá, M.8
Harper, F.9
Pierron, G.10
-
97
-
-
84879674444
-
Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
-
Riley, B.E., J.C. Lougheed, K. Callaway, M. Velasquez, E. Brecht, L. Nguyen, T. Shaler, D. Walker, Y. Yang, K. Regnstrom, et al. 2013. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun. 4: 1982. http://dx.doi.org/10.1038/ncomms2982
-
(2013)
Nat Commun.
, vol.4
, pp. 1982
-
-
Riley, B.E.1
Lougheed, J.C.2
Callaway, K.3
Velasquez, M.4
Brecht, E.5
Nguyen, L.6
Shaler, T.7
Walker, D.8
Yang, Y.9
Regnstrom, K.10
-
98
-
-
0037243892
-
Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae
-
Roberts, P., S. Moshitch-Moshkovitz, E. Kvam, E. O'Toole, M. Winey, and D.S. Goldfarb. 2003. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol. Biol. Cell. 14: 129-141. http://dx.doi.org/10.1091/mbc. E02-08-0483
-
(2003)
Mol. Biol. Cell.
, vol.14
, pp. 129-141
-
-
Roberts, P.1
Moshitch-Moshkovitz, S.2
Kvam, E.3
O'Toole, E.4
Winey, M.5
Goldfarb, D.S.6
-
99
-
-
84892859905
-
Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
-
Rogov, V., V. Dötsch, T. Johansen, and V. Kirkin. 2014. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell. 53: 167-178. http://dx.doi.org/10.1016/j.molcel.2013.12.014
-
(2014)
Mol. Cell.
, vol.53
, pp. 167-178
-
-
Rogov, V.1
Dötsch, V.2
Johansen, T.3
Kirkin, V.4
-
100
-
-
47049100413
-
Essential role for Nix in autophagic maturation of erythroid cells
-
Sandoval, H., P. Thiagarajan, S.K. Dasgupta, A. Schumacher, J.T. Prchal, M. Chen, and J. Wang. 2008. Essential role for Nix in autophagic maturation of erythroid cells. Nature. 454: 232-235. http://dx.doi.org/10.1038/nature07006
-
(2008)
Nature.
, vol.454
, pp. 232-235
-
-
Sandoval, H.1
Thiagarajan, P.2
Dasgupta, S.K.3
Schumacher, A.4
Prchal, J.T.5
Chen, M.6
Wang, J.7
-
101
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
Sarraf, S.A., M. Raman, V. Guarani-Pereira, M.E. Sowa, E.L. Huttlin, S.P. Gygi, and J.W. Harper. 2013. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 496: 372-376. http://dx.doi.org/10.1038/nature12043
-
(2013)
Nature.
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
Raman, M.2
Guarani-Pereira, V.3
Sowa, M.E.4
Huttlin, E.L.5
Gygi, S.P.6
Harper, J.W.7
-
102
-
-
37649017266
-
NIX is required for programmed mitochondrial clearance during reticulocyte maturation
-
Schweers, R.L., J. Zhang, M.S. Randall, M.R. Loyd, W. Li, F.C. Dorsey, M. Kundu, J.T. Opferman, J.L. Cleveland, J.L. Miller, and P.A. Ney. 2007. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl. Acad. Sci. USA. 104: 19500-19505. http://dx.doi.org/10.1073/pnas.0708818104
-
(2007)
Proc. Natl. Acad. Sci. USA.
, vol.104
, pp. 19500-19505
-
-
Schweers, R.L.1
Zhang, J.2
Randall, M.S.3
Loyd, M.R.4
Li, W.5
Dorsey, F.C.6
Kundu, M.7
Opferman, J.T.8
Cleveland, J.L.9
Miller, J.L.10
Ney, P.A.11
-
103
-
-
84870980670
-
Ubiquitination and selective autophagy
-
Shaid, S., C.H. Brandts, H. Serve, and I. Dikic. 2013. Ubiquitination and selective autophagy. Cell Death Differ. 20: 21-30. http://dx.doi.org/10.1038/cdd.2012.72
-
(2013)
Cell Death Differ.
, vol.20
, pp. 21-30
-
-
Shaid, S.1
Brandts, C.H.2
Serve, H.3
Dikic, I.4
-
104
-
-
79955410000
-
Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease
-
Shi, G., J.R. Lee, D.A. Grimes, L. Racacho, D. Ye, H. Yang, O.A. Ross, M. Farrer, G.A. McQuibban, and D.E. Bulman. 2011. Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease. Hum. Mol. Genet. 20: 1966-1974. http://dx.doi.org/10.1093/hmg/ddr077
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1966-1974
-
-
Shi, G.1
Lee, J.R.2
Grimes, D.A.3
Racacho, L.4
Ye, D.5
Yang, H.6
Ross, O.A.7
Farrer, M.8
McQuibban, G.A.9
Bulman, D.E.10
-
105
-
-
84871891737
-
PINK1-mediated phosphorylation of the Parkin ubiquitinlike domain primes mitochondrial translocation of Parkin and regulates mitophagy
-
Shiba-Fukushima, K., Y. Imai, S. Yoshida, Y. Ishihama, T. Kanao, S. Sato, and N. Hattori. 2012. PINK1-mediated phosphorylation of the Parkin ubiquitinlike domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep. 2: 1002. http://dx.doi.org/10.1038/srep01002
-
(2012)
Sci Rep.
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
Imai, Y.2
Yoshida, S.3
Ishihama, Y.4
Kanao, T.5
Sato, S.6
Hattori, N.7
-
106
-
-
79960878784
-
Atg8: an autophagy-related ubiquitin-like protein family
-
Shpilka, T., H. Weidberg, S. Pietrokovski, and Z. Elazar. 2011. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol. 12: 226. http://dx.doi.org/10.1186/gb-2011-12-7-226
-
(2011)
Genome Biol.
, vol.12
, pp. 226
-
-
Shpilka, T.1
Weidberg, H.2
Pietrokovski, S.3
Elazar, Z.4
-
107
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh, R., S. Kaushik, Y. Wang, Y. Xiang, I. Novak, M. Komatsu, K. Tanaka, A.M. Cuervo, and M.J. Czaja. 2009. Autophagy regulates lipid metabolism. Nature. 458: 1131-1135. http://dx.doi.org/10.1038/nature07976
-
(2009)
Nature.
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
Tanaka, K.7
Cuervo, A.M.8
Czaja, M.J.9
-
109
-
-
84879980089
-
A molecular explanation for the recessive nature of parkin-linked Parkinson's disease
-
Spratt, D.E., R.J. Martinez-Torres, Y.J. Noh, P. Mercier, N. Manczyk, K.R. Barber, J.D. Aguirre, L. Burchell, A. Purkiss, H. Walden, and G.S. Shaw. 2013. A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nat Commun. 4: 1983. http://dx.doi.org/10.1038/ncomms2983
-
(2013)
Nat Commun.
, vol.4
, pp. 1983
-
-
Spratt, D.E.1
Martinez-Torres, R.J.2
Noh, Y.J.3
Mercier, P.4
Manczyk, N.5
Barber, K.R.6
Aguirre, J.D.7
Burchell, L.8
Purkiss, A.9
Walden, H.10
Shaw, G.S.11
-
110
-
-
84871002139
-
Selective autophagy in budding yeast
-
Suzuki, K. 2013. Selective autophagy in budding yeast. Cell Death Differ. 20: 43-48. http://dx.doi.org/10.1038/cdd.2012.73
-
(2013)
Cell Death Differ.
, vol.20
, pp. 43-48
-
-
Suzuki, K.1
-
111
-
-
84880019176
-
Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae
-
Suzuki, K., M. Akioka, C. Kondo-Kakuta, H. Yamamoto, and Y. Ohsumi. 2013. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. 126: 2534-2544. http://dx.doi.org/10.1242/jcs.122960
-
(2013)
J. Cell Sci.
, vol.126
, pp. 2534-2544
-
-
Suzuki, K.1
Akioka, M.2
Kondo-Kakuta, C.3
Yamamoto, H.4
Ohsumi, Y.5
-
112
-
-
0026668042
-
Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
-
Takeshige, K., M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi. 1992. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119: 301-311. http://dx.doi.org/10.1083/jcb.119.2.301
-
(1992)
J. Cell Biol.
, vol.119
, pp. 301-311
-
-
Takeshige, K.1
Baba, M.2
Tsuboi, S.3
Noda, T.4
Ohsumi, Y.5
-
113
-
-
84888350190
-
The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway
-
Tan, D., Y. Cai, J. Wang, J. Zhang, S. Menon, H.T. Chou, S. Ferro-Novick, K.M. Reinisch, and T. Walz. 2013. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. Proc. Natl. Acad. Sci. USA. 110: 19432-19437. http://dx.doi.org/10.1073/pnas.1316356110
-
(2013)
Proc. Natl. Acad. Sci. USA.
, vol.110
, pp. 19432-19437
-
-
Tan, D.1
Cai, Y.2
Wang, J.3
Zhang, J.4
Menon, S.5
Chou, H.T.6
Ferro-Novick, S.7
Reinisch, K.M.8
Walz, T.9
-
114
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
Tanaka, A., M.M. Cleland, S. Xu, D.P. Narendra, D.F. Suen, M. Karbowski, and R.J. Youle. 2010. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191: 1367-1380. http://dx.doi.org/10.1083/jcb.201007013
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
Cleland, M.M.2
Xu, S.3
Narendra, D.P.4
Suen, D.F.5
Karbowski, M.6
Youle, R.J.7
-
115
-
-
84879251778
-
Structure of parkin reveals mechanisms for ubiquitin ligase activation
-
Trempe, J.F., V. Sauvé, K. Grenier, M. Seirafi, M.Y. Tang, M. Ménade, S. Al-Abdul-Wahid, J. Krett, K. Wong, G. Kozlov, et al. 2013. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science. 340: 1451-1455. http://dx.doi.org/10.1126/science.1237908
-
(2013)
Science.
, vol.340
, pp. 1451-1455
-
-
Trempe, J.F.1
Sauvé, V.2
Grenier, K.3
Seirafi, M.4
Tang, M.Y.5
Ménade, M.6
Al-Abdul-Wahid, S.7
Krett, J.8
Wong, K.9
Kozlov, G.10
-
116
-
-
2442668926
-
Hereditary early-onset Parkinson's disease caused by mutations in PINK1
-
Valente, E.M., P.M. Abou-Sleiman, V. Caputo, M.M. Muqit, K. Harvey, S. Gispert, Z. Ali, D. Del Turco, A.R. Bentivoglio, D.G. Healy, et al. 2004. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. 304: 1158-1160. http://dx.doi.org/10.1126/science.1096284
-
(2004)
Science.
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
Abou-Sleiman, P.M.2
Caputo, V.3
Muqit, M.M.4
Harvey, K.5
Gispert, S.6
Ali, Z.7
Del Turco, D.8
Bentivoglio, A.R.9
Healy, D.G.10
-
117
-
-
33845329876
-
The significance of peroxisomes in methanol metabolism in methylotrophic yeast
-
van der Klei, I.J., H. Yurimoto, Y. Sakai, and M. Veenhuis. 2006. The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim. Biophys. Acta. 1763: 1453-1462. http://dx.doi.org/10.1016/j.bbamcr.2006.07.016
-
(2006)
Biochim. Biophys. Acta.
, vol.1763
, pp. 1453-1462
-
-
van der Klei, I.J.1
Yurimoto, H.2
Sakai, Y.3
Veenhuis, M.4
-
118
-
-
84892536117
-
Lipid droplet autophagy in the yeast Saccharomyces cerevisiae
-
van Zutphen, T., V. Todde, R. de Boer, M. Kreim, H.F. Hofbauer, H. Wolinski, M. Veenhuis, I.J. van der Klei, and S.D. Kohlwein. 2014. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell. 25: 290-301. http://dx.doi.org/10.1091/mbc. E13-08-0448
-
(2014)
Mol. Biol. Cell.
, vol.25
, pp. 290-301
-
-
van Zutphen, T.1
Todde, V.2
de Boer, R.3
Kreim, M.4
Hofbauer, H.F.5
Wolinski, H.6
Veenhuis, M.7
van der Klei, I.J.8
Kohlwein, S.D.9
-
119
-
-
84861913952
-
Lipid droplets and cellular lipid metabolism
-
Walther, T.C., and R.V. Farese Jr. 2012. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81: 687-714. http://dx.doi.org/10.1146/annurev-biochem-061009-102430
-
(2012)
Annu. Rev. Biochem.
, vol.81
, pp. 687-714
-
-
Walther, T.C.1
Farese Jr., R.V.2
-
120
-
-
84887472941
-
Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy
-
Wang, K., M. Jin, X. Liu, and D.J. Klionsky. 2013. Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy. Autophagy. 9: 1828-1836. http://dx.doi.org/10.4161/auto.26281
-
(2013)
Autophagy.
, vol.9
, pp. 1828-1836
-
-
Wang, K.1
Jin, M.2
Liu, X.3
Klionsky, D.J.4
-
121
-
-
84881477223
-
Structure of the human Parkin ligase domain in an autoinhibited state
-
Wauer, T., and D. Komander. 2013. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32: 2099-2112. http://dx.doi.org/10.1038/emboj.2013.125
-
(2013)
EMBO J.
, vol.32
, pp. 2099-2112
-
-
Wauer, T.1
Komander, D.2
-
122
-
-
79959415069
-
Biogenesis and cargo selectivity of autophagosomes
-
Weidberg, H., E. Shvets, and Z. Elazar. 2011. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 80: 125-156. http://dx.doi.org/10.1146/annurev-biochem-052709-094552
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 125-156
-
-
Weidberg, H.1
Shvets, E.2
Elazar, Z.3
-
123
-
-
84885327315
-
Uth1 is a mitochondrial inner membrane protein dispensable for post-log-phase and rapamycin-induced mitophagy
-
Welter, E., M. Montino, R. Reinhold, P. Schlotterhose, R. Krick, J. Dudek, P. Rehling, and M. Thumm. 2013. Uth1 is a mitochondrial inner membrane protein dispensable for post-log-phase and rapamycin-induced mitophagy. FEBS J. 280: 4970-4982. http://dx.doi.org/10.1111/febs.12468
-
(2013)
FEBS J.
, vol.280
, pp. 4970-4982
-
-
Welter, E.1
Montino, M.2
Reinhold, R.3
Schlotterhose, P.4
Krick, R.5
Dudek, J.6
Rehling, P.7
Thumm, M.8
-
124
-
-
84891461247
-
The LC3 interactome at a glance
-
Wild, P., D.G. McEwan, and I. Dikic. 2014. The LC3 interactome at a glance. J. Cell Sci. 127: 3-9. http://dx.doi.org/10.1242/jcs.140426
-
(2014)
J. Cell Sci.
, vol.127
, pp. 3-9
-
-
Wild, P.1
McEwan, D.G.2
Dikic, I.3
-
125
-
-
84882641004
-
Pexophagy-linked degradation of the peroxisomal membrane protein Pex3p involves the ubiquitin-proteasome system
-
Williams, C., and I.J. van der Klei. 2013. Pexophagy-linked degradation of the peroxisomal membrane protein Pex3p involves the ubiquitin-proteasome system. Biochem. Biophys. Res. Commun. 438: 395-401. http://dx.doi.org/10.1016/j.bbrc.2013.07.086
-
(2013)
Biochem. Biophys. Res. Commun.
, vol.438
, pp. 395-401
-
-
Williams, C.1
van der Klei, I.J.2
-
126
-
-
84899789746
-
ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy
-
Wu, W., W. Tian, Z. Hu, G. Chen, L. Huang, W. Li, X. Zhang, P. Xue, C. Zhou, L. Liu, et al. 2014. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 15: 566-575. http://dx.doi.org/10.1002/embr.201438501
-
(2014)
EMBO Rep.
, vol.15
, pp. 566-575
-
-
Wu, W.1
Tian, W.2
Hu, Z.3
Chen, G.4
Huang, L.5
Li, W.6
Zhang, X.7
Xue, P.8
Zhou, C.9
Liu, L.10
-
127
-
-
84887453820
-
PINK1 is degraded through the N-end rule pathway
-
Yamano, K., and R.J. Youle. 2013. PINK1 is degraded through the N-end rule pathway. Autophagy. 9: 1758-1769. http://dx.doi.org/10.4161/auto.24633
-
(2013)
Autophagy.
, vol.9
, pp. 1758-1769
-
-
Yamano, K.1
Youle, R.J.2
-
128
-
-
84898652320
-
Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy
-
Yamano, K., A.I. Fogel, C. Wang, A.M. van der Bliek, and R.J. Youle. 2014. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. Elife. 3: e01612. http://dx.doi.org/10.7554/eLife.01612
-
(2014)
Elife.
, vol.3
-
-
Yamano, K.1
Fogel, A.I.2
Wang, C.3
van der Bliek, A.M.4
Youle, R.J.5
-
130
-
-
43649104579
-
Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
-
Zhang, H., M. Bosch-Marce, L.A. Shimoda, Y.S. Tan, J.H. Baek, J.B. Wesley, F.J. Gonzalez, and G.L. Semenza. 2008. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283: 10892-10903. http://dx.doi.org/10.1074/jbc. M800102200
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 10892-10903
-
-
Zhang, H.1
Bosch-Marce, M.2
Shimoda, L.A.3
Tan, Y.S.4
Baek, J.H.5
Wesley, J.B.6
Gonzalez, F.J.7
Semenza, G.L.8
-
131
-
-
84879885169
-
Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism
-
Zheng, X., and T. Hunter. 2013. Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res. 23: 886-897. http://dx.doi.org/10.1038/cr.2013.66
-
(2013)
Cell Res.
, vol.23
, pp. 886-897
-
-
Zheng, X.1
Hunter, T.2
-
132
-
-
84872291490
-
Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis
-
Zhu, Y., S. Massen, M. Terenzio, V. Lang, S. Chen-Lindner, R. Eils, I. Novak, I. Dikic, A. Hamacher-Brady, and N.R. Brady. 2013. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J. Biol. Chem. 288: 1099-1113. http://dx.doi.org/10.1074/jbc. M112.399345
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 1099-1113
-
-
Zhu, Y.1
Massen, S.2
Terenzio, M.3
Lang, V.4
Chen-Lindner, S.5
Eils, R.6
Novak, I.7
Dikic, I.8
Hamacher-Brady, A.9
Brady, N.R.10
|