메뉴 건너뛰기




Volumn 16, Issue 1, 2015, Pages 3-22

Reverse engineering of genome-wide gene regulatory networks from gene expression data

Author keywords

Computational model; Gene expression data; Genome wide inference; Reverse engineering; Transcriptional regulatory network

Indexed keywords

ARTICLE; BAYESIAN NETWORK METHOD; BOOLEAN NETWORK METHOD; COMPUTER MODEL; CORRELATION ANALYSIS; DECISION MAKING; DIFFERENTIAL EQUATION METHOD; GENE EXPRESSION; GENE REGULATORY NETWORK; GENETIC ALGORITHM; GENETIC ASSOCIATION; GENETIC LINKAGE; KNOWLEDGE; MATHEMATICAL PARAMETERS; MATHEMATICAL PHENOMENA; PROTEIN MICROARRAY; REVERSE ENGINEERING; TRANSCRIPTION REGULATION;

EID: 84926339771     PISSN: 13892029     EISSN: 18755488     Source Type: Journal    
DOI: 10.2174/1389202915666141110210634     Document Type: Article
Times cited : (67)

References (202)
  • 1
    • 84865249952 scopus 로고    scopus 로고
    • Transcription factors: From enhancer binding to developmental control
    • [1] Spitz, F.; Furlong, E.E. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet., 2012, 13 (9), 613-626.
    • (2012) Nat. Rev. Genet , vol.13 , Issue.9 , pp. 613-626
    • Spitz, F.1    Furlong, E.E.2
  • 2
    • 33846283385 scopus 로고    scopus 로고
    • The evolution of gene regulation by transcription factors and microRNAs
    • [2] Chen, K.; Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet., 2007, 8 (2), 93-103.
    • (2007) Nat. Rev. Genet. , vol.8 , Issue.2 , pp. 93-103
    • Chen, K.1    Rajewsky, N.2
  • 3
    • 17044368752 scopus 로고    scopus 로고
    • Gene regulatory networks for development
    • [3] Levine, M.; Davidson, E.H. Gene regulatory networks for development. Proc. Natl. Acad. Sci. U S A, 2005, 102 (14), 4936-4942.
    • (2005) Proc. Natl. Acad. Sci. U S A , vol.102 , Issue.14 , pp. 4936-4942
    • Levine, M.1    Davidson, E.H.2
  • 4
    • 0037154982 scopus 로고    scopus 로고
    • A unified theory of gene expression
    • [4] Orphanides, G.; Reinberg, D. A unified theory of gene expression. Cell, 2002, 108 (4), 439-451.
    • (2002) Cell , vol.108 , Issue.4 , pp. 439-451
    • Orphanides, G.1    Reinberg, D.2
  • 6
    • 1942453302 scopus 로고    scopus 로고
    • Predicting gene expression from sequence
    • [6] Beer, M.A.; Tavazoie, S. Predicting gene expression from sequence. Cell, 2004, 117 (2), 185-198.
    • (2004) Cell , vol.117 , Issue.2 , pp. 185-198
    • Beer, M.A.1    Tavazoie, S.2
  • 7
    • 55549113874 scopus 로고    scopus 로고
    • A quantitative model of transcription factor-activated gene expression
    • [7] Kim, H.D.; O'Shea, E.K. A quantitative model of transcription factor-activated gene expression. Nat. Struct. Mol. Biol., 2008, 15 (11), 1192-1198.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , Issue.11 , pp. 1192-1198
    • Kim, H.D.1    O'shea, E.K.2
  • 8
    • 84877302557 scopus 로고    scopus 로고
    • Interfacing cellular networks of S. Cerevisiae and E. coli: Connecting dynamic and genetic information
    • [8] de Matos Simoes, R.; Dehmer, M.; Emmert-Streib, F. Interfacing cellular networks of S. cerevisiae and E. coli: connecting dynamic and genetic information. BMC Genomics, 2013, 14, 324.
    • (2013) BMC Genomics , vol.14
    • De Matos Simoes, R.1    Dehmer, M.2    Emmert-Streib, F.3
  • 10
    • 22344449669 scopus 로고    scopus 로고
    • Constructing transcriptional regulatory networks
    • [10] Blais, A.; Dynlacht, B.D. Constructing transcriptional regulatory networks. Genes Dev., 2005, 19 (13), 1499-1511.
    • (2005) Genes Dev. , vol.19 , Issue.13 , pp. 1499-1511
    • Blais, A.1    Dynlacht, B.D.2
  • 12
    • 0032424433 scopus 로고    scopus 로고
    • Interference with gene regulation in living sea urchin embryos: Transcription factor knock out (TKO), a genetically controlled vector for blockade of specific transcription factors
    • [12] Bogarad, L.D.; Arnone, M.I.; Chang, C.; Davidson, E.H. Interference with gene regulation in living sea urchin embryos: transcription factor knock out (TKO), a genetically controlled vector for blockade of specific transcription factors. Proc. Natl. Acad. Sci. U S A, 1998, 95 (25), 14827-14832.
    • (1998) Proc. Natl. Acad. Sci. U S A , vol.95 , Issue.25 , pp. 14827-14832
    • Bogarad, L.D.1    Arnone, M.I.2    Chang, C.3    Davidson, E.H.4
  • 13
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • [13] Pe'er, D.; Regev, A.; Elidan, G.; Friedman, N. Inferring subnetworks from perturbed expression profiles. Bioinformatics, 2001,17 (Suppl 1), S215-224.
    • (2001) Bioinformatics , vol.17 , pp. 215-224
    • Pe'er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 14
    • 34247629588 scopus 로고    scopus 로고
    • Genetic reconstruction of a functional transcriptional regulatory network
    • [14] Hu, Z.; Killion, P.J.; Iyer, V.R. Genetic reconstruction of a functional transcriptional regulatory network. Nat. Genet., 2007,39 (5), 683-687.
    • (2007) Nat. Genet , vol.39 , Issue.5 , pp. 683-687
    • Hu, Z.1    Killion, P.J.2    Iyer, V.R.3
  • 16
    • 70349312354 scopus 로고    scopus 로고
    • ChIP-seq: Advantages and challenges of a maturing technology
    • [16] Park, P.J. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 2009, 10 (10), 669-680.
    • (2009) Nat. Rev. Genet. , vol.10 , Issue.10 , pp. 669-680
    • Park, P.J.1
  • 17
    • 34250159524 scopus 로고    scopus 로고
    • Genomewide mapping of in vivo protein-DNA interactions
    • [17] Johnson, D.S.; Mortazavi, A.; Myers, R.M.; Wold, B. Genomewide mapping of in vivo protein-DNA interactions. Science, 2007,316 (5830), 1497-1502.
    • (2007) Science , vol.316 , Issue.5830 , pp. 1497-1502
    • Johnson, D.S.1    Mortazavi, A.2    Myers, R.M.3    Wold, B.4
  • 19
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • [19] Schena, M.; Shalon, D.; Davis, R.W.; Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science,1995, 270 (5235), 467-470.
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 21
    • 22844441552 scopus 로고    scopus 로고
    • Reverse engineering gene regulatory networks
    • [21] Hartemink, A.J. Reverse engineering gene regulatory networks. Nat. Biotechnol., 2005, 23 (5), 554-555.
    • (2005) Nat. Biotechnol. , vol.23 , Issue.5 , pp. 554-555
    • Hartemink, A.J.1
  • 24
    • 0036500834 scopus 로고    scopus 로고
    • Reverse engineering of biological complexity
    • [24] Csete, M.E.; Doyle, J.C. Reverse engineering of biological complexity. Science, 2002, 295 (5560), 1664-1669.
    • (2002) Science , vol.295 , Issue.5560 , pp. 1664-1669
    • Csete, M.E.1    Doyle, J.C.2
  • 26
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • [26] de Jong, H. Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol., 2002, 9 (1), 67-103.
    • (2002) J. Comput. Biol. , vol.9 , Issue.1 , pp. 67-103
    • De Jong, H.1
  • 28
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models-a review
    • [28] Hecker, M.; Lambeck, S.; Toepfer, S.; van Someren, E.; Guthke, R. Gene regulatory network inference: data integration in dynamic models-a review. Biosystems, 2009, 96 (1), 86-103.
    • (2009) Biosystems , vol.96 , Issue.1 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    Van Someren, E.4    Guthke, R.5
  • 29
    • 52649087274 scopus 로고    scopus 로고
    • Modelling and analysis of gene regulatory networks
    • [29] Karlebach, G.; Shamir, R. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell. Biol., 2008, 9 (10), 770-780.
    • (2008) Nat. Rev. Mol. Cell. Biol , vol.9 , Issue.10 , pp. 770-780
    • Karlebach, G.1    Shamir, R.2
  • 30
    • 84859112389 scopus 로고    scopus 로고
    • Statistical inference and reverse engineering of gene regulatory networks from observational expression data
    • [30] Emmert-Streib, F.; Glazko, G.V.; Altay, G.; de Matos Simoes, R. Statistical inference and reverse engineering of gene regulatory networks from observational expression data. Front. Genet., 2012, 3, 8.
    • (2012) Front. Genet. , vol.3 , pp. 8
    • Emmert-Streib, F.1    Glazko, G.V.2    Altay, G.3    De Matos Simoes, R.4
  • 31
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks
    • [31] Werhli, A.V.; Grzegorczyk, M.; Husmeier, D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics, 2006, 22 (20), 2523-2531.
    • (2006) Bioinformatics , vol.22 , Issue.20 , pp. 2523-2531
    • Werhli, A.V.1    Grzegorczyk, M.2    Husmeier, D.3
  • 32
    • 38449116401 scopus 로고    scopus 로고
    • Inferring regulatory networks. Front
    • [32] Li, H.; Xuan, J.; Wang, Y.; Zhan, M. Inferring regulatory networks. Front. Biosci., 2008, 13, 263-275.
    • (2008) Biosci. , vol.13 , pp. 263-275
    • Li, H.1    Xuan, J.2    Wang, Y.3    Zhan, M.4
  • 33
    • 67449095889 scopus 로고    scopus 로고
    • Computational methods for discovering gene networks from expression data
    • [33] Lee, W.P.; Tzou, W.S. Computational methods for discovering gene networks from expression data. Brief Bioinform., 2009, 10 (4), 408-423.
    • (2009) Brief Bioinform. , vol.10 , Issue.4 , pp. 408-423
    • Lee, W.P.1    Tzou, W.S.2
  • 34
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • [34] Yeung, M.K.; Tegner, J.; Collins, J.J. Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. U S A, 2002, 99 (9), 6163-6168.
    • (2002) Proc. Natl. Acad. Sci. U S A , vol.99 , Issue.9 , pp. 6163-6168
    • Yeung, M.K.1    Tegner, J.2    Collins, J.J.3
  • 35
    • 14844286390 scopus 로고    scopus 로고
    • Reverse-engineering transcription control networks. Phys
    • [35] Gardner, T.S.; Faith, J.J. Reverse-engineering transcription control networks. Phys. Life Rev., 2005, 2 (1), 65-88.
    • (2005) Life Rev. , vol.2 , Issue.1 , pp. 65-88
    • Gardner, T.S.1    Faith, J.J.2
  • 36
    • 0037687416 scopus 로고    scopus 로고
    • Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling
    • [36] Tegner, J.; Yeung, M.K.; Hasty, J.; Collins, J.J. Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc. Natl. Acad. Sci. U S A, 2003, 100 (10), 5944-5949.
    • (2003) Proc. Natl. Acad. Sci. U S A , vol.100 , Issue.10 , pp. 5944-5949
    • Tegner, J.1    Yeung, M.K.2    Hasty, J.3    Collins, J.J.4
  • 37
    • 14844307159 scopus 로고    scopus 로고
    • Inferring quantitative models of regulatory networks from expression data
    • [37] Nachman, I.; Regev, A.; Friedman, N. Inferring quantitative models of regulatory networks from expression data. Bioinformatics, 2004,20 (Suppl 1), i248-256.
    • (2004) Bioinformatics , vol.20 , pp. 248-256
    • Nachman, I.1    Regev, A.2    Friedman, N.3
  • 38
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • [38] Luscombe, N.M.; Babu, M.M.; Yu, H.; Snyder, M.; Teichmann, S.A.; Gerstein, M. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 2004, 431 (7006), 308-312.
    • (2004) Nature , vol.431 , Issue.7006 , pp. 308-312
    • Luscombe, N.M.1    Babu, M.M.2    Yu, H.3    Snyder, M.4    Teichmann, S.A.5    Gerstein, M.6
  • 39
    • 67749113808 scopus 로고    scopus 로고
    • Transcriptional regulatory circuits: Predicting numbers from alphabets
    • [39] Kim, H.D.; Shay, T.; O'Shea, E.K.; Regev, A. Transcriptional regulatory circuits: predicting numbers from alphabets. Science, 2009,325 (5939), 429-432.
    • (2009) Science , vol.325 , Issue.5939 , pp. 429-432
    • Kim, H.D.1    Shay, T.2    O'shea, E.K.3    Regev, A.4
  • 40
    • 82255175259 scopus 로고    scopus 로고
    • Strategies to discover regulatory circuits of the mammalian immune system. Nat
    • [40] Amit, I.; Regev, A.; Hacohen, N. Strategies to discover regulatory circuits of the mammalian immune system. Nat. Rev. Immunol., 2011,11 (12), 873-880.
    • (2011) Rev. Immunol. , vol.11 , Issue.12 , pp. 873-880
    • Amit, I.1    Regev, A.2    Hacohen, N.3
  • 41
    • 33750016109 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from multiple microarray datasets
    • [41] Wang, Y.; Joshi, T.; Zhang, X.S.; Xu, D.; Chen, L. Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics, 2006, 22 (19), 2413-2420.
    • (2006) Bioinformatics , vol.22 , Issue.19 , pp. 2413-2420
    • Wang, Y.1    Joshi, T.2    Zhang, X.S.3    Xu, D.4    Chen, L.5
  • 42
    • 49449086368 scopus 로고    scopus 로고
    • Survival of the sparsest: Robust gene networks are parsimonious. Mol. Syst
    • [42] Leclerc, R.D. Survival of the sparsest: robust gene networks are parsimonious. Mol. Syst. Biol., 2008, 4, 213.
    • (2008) Biol. , vol.4 , pp. 213
    • Leclerc, R.D.1
  • 43
    • 13544254744 scopus 로고    scopus 로고
    • Identifying combinatorial regulation of transcription factors and binding motifs
    • [43] Kato, M.; Hata, N.; Banerjee, N.; Futcher, B.; Zhang, M.Q. Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol., 2004, 5 (8), R56.
    • (2004) Genome Biol. , vol.5 , Issue.8 , pp. 56
    • Kato, M.1    Hata, N.2    Banerjee, N.3    Futcher, B.4    Zhang, M.Q.5
  • 45
    • 0034785443 scopus 로고    scopus 로고
    • Identifying regulatory networks by combinatorial analysis of promoter elements
    • [45] Pilpel, Y.; Sudarsanam, P.; Church, G.M. Identifying regulatory networks by combinatorial analysis of promoter elements. Nat. Genet., 2001, 29 (2), 153-159.
    • (2001) Nat. Genet , vol.29 , Issue.2 , pp. 153-159
    • Pilpel, Y.1    Sudarsanam, P.2    Church, G.M.3
  • 46
    • 84897675326 scopus 로고    scopus 로고
    • The gene regulatory network for breast cancer: Integrated regulatory landscape of cancer hallmarks
    • [46] Emmert-Streib, F.; de Matos Simoes, R.; Mullan, P.; Haibe-Kains, B.; Dehmer, M. The gene regulatory network for breast cancer: integrated regulatory landscape of cancer hallmarks. Front. Genet., 2014,5, 15.
    • (2014) Front. Genet , vol.5 , pp. 15
    • Emmert-Streib, F.1    De Matos Simoes, R.2    Mullan, P.3    Haibe-Kains, B.4    Dehmer, M.5
  • 47
    • 84859579687 scopus 로고    scopus 로고
    • The context of gene expression regulation. F1000 Biol
    • [47] Gibcus, J.H.; Dekker, J. The context of gene expression regulation. F1000 Biol. Rep., 2012, 4, 8.
    • (2012) Rep. , vol.4 , pp. 8
    • Gibcus, J.H.1    Dekker, J.2
  • 48
    • 84871688621 scopus 로고    scopus 로고
    • Analysing and interpreting DNA methylation data
    • [48] Bock, C. Analysing and interpreting DNA methylation data. Nat. Rev. Genet., 2012, 13 (10), 705-719.
    • (2012) Nat. Rev. Genet , vol.13 , Issue.10 , pp. 705-719
    • Bock, C.1
  • 49
    • 68349125112 scopus 로고    scopus 로고
    • What controls nucleosome positions?
    • [49] Segal, E.; Widom, J. What controls nucleosome positions? Trends Genet., 2009, 25 (8), 335-343.
    • (2009) Trends Genet. , vol.25 , Issue.8 , pp. 335-343
    • Segal, E.1    Widom, J.2
  • 50
    • 0037372003 scopus 로고    scopus 로고
    • Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat
    • [50] Jaenisch, R.; Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet., 2003, 33 (Suppl), 245-254.
    • (2003) Genet. , vol.33 , pp. 245-254
    • Jaenisch, R.1    Bird, A.2
  • 51
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory func tions
    • [51] Bartel, D. P. MicroRNAs: target recognition and regulatory func tions. Cell, 2009, 136 (2), 215-233.
    • (2009) Cell , vol.136 , Issue.2 , pp. 215-233
    • Bartel, D.P.1
  • 55
    • 0345743695 scopus 로고    scopus 로고
    • Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis
    • [55] Kao, K. C.; Yang, Y. L.; Boscolo, R.; Sabatti, C.; Roychowdhury, V.; Liao, J. C. Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. Proc. Natl. Acad. Sci. U S A, 2004, 101 (2), 641-646.
    • (2004) Proc. Natl. Acad. Sci. U S A , vol.101 , Issue.2 , pp. 641-646
    • Kao, K.C.1    Yang, Y.L.2    Boscolo, R.3    Sabatti, C.4    Roychowdhury, V.5    Liao, J.C.6
  • 57
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on reverseengineering assessment and methods: The DREAM of highthroughput pathway inference
    • [57] Stolovitzky, G.; Monroe, D.; Califano, A. Dialogue on reverseengineering assessment and methods: the DREAM of highthroughput pathway inference. Ann. N Y Acad. Sci., 2007, 1115, 1-22.
    • (2007) Ann. N Y Acad. Sci. , vol.1115 , pp. 1-22
    • Stolovitzky, G.1    Monroe, D.2    Califano, A.3
  • 58
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods
    • [58] Schaffter, T.; Marbach, D.; Floreano, D. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics, 2011, 27 (16), 2263-2270.
    • (2011) Bioinformatics , vol.27 , Issue.16 , pp. 2263-2270
    • Schaffter, T.1    Marbach, D.2    Floreano, D.3
  • 59
    • 84870311707 scopus 로고    scopus 로고
    • Proteome-wide prediction of protein-protein interactions from high-throughput data
    • [59] Liu, Z. P.; Chen, L. Proteome-wide prediction of protein-protein interactions from high-throughput data. Protein Cell, 2012, 3 (7), 508-520.
    • (2012) Protein Cell , vol.3 , Issue.7 , pp. 508-520
    • Liu, Z.P.1    Chen, L.2
  • 60
    • 84855160951 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information
    • [60] Zhang, X.; Zhao, X. M.; He, K.; Lu, L.; Cao, Y.; Liu, J.; Hao, J. K.; Liu, Z. P.; Chen, L. Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics, 2012, 28 (1), 98-104.
    • (2012) Bioinformatics , vol.28 , Issue.1 , pp. 98-104
    • Zhang, X.1    Zhao, X.M.2    He, K.3    Lu, L.4    Cao, Y.5    Liu, J.6    Hao, J.K.7    Liu, Z.P.8    Chen, L.9
  • 62
    • 0032728081 scopus 로고    scopus 로고
    • Clustering gene expression patterns
    • [62] Ben-Dor, A.; Shamir, R.; Yakhini, Z. Clustering gene expression patterns. J. Comput. Biol., 1999, 6 (3-4), 281-297.
    • (1999) J. Comput. Biol. , vol.6 , Issue.3-4 , pp. 281-297
    • Ben-Dor, A.1    Shamir, R.2    Yakhini, Z.3
  • 63
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • [63] Eisen, M. B.; Spellman, P. T.; Brown, P. O.; Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U S A, 1998, 95 (25), 14863-14868.
    • (1998) Proc. Natl. Acad. Sci. U S A , vol.95 , Issue.25 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3    Botstein, D.4
  • 64
    • 0141993704 scopus 로고    scopus 로고
    • A gene-coexpression network for global discovery of conserved genetic modules
    • [64] Stuart, J. M.; Segal, E.; Koller, D.; Kim, S. K. A gene-coexpression network for global discovery of conserved genetic modules. Science, 2003,302 (5643), 249-255.
    • (2003) Science , vol.302 , Issue.5643 , pp. 249-255
    • Stuart, J.M.1    Segal, E.2    Koller, D.3    Kim, S.K.4
  • 65
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. Pac. Symp
    • [65] Butte, A. J.; Kohane, I. S. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput., 2000, 5, 418-429.
    • (2000) Biocomput. , vol.5 , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 66
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA: An R package for weighted correlation network analysis
    • [66] Langfelder, P.; Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9, 559.
    • (2008) BMC Bioinformatics , vol.9 , pp. 559
    • Langfelder, P.1    Horvath, S.2
  • 67
    • 84861893428 scopus 로고    scopus 로고
    • Coexpression network analysis in chronic hepatitis B and C hepatic lesions reveals distinct patterns of disease progression to hepatocellular carcinoma
    • [67] He, D.; Liu, Z. P.; Honda, M.; Kaneko, S.; Chen, L. Coexpression network analysis in chronic hepatitis B and C hepatic lesions reveals distinct patterns of disease progression to hepatocellular carcinoma. J. Mol. Cell Biol., 2012,4 (3), 140-152.
    • (2012) J. Mol. Cell Biol. , vol.4 , Issue.3 , pp. 140-152
    • He, D.1    Liu, Z.P.2    Honda, M.3    Kaneko, S.4    Chen, L.5
  • 68
    • 23944458138 scopus 로고    scopus 로고
    • A general framework for weighted gene coexpression network analysis
    • [68] Zhang, B.; Horvath, S. A general framework for weighted gene coexpression network analysis. Stat. Appl. Genet. Mol. Biol., 2005,4, Article17.
    • (2005) Stat. Appl. Genet. Mol. Biol
    • Zhang, B.1    Horvath, S.2
  • 69
    • 68349106710 scopus 로고    scopus 로고
    • Comparing Pearson, Spearman and Hoeffding's D measure for gene expression association analysis
    • [69] Fujita, A.; Sato, J. R.; Demasi, M. A.; Sogayar, M. C.; Ferreira, C. E.; Miyano, S. Comparing Pearson, Spearman and Hoeffding's D measure for gene expression association analysis. J. Bioinform. Comput. Biol., 2009, 7 (4), 663-684.
    • (2009) J. Bioinform. Comput. Biol , vol.7 , Issue.4 , pp. 663-684
    • Fujita, A.1    Sato, J.R.2    Demasi, M.A.3    Sogayar, M.C.4    Ferreira, C.E.5    Miyano, S.6
  • 70
    • 0034710924 scopus 로고    scopus 로고
    • Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks
    • [70] Butte, A. J.; Tamayo, P.; Slonim, D.; Golub, T. R.; Kohane, I. S. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Natl. Acad. Sci. U S A, 2000, 97 (22), 12182-12186.
    • (2000) Proc. Natl. Acad. Sci. U S A , vol.97 , Issue.22 , pp. 12182-12186
    • Butte, A.J.1    Tamayo, P.2    Slonim, D.3    Golub, T.R.4    Kohane, I.S.5
  • 71
    • 77957141016 scopus 로고    scopus 로고
    • Inferring the conservative causal core of gene regulatory networks
    • [71] Altay, G.; Emmert-Streib, F. Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol., 2010, 4, 132.
    • (2010) BMC Syst. Biol , vol.4 , pp. 132
    • Altay, G.1    Emmert-Streib, F.2
  • 72
    • 59849099039 scopus 로고    scopus 로고
    • On the impact of entropy estimation on transcriptional regulatory network inference based on mutual information
    • [72] Olsen, C.; Meyer, P.E.; Bontempi, G. On the impact of entropy estimation on transcriptional regulatory network inference based on mutual information. EURASIP J. Bioinform. Syst. Biol., 2009, 308959.
    • (2009) EURASIP J. Bioinform. Syst. Biol
    • Olsen, C.1    Meyer, P.E.2    Bontempi, G.3
  • 74
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • [74] Faith, J.J.; Hayete, B.; Thaden, J.T.; Mogno, I.; Wierzbowski, J.; Cottarel, G.; Kasif, S.; Collins, J.J.; Gardner, T.S. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol., 2007, 5 (1), e8.
    • (2007) Plos Biol. , vol.5 , Issue.1 , pp. 8
    • Faith, J.J.1    Hayete, B.2    Thaden, J.T.3    Mogno, I.4    Wierzbowski, J.5    Cottarel, G.6    Kasif, S.7    Collins, J.J.8    Gardner, T.S.9
  • 75
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • [75] Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol., 2005, 3 (2), 185-205.
    • (2005) J. Bioinform. Comput. Biol. , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 76
    • 59949086432 scopus 로고    scopus 로고
    • Minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information
    • [76] Meyer, P.E.; Lafitte, F.; Bontempi, G. minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics, 2008, 9, 461.
    • (2008) BMC Bioinformatics , vol.9 , pp. 461
    • Meyer, P.E.1    Lafitte, F.2    Bontempi, G.3
  • 80
    • 84895815806 scopus 로고    scopus 로고
    • Equitability, mutual information, and the maximal information coefficient
    • [80] Kinney, J.B.; Atwal, G.S. Equitability, mutual information, and the maximal information coefficient. Proc. Natl. Acad. Sci. U S A, 2014, 111 (9), 3354-3359.
    • (2014) Proc. Natl. Acad. Sci. U S A , vol.111 , Issue.9 , pp. 3354-3359
    • Kinney, J.B.1    Atwal, G.S.2
  • 81
    • 84870527707 scopus 로고    scopus 로고
    • Comparison of co-expression measures: Mutual information, correlation, and model based indices
    • [81] Song, L.; Langfelder, P.; Horvath, S. Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics, 2012, 13, 328.
    • (2012) BMC Bioinformatics , vol.13 , pp. 328
    • Song, L.1    Langfelder, P.2    Horvath, S.3
  • 82
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • [82] D'Haeseleer, P.; Liang, S.; Somogyi, R. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics, 2000,16 (8), 707-726.
    • (2000) Bioinformatics , vol.16 , Issue.8 , pp. 707-726
    • D'haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 83
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst
    • [83] Opgen-Rhein, R.; Strimmer, K. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol., 2007,1, 37.
    • (2007) Biol. , vol.1 , pp. 37
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 84
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nat
    • [84] Segal, E.; Shapira, M.; Regev, A.; Pe'er, D.; Botstein, D.; Koller, D.; Friedman, N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet., 2003, 34 (2), 166-176.
    • (2003) Genet. , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 85
    • 77956850355 scopus 로고    scopus 로고
    • Identifying dysfunctional crosstalk of pathways in various regions of Alzheimer's disease brains
    • [85] Liu, Z.P.; Wang, Y.; Zhang, X.S.; Chen, L. Identifying dysfunctional crosstalk of pathways in various regions of Alzheimer's disease brains. BMC Syst. Biol., 2010, 4 (Suppl 2), S11.
    • (2010) BMC Syst. Biol , vol.4 , pp. 11
    • Liu, Z.P.1    Wang, Y.2    Zhang, X.S.3    Chen, L.4
  • 86
    • 82455188358 scopus 로고    scopus 로고
    • Identification of dysfunctional modules and disease genes in congenital heart disease by a network-based approach
    • [86] He, D.; Liu, Z.P.; Chen, L. Identification of dysfunctional modules and disease genes in congenital heart disease by a network-based approach. BMC Genomics, 12, 592.
    • BMC Genomics , vol.12 , pp. 592
    • He, D.1    Liu, Z.P.2    Chen, L.3
  • 87
    • 84861843896 scopus 로고    scopus 로고
    • Identifying dysregulated pathways in cancers from pathway interaction networks
    • [87] Liu, K. Q.; Liu, Z.P.; Hao, J.K.; Chen, L.; Zhao, X.M. Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics, 2012, 13 (1), 126.
    • (2012) BMC Bioinformatics , vol.13 , Issue.1 , pp. 126
    • Liu, K.Q.1    Liu, Z.P.2    Hao, J.K.3    Chen, L.4    Zhao, X.M.5
  • 88
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • [88] de la Fuente, A.; Bing, N.; Hoeschele, I.; Mendes, P. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics,2004,20 (18), 3565-3574.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3565-3574
    • De La Fuente, A.1    Bing, N.2    Hoeschele, I.3    Mendes, P.4
  • 89
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • [89] Schafer, J.; Strimmer, K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics, 2005, 21 (6), 754-764.
    • (2005) Bioinformatics , vol.21 , Issue.6 , pp. 754-764
    • Schafer, J.1    Strimmer, K.2
  • 90
    • 48849090016 scopus 로고    scopus 로고
    • Gene regulatory network reconstruction using conditional mutual information
    • [90] Liang, K.C.; Wang, X. Gene regulatory network reconstruction using conditional mutual information. EURASIP J. Bioinform. Syst. Biol., 2008, 253894.
    • (2008) EURASIP J. Bioinform. Syst. Biol
    • Liang, K.C.1    Wang, X.2
  • 91
    • 79952594472 scopus 로고    scopus 로고
    • Discovery of chemical compound groups with common structures by a network analysis approach (Affinity prediction method)
    • [91] Saito, S.; Hirokawa, T.; Horimoto, K. Discovery of chemical compound groups with common structures by a network analysis approach (affinity prediction method). J. Chem. Inf. Model, 51 (1), 61-68.
    • J. Chem. Inf. Model , vol.51 , Issue.1 , pp. 61-68
    • Saito, S.1    Hirokawa, T.2    Horimoto, K.3
  • 92
    • 36148985016 scopus 로고    scopus 로고
    • Partial mutual information for coupling analysis of multivariate time series
    • [92] Frenzel, S.; Pompe, B. Partial mutual information for coupling analysis of multivariate time series. Phys. Rev. Lett., 2007, 99 (20), 204101.
    • (2007) Phys. Rev. Lett , vol.99 , Issue.20
    • Frenzel, S.1    Pompe, B.2
  • 93
    • 83755172059 scopus 로고    scopus 로고
    • A correlation for the 21st century
    • [93] Speed, T. A correlation for the 21st century. Science, 2011, 334 (6062), 1502-1503.
    • (2011) Science , vol.334 , Issue.6062 , pp. 1502-1503
    • Speed, T.1
  • 94
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the pc-algorithm
    • [94] Kalisch, M.; Buhlmann, P. Estimating high-dimensional directed acyclic graphs with the pc-algorithm. J. Mach. LearnRes., 2005, 7, 613-636.
    • (2005) J. Mach. Learnres. , vol.7 , pp. 613-636
    • Kalisch, M.1    Buhlmann, P.2
  • 95
    • 0032612220 scopus 로고    scopus 로고
    • Linear model ing of mRNA expression levels during CNS development and injury
    • [95] D'Haeseleer, P.; Wen, X.; Fuhrman, S.; Somogyi, R. Linear model ing of mRNA expression levels during CNS development and injury. Pac. Symp. Biocomput., 1999, 4, 41-52.
    • (1999) Pac. Symp. Biocomput. , vol.4 , pp. 41-52
    • D'haeseleer, P.1    Wen, X.2    Fuhrman, S.3    Somogyi, R.4
  • 96
    • 68349096073 scopus 로고    scopus 로고
    • Inference of large-scale gene regulatory networks using regression-based network approach
    • [96] Kim, H.; Lee, J.K.; Park, T. Inference of large-scale gene regulatory networks using regression-based network approach. J. Bioinform. Comput. Biol., 2009,7 (4), 717-735.
    • (2009) J. Bioinform. Comput. Biol. , vol.7 , Issue.4 , pp. 717-735
    • Kim, H.1    Lee, J.K.2    Park, T.3
  • 97
    • 34249862287 scopus 로고    scopus 로고
    • Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process
    • [97] Opgen-Rhein, R.; Strimmer, K. Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinformatics, 2007, 8(Suppl 2), S3.
    • (2007) BMC Bioinformatics , vol.8 , pp. 3
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 98
    • 39149092734 scopus 로고    scopus 로고
    • Reconstruction of genetic association networks from microarray data: A partial least squares approach
    • [98] Pihur, V.; Datta, S. Reconstruction of genetic association networks from microarray data: a partial least squares approach. Bioinformatics, 2008, 24 (4), 561-568.
    • (2008) Bioinformatics , vol.24 , Issue.4 , pp. 561-568
    • Pihur, V.1    Datta, S.2
  • 99
    • 85194972808 scopus 로고    scopus 로고
    • Regression Shrinkage and Selection via the Lasso
    • [99] Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Series B Stat. Methodol., 1996, 58, 267-288.
    • (1996) J. R. Stat. Soc. Series B Stat. Methodol , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 100
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the Elastic Net
    • [100] Zou, H.; Trevor, H. Regularization and variable selection via the Elastic Net. J. R. Stat. Soc. Series B Stat. Methodol., 2005, 67, 301-320.
    • (2005) J. R. Stat. Soc. Series B Stat. Methodol , vol.67 , pp. 301-320
    • Zou, H.1    Trevor, H.2
  • 101
    • 77953107844 scopus 로고    scopus 로고
    • Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs
    • [101] Shojaie, A.; Michailidis, G. Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. Biometrika, 2010, 97 (3), 519-538.
    • (2010) Biometrika , vol.97 , Issue.3 , pp. 519-538
    • Shojaie, A.1    Michailidis, G.2
  • 102
    • 66349115724 scopus 로고    scopus 로고
    • Grouped graphical Granger modeling for gene expression regulatory networks discovery
    • [102] Lozano, A.C.; Abe, N.; Liu, Y.; Rosset, S. Grouped graphical Granger modeling for gene expression regulatory networks discovery. Bioinformatics, 2009, 25 (12), i110-118.
    • (2009) Bioinformatics , vol.25 , Issue.12 , pp. 110-118
    • Lozano, A.C.1    Abe, N.2    Liu, Y.3    Rosset, S.4
  • 103
    • 77956514067 scopus 로고    scopus 로고
    • Discovering graphical Granger causality using the truncating lasso penalty
    • [103] Shojaie, A.; Michailidis, G. Discovering graphical Granger causality using the truncating lasso penalty. Bioinformatics, 2010, 26 (18), i517-523.
    • (2010) Bioinformatics , vol.26 , Issue.18 , pp. 517-523
    • Shojaie, A.1    Michailidis, G.2
  • 104
    • 0015823097 scopus 로고
    • Boolean formalization of genetic control circuits
    • [104] Thomas, R. Boolean formalization of genetic control circuits. J. Theor. Biol., 1973, 42 (3), 563-585.
    • (1973) J. Theor. Biol , vol.42 , Issue.3 , pp. 563-585
    • Thomas, R.1
  • 105
    • 0031616241 scopus 로고    scopus 로고
    • Reveal, a general reverse engineering algorithm for inference of genetic network architectures
    • [105] Liang, S.; Fuhrman, S.; Somogyi, R. Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac. Symp. Biocomput., 1998, 3, 18-29.
    • (1998) Pac. Symp. Biocomput , vol.3 , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 106
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • [106] Akutsu, T.; Miyano, S.; Kuhara, S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac. Symp. Biocomput., 1999, 4, 17-28.
    • (1999) Pac. Symp. Biocomput , vol.4 , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 107
    • 84867272347 scopus 로고    scopus 로고
    • Boolean modeling in systems biology: An overview of methodology and applications
    • [107] Wang, R.S.; Saadatpour, A.; Albert, R. Boolean modeling in systems biology: an overview of methodology and applications. Phys. Biol., 9 (5), 055001.
    • Phys. Biol , vol.9 , Issue.5
    • Wang, R.S.1    Saadatpour, A.2    Albert, R.3
  • 108
    • 70549104891 scopus 로고    scopus 로고
    • Boolean models of genomic regulatory networks: Reduction mappings, inference, and external control
    • [108] Ivanov, I. Boolean models of genomic regulatory networks: reduction mappings, inference, and external control. Curr. Genomics, 2009, 10 (6), 375-387.
    • (2009) Curr. Genomics , vol.10 , Issue.6 , pp. 375-387
    • Ivanov, I.1
  • 109
    • 0033737840 scopus 로고    scopus 로고
    • Inferring qualitative relations in genetic networks and metabolic pathways
    • [109] Akutsu, T.; Miyano, S.; Kuhara, S. Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics, 2000, 16 (8), 727-734.
    • (2000) Bioinformatics , vol.16 , Issue.8 , pp. 727-734
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 110
    • 0033642067 scopus 로고    scopus 로고
    • Discovery of regulatory interactions through perturbation: Inference and experimental design
    • [110] Ideker, T.E.; Thorsson, V.; Karp, R.M. Discovery of regulatory interactions through perturbation: inference and experimental design. Pac. Symp. Biocomput., 2000, 5, 305-316.
    • (2000) Pac. Symp. Biocomput , vol.5 , pp. 305-316
    • Ideker, T.E.1    Thorsson, V.2    Karp, R.M.3
  • 111
    • 50549088838 scopus 로고    scopus 로고
    • Synchronous versus asynchronous modeling of gene regulatory networks
    • [111] Garg, A.; Di Cara, A.; Xenarios, I.; Mendoza, L.; De Micheli, G. Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics, 2008, 24 (17), 1917-1925.
    • (2008) Bioinformatics , vol.24 , Issue.17 , pp. 1917-1925
    • Garg, A.1    Di Cara, A.2    Xenarios, I.3    Mendoza, L.4    De Micheli, G.5
  • 112
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean Networks: A rule-based uncertainty model for gene regulatory networks
    • [112] Shmulevich, I.; Dougherty, E.R.; Kim, S.; Zhang, W. Probabilistic Boolean Networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 2002, 18 (2), 261-274.
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 114
    • 70450175430 scopus 로고    scopus 로고
    • Recent advances in intervention in markovian regulatory networks
    • [114] Faryabi, B.; Vahedi, G.; Datta, A.; Chamberland, J. F.; Dougherty, E. R. Recent advances in intervention in markovian regulatory networks. Curr. Genomics, 2009, 10 (7), 463-477.
    • (2009) Curr. Genomics , vol.10 , Issue.7 , pp. 463-477
    • Faryabi, B.1    Vahedi, G.2    Datta, A.3    Chamberland, J.F.4    Dougherty, E.R.5
  • 115
    • 0345983657 scopus 로고    scopus 로고
    • From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc
    • [115] Shmulevich, I.; Dougherty, E.R.; Zhang, W. From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc. IEEE,2002,90 (11), 1778-1792.
    • (2002) IEEE , vol.90 , Issue.11 , pp. 1778-1792
    • Shmulevich, I.1    Dougherty, E.R.2    Zhang, W.3
  • 117
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • [117] Friedman, N.; Linial, M.; Nachman, I.; Pe'er, D. Using Bayesian networks to analyze expression data. J. Comput. Biol., 2000, 7 (3-4), 601-620.
    • (2000) J. Comput. Biol. , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 118
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • [118] Heckerman, D.; Chickering, D.M. Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn, 1995, 20, 197-243.
    • (1995) Mach. Learn , vol.20 , pp. 197-243
    • Heckerman, D.1    Chickering, D.M.2
  • 119
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • [119] Friedman, N. Inferring cellular networks using probabilistic graphical models. Science, 2004, 303 (5659), 799-805.
    • (2004) Science , vol.303 , Issue.5659 , pp. 799-805
    • Friedman, N.1
  • 122
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • [122] Husmeier, D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 2003, 19 (17), 2271-2282.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 123
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • [123] Zou, M.; Conzen, S.D. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 2005, 21 (1), 71-79.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 124
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • [124] Kim, S.; Imoto, S.; Miyano, S. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems, 2004, 75 (1-3), 57-65.
    • (2004) Biosystems , vol.75 , Issue.1-3 , pp. 57-65
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 125
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • [125] Beal, M.J.; Falciani, F.; Ghahramani, Z.; Rangel, C.; Wild, D.L. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 2005, 21 (3), 349-356.
    • (2005) Bioinformatics , vol.21 , Issue.3 , pp. 349-356
    • Beal, M.J.1    Falciani, F.2    Ghahramani, Z.3    Rangel, C.4    Wild, D.L.5
  • 126
    • 67849135609 scopus 로고    scopus 로고
    • Recovering time-varying networks of dependencies in social and biological studies
    • [126] Ahmed, A.; Xing, E.P. Recovering time-varying networks of dependencies in social and biological studies. Proc. Natl. Acad. Sci. U S A, 2009, 106 (29), 11878-11883.
    • (2009) Proc. Natl. Acad. Sci. U S A , vol.106 , Issue.29 , pp. 11878-11883
    • Ahmed, A.1    Xing, E.P.2
  • 127
    • 0032611513 scopus 로고    scopus 로고
    • Modeling gene expression with differential equations. Pac. Symp
    • [127] Chen, T.; He, H.L.; Church, G.M. Modeling gene expression with differential equations. Pac. Symp. Biocomput., 1999, 4, 29-40.
    • (1999) Biocomput. , vol.4 , pp. 29-40
    • Chen, T.1    He, H.L.2    Church, G.M.3
  • 128
    • 84900423203 scopus 로고    scopus 로고
    • Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations
    • [128] Wu, S.; Liu, Z.P.; Qiu, X.; Wu, H. Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations. PLoS One, 2014,9 (5), e95276.
    • (2014) Plos One , vol.9 , Issue.5 , pp. 95276
    • Wu, S.1    Liu, Z.P.2    Qiu, X.3    Wu, H.4
  • 129
    • 84862970480 scopus 로고    scopus 로고
    • High dimensional ODEs coupled with mixed-effects modeling techniques for dynamic gene regulatory network identification
    • [129] Lu, T.; Liang, H.; Li, H.; Wu, H. High dimensional ODEs coupled with mixed-effects modeling techniques for dynamic gene regulatory network identification. J. Am. Stat. Assoc., 2011,106 (496), 1242-1258.
    • (2011) J. Am. Stat. Assoc. , vol.106 , Issue.496 , pp. 1242-1258
    • Lu, T.1    Liang, H.2    Li, H.3    Wu, H.4
  • 130
    • 54249124501 scopus 로고    scopus 로고
    • Learning biological networks: From modules to dynamics
    • [130] Bonneau, R. Learning biological networks: from modules to dynamics. Nat. Chem. Biol., 2008, 4 (11), 658-664.
    • (2008) Nat. Chem. Biol , vol.4 , Issue.11 , pp. 658-664
    • Bonneau, R.1
  • 131
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • [131] Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc., 2001, 96 (45), 1348-1360.
    • (2001) J. Am. Stat. Assoc , vol.96 , Issue.45 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 132
    • 79954602638 scopus 로고    scopus 로고
    • On identifiability of nonlinear ODE models and applications in viral dynamics
    • [132] Miao, H.; Xia, X.; Perelson, A.S.; Wu, H. On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Rev., 2011, 53 (1), 3-39.
    • (2011) SIAM Rev. , vol.53 , Issue.1 , pp. 3-39
    • Miao, H.1    Xia, X.2    Perelson, A.S.3    Wu, H.4
  • 133
    • 84906234734 scopus 로고    scopus 로고
    • Untangling statistical and biological models to understand network inference: The need for a genomics network ontology
    • [133] Emmert-Streib, F.; Dehmer, M.; Haibe-Kains, B. Untangling statistical and biological models to understand network inference: The need for a genomics network ontology. Front. Genet., 2014, 5, 299.
    • (2014) Front. Genet , vol.5 , pp. 299
    • Emmert-Streib, F.1    Dehmer, M.2    Haibe-Kains, B.3
  • 134
    • 84893156375 scopus 로고    scopus 로고
    • Gaussian graphical model for identifying significantly responsive regulatory networks from time course high-throughput data
    • [134] Liu, Z.P.; Zhang, W.; Horimoto, K.; Chen, L. Gaussian graphical model for identifying significantly responsive regulatory networks from time course high-throughput data. IET Syst. Biol., 7 (5), 143-152.
    • IET Syst. Biol , vol.7 , Issue.5 , pp. 143-152
    • Liu, Z.P.1    Zhang, W.2    Horimoto, K.3    Chen, L.4
  • 136
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • [136] Bernstein, B.E.; Birney, E.; Dunham, I.; Green, E.D.; Gunter, C.; Snyder, M. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489 (7414), 57-74.
    • (2012) Nature , vol.489 , Issue.7414 , pp. 57-74
    • Bernstein, B.E.1    Birney, E.2    Dunham, I.3    Green, E.D.4    Gunter, C.5    Snyder, M.6
  • 139
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge
    • [139] Werhli, A.V.; Husmeier, D. Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol., 2007, 6, Article15.
    • (2007) Stat. Appl. Genet. Mol. Biol , vol.6
    • Werhli, A.V.1    Husmeier, D.2
  • 140
    • 55749093996 scopus 로고    scopus 로고
    • Network inference using informative priors
    • [140] Mukherjee, S.; Speed, T.P. Network inference using informative priors. Proc. Natl. Acad. Sci. U S A, 2008, 105 (38), 14313-14318.
    • (2008) Proc. Natl. Acad. Sci. U S A , vol.105 , Issue.38 , pp. 14313-14318
    • Mukherjee, S.1    Speed, T.P.2
  • 141
    • 67649878827 scopus 로고    scopus 로고
    • Literaturebased priors for gene regulatory networks
    • [141] Steele, E.; Tucker, A.; t Hoen, P.A.; Schuemie, M.J. Literaturebased priors for gene regulatory networks. Bioinformatics, 2009, 25 (14), 1768-1774.
    • (2009) Bioinformatics , vol.25 , Issue.14 , pp. 1768-1774
    • Steele, E.1    Tucker, A.2    T Hoen, P.A.3    Schuemie, M.J.4
  • 142
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. Pac. Symp
    • [142] Bernard, A.; Hartemink, A.J. Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. Pac. Symp. Biocomput., 2005, 10, 459-470.
    • (2005) Biocomput. , vol.10 , pp. 459-470
    • Bernard, A.1    Hartemink, A.J.2
  • 143
    • 3242875300 scopus 로고    scopus 로고
    • Combining microarrays and biological knowledge for estimating gene networks via bayesian networks
    • [143] Imoto, S.; Higuchi, T.; Goto, T.; Tashiro, K.; Kuhara, S.; Miyano, S. Combining microarrays and biological knowledge for estimating gene networks via bayesian networks. J. Bioinform. Comput. Biol., 2004, 2 (1), 77-98.
    • (2004) J. Bioinform. Comput. Biol , vol.2 , Issue.1 , pp. 77-98
    • Imoto, S.1    Higuchi, T.2    Goto, T.3    Tashiro, K.4    Kuhara, S.5    Miyano, S.6
  • 144
    • 54049146919 scopus 로고    scopus 로고
    • Network evaluation from the consistency of the graph structure with the measured data
    • [144] Saito, S.; Aburatani, S.; Horimoto, K. Network evaluation from the consistency of the graph structure with the measured data. BMC Syst. Biol., 2008, 2, 84.
    • (2008) BMC Syst. Biol , vol.2 , pp. 84
    • Saito, S.1    Aburatani, S.2    Horimoto, K.3
  • 145
    • 79959265839 scopus 로고    scopus 로고
    • Network screening of Goto-Kakizaki rat liver microarray data during diabetic progression
    • [145] Zhou, H.; Saito, S.; Piao, G.; Liu, Z.P.; Wang, J.; Horimoto, K.; Chen, L. Network screening of Goto-Kakizaki rat liver microarray data during diabetic progression. BMC Syst. Biol., 2011, 5 (Suppl 1), S16.
    • (2011) BMC Syst. Biol , vol.5 , pp. 16
    • Zhou, H.1    Saito, S.2    Piao, G.3    Liu, Z.P.4    Wang, J.5    Horimoto, K.6    Chen, L.7
  • 146
    • 84875814641 scopus 로고    scopus 로고
    • A computational procedure for identifying master regulator candidates: A case study on diabetes progression in Goto-Kakizaki rats
    • [146] Piao, G.; Saito, S.; Sun, Y.; Liu, Z.P.; Wang, Y.; Han, X.; Wu, J.; Zhou, H.; Chen, L.; Horimoto, K. A computational procedure for identifying master regulator candidates: a case study on diabetes progression in Goto-Kakizaki rats. BMC Syst. Biol., 2012, 6 (Suppl 1), S2.
    • (2012) BMC Syst. Biol , vol.6 , pp. 2
    • Piao, G.1    Saito, S.2    Sun, Y.3    Liu, Z.P.4    Wang, Y.5    Han, X.6    Wu, J.7    Zhou, H.8    Chen, L.9    Horimoto, K.10
  • 147
    • 0037079050 scopus 로고    scopus 로고
    • Metabolic network structure determines key aspects of functionality and regulation
    • [147] Stelling, J.; Klamt, S.; Bettenbrock, K.; Schuster, S.; Gilles, E. D. Metabolic network structure determines key aspects of functionality and regulation. Nature,2002,420 (6912), 190-193.
    • (2002) Nature , vol.420 , Issue.6912 , pp. 190-193
    • Stelling, J.1    Klamt, S.2    Bettenbrock, K.3    Schuster, S.4    Gilles, E.D.5
  • 148
    • 0030797355 scopus 로고    scopus 로고
    • Robustness in simple biochemical networks
    • [148] Barkai, N.; Leibler, S. Robustness in simple biochemical networks. Nature, 1997, 387 (6636), 913-917.
    • (1997) Nature , vol.387 , Issue.6636 , pp. 913-917
    • Barkai, N.1    Leibler, S.2
  • 149
    • 84870197769 scopus 로고    scopus 로고
    • Akutsu, T.Network completion using dynamic programming and leastsquares fitting
    • [149] Nakajima, N.; Tamura, T.; Yamanishi, Y.; Horimoto, K.; Akutsu, T.Network completion using dynamic programming and leastsquares fitting. ScientificWorldJournal, 2012, 2012, 957620.
    • (2012) Scientificworldjournal , vol.2012
    • Nakajima, N.1    Tamura, T.2    Yamanishi, Y.3    Horimoto, K.4
  • 150
    • 84883528688 scopus 로고    scopus 로고
    • Identification of master regulator candidates in conjunction with network screening and inference
    • [150] Saito, S.; Zhou, X.; Bae, T.; Kim, S.; Horimoto, K. Identification of master regulator candidates in conjunction with network screening and inference. Int. J. Data Min. Bioinform., 2014, 8 (3), 366-380.
    • (2014) Int. J. Data Min. Bioinform. , vol.8 , Issue.3 , pp. 366-380
    • Saito, S.1    Zhou, X.2    Bae, T.3    Kim, S.4    Horimoto, K.5
  • 151
    • 84859125037 scopus 로고    scopus 로고
    • Bagging statistical network inference from large-scale gene expression data
    • [151] de Matos Simoes, R.; Emmert-Streib, F. Bagging statistical network inference from large-scale gene expression data. PLoS One, 2012, 7 (3), e33624.
    • (2012) Plos One , vol.7 , Issue.3 , pp. 33624
    • De Matos Simoes, R.1    Emmert-Streib, F.2
  • 152
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • [152] Huynh-Thu, V.A.; Irrthum, A.; Wehenkel, L.; Geurts, P. Inferring regulatory networks from expression data using tree-based methods. PLoS One, 2010, 5 (9).
    • (2010) Plos One , vol.5 , Issue.9
    • Huynh-Thu, V.A.1    Irrthum, A.2    Wehenkel, L.3    Geurts, P.4
  • 153
    • 36448970861 scopus 로고    scopus 로고
    • Inferring transcriptional regulatory networks from high-throughput data
    • [153] Wang, R.S.; Wang, Y.; Zhang, X.S.; Chen, L. Inferring transcriptional regulatory networks from high-throughput data. Bioinformatics, 2007, 23 (22), 3056-3064.
    • (2007) Bioinformatics , vol.23 , Issue.22 , pp. 3056-3064
    • Wang, R.S.1    Wang, Y.2    Zhang, X.S.3    Chen, L.4
  • 154
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • [154] Bonneau, R.; Reiss, D.J.; Shannon, P.; Facciotti, M.; Hood, L.; Baliga, N.S.; Thorsson, V. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol., 2006,7 (5), R36.
    • (2006) Genome Biol. , vol.7 , Issue.5 , pp. 36
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3    Facciotti, M.4    Hood, L.5    Baliga, N.S.6    Thorsson, V.7
  • 156
    • 77249179159 scopus 로고    scopus 로고
    • Weighted-LASSO for structured network inference from time course data
    • [156] Charbonnier, C.; Chiquet, J.; Ambroise, C. Weighted-LASSO for structured network inference from time course data. Stat. Appl. Genet. Mol. Biol., 2010, 9, Article 15.
    • (2010) Stat. Appl. Genet. Mol. Biol , vol.9
    • Charbonnier, C.1    Chiquet, J.2    Ambroise, C.3
  • 158
    • 77952851181 scopus 로고    scopus 로고
    • BoolNet--an R package for generation, reconstruction and analysis of Boolean networks
    • [158] Mussel, C.; Hopfensitz, M.; Kestler, H.A. BoolNet--an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics,2010, 26 (10), 1378-1380.
    • (2010) Bioinformatics , vol.26 , Issue.10 , pp. 1378-1380
    • Mussel, C.1    Hopfensitz, M.2    Kestler, H.A.3
  • 159
    • 84891359051 scopus 로고    scopus 로고
    • BooleSim: An interactive Boolean network simulator
    • [159] Bock, M.; Scharp, T.; Talnikar, C.; Klipp, E. BooleSim: an interactive Boolean network simulator. Bioinformatics, 2013, 30 (1), 131-132.
    • (2013) Bioinformatics , vol.30 , Issue.1 , pp. 131-132
    • Bock, M.1    Scharp, T.2    Talnikar, C.3    Klipp, E.4
  • 160
    • 84857143182 scopus 로고    scopus 로고
    • Modeling mechanistic biological networks: An advanced Boolean approach
    • [160] Handorf, T.; Klipp, E. Modeling mechanistic biological networks: an advanced Boolean approach. Bioinformatics,2011,28 (4), 557-563.
    • (2011) Bioinformatics , vol.28 , Issue.4 , pp. 557-563
    • Handorf, T.1    Klipp, E.2
  • 161
    • 84855426653 scopus 로고    scopus 로고
    • Constructing logical models of gene regulatory networks by integrating transcription factor-DNA interactions with expression data: An entropy-based approach
    • [161] Karlebach, G.; Shamir, R. Constructing logical models of gene regulatory networks by integrating transcription factor-DNA interactions with expression data: an entropy-based approach. J. Comput. Biol., 2012, 19 (1), 30-41.
    • (2012) J. Comput. Biol. , vol.19 , Issue.1 , pp. 30-41
    • Karlebach, G.1    Shamir, R.2
  • 162
    • 77957930628 scopus 로고    scopus 로고
    • Statistical inference of the time-varying structure of gene-regulation networks
    • [162] Lebre, S.; Becq, J.; Devaux, F.; Stumpf, M. P.; Lelandais, G. Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst. Biol., 2010, 4, 130.
    • (2010) BMC Syst. Biol , vol.4 , pp. 130
    • Lebre, S.1    Becq, J.2    Devaux, F.3    Stumpf, M.P.4    Lelandais, G.5
  • 163
    • 58349093534 scopus 로고    scopus 로고
    • BNFinder: Exact and efficient method for learning Bayesian networks
    • [163] Wilczynski, B.; Dojer, N. BNFinder: exact and efficient method for learning Bayesian networks. Bioinformatics, 2009, 25 (2), 286-287.
    • (2009) Bioinformatics , vol.25 , Issue.2 , pp. 286-287
    • Wilczynski, B.1    Dojer, N.2
  • 164
    • 77955124773 scopus 로고    scopus 로고
    • Learning Bayesian Networks with the bnlearn R Package
    • [164] Scutari, M. Learning Bayesian Networks with the bnlearn R Package. J. Stat. Software, 2010, 35 (3), 1-22.
    • (2010) J. Stat. Software , vol.35 , Issue.3 , pp. 1-22
    • Scutari, M.1
  • 165
    • 84866934189 scopus 로고    scopus 로고
    • Inferring dynamic genetic networks with low order independencies
    • [165] Lebre, S. Inferring dynamic genetic networks with low order independencies. Stat. Appl. Genet. Mol. Biol., 2009, 8, Article 9.
    • (2009) Stat. Appl. Genet. Mol. Biol , vol.8
    • Lebre, S.1
  • 166
    • 80053452578 scopus 로고    scopus 로고
    • GlobalMIT: Learning globally optimal dynamic bayesian network with the mutual information test criterion
    • [166] Vinh, N.X.; Chetty, M.; Coppel, R.; Wangikar, P.P. GlobalMIT: learning globally optimal dynamic bayesian network with the mutual information test criterion. Bioinformatics, 2011, 27 (19), 2765-2766.
    • (2011) Bioinformatics , vol.27 , Issue.19 , pp. 2765-2766
    • Vinh, N.X.1    Chetty, M.2    Coppel, R.3    Wangikar, P.P.4
  • 167
    • 33645108505 scopus 로고    scopus 로고
    • Using a state-space model with hidden variables to infer transcription factor activities
    • [167] Li, Z.; Shaw, S.M.; Yedwabnick, M.J.; Chan, C. Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics, 2006, 22 (6), 747-754.
    • (2006) Bioinformatics , vol.22 , Issue.6 , pp. 747-754
    • Li, Z.1    Shaw, S.M.2    Yedwabnick, M.J.3    Chan, C.4
  • 168
    • 77953162975 scopus 로고    scopus 로고
    • Solving differential equations in R: Package deSolve
    • [168] Soetaert, K.; Petzoldt, T.; Setzer, R.W. Solving differential equations in R: package deSolve. J. Stat. Software, 2010, 33 (9), 1-25.
    • (2010) J. Stat. Software , vol.33 , Issue.9 , pp. 1-25
    • Soetaert, K.1    Petzoldt, T.2    Setzer, R.W.3
  • 169
    • 0034791625 scopus 로고    scopus 로고
    • Modeling genetic regulatory dynamics in neural development
    • [169] Wahde, M.; Hertz, J. Modeling genetic regulatory dynamics in neural development. J. Comput. Biol., 2001, 8 (4), 429-442.
    • (2001) J. Comput. Biol. , vol.8 , Issue.4 , pp. 429-442
    • Wahde, M.1    Hertz, J.2
  • 170
    • 84897891549 scopus 로고    scopus 로고
    • Bayesian network prior: Network analysis of biological data using external knowledge
    • [170] Isci, S.; Dogan, H.; Ozturk, C.; Otu, H.H. Bayesian network prior: network analysis of biological data using external knowledge. Bioinformatics, 2014, 30(6), 860-867.
    • (2014) Bioinformatics , vol.30 , Issue.6 , pp. 860-867
    • Isci, S.1    Dogan, H.2    Ozturk, C.3    Otu, H.H.4
  • 171
    • 84876207916 scopus 로고    scopus 로고
    • Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks
    • [171] Greenfield, A.; Hafemeister, C.; Bonneau, R. Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks. Bioinformatics, 2013, 29 (8), 1060-1067.
    • (2013) Bioinformatics , vol.29 , Issue.8 , pp. 1060-1067
    • Greenfield, A.1    Hafemeister, C.2    Bonneau, R.3
  • 173
    • 84885580971 scopus 로고    scopus 로고
    • Liu, Y.Incorporating prior knowledge into Gene Network Study
    • [173] Wang, Z.; Xu, W.; San Lucas, F. A.; Liu, Y.Incorporating prior knowledge into Gene Network Study. Bioinformatics,2013,29 (20), 2633-2640.
    • (2013) Bioinformatics , vol.29 , Issue.20 , pp. 2633-2640
    • Wang, Z.1    Xu, W.2    San Lucas, F.A.3
  • 174
    • 0034104824 scopus 로고    scopus 로고
    • Coarse-grained reverse engineering of genetic regulatory networks
    • [174] Wahde, M.; Hertz, J. Coarse-grained reverse engineering of genetic regulatory networks. Biosystems, 2000, 55 (1-3), 129-136.
    • (2000) Biosystems , vol.55 , Issue.1-3 , pp. 129-136
    • Wahde, M.1    Hertz, J.2
  • 175
    • 0033648431 scopus 로고    scopus 로고
    • Hybrid Petri net representation of gene regulatory network. Pac. Symp
    • [175] Matsuno, H.; Doi, A.; Nagasaki, M.; Miyano, S. Hybrid Petri net representation of gene regulatory network. Pac. Symp. Biocomput., 2000, 5, 341-352.
    • (2000) Biocomput. , vol.5 , pp. 341-352
    • Matsuno, H.1    Doi, A.2    Nagasaki, M.3    Miyano, S.4
  • 176
    • 0037270514 scopus 로고    scopus 로고
    • Towards reconstruction of gene networks from expression data by supervised learning
    • [176] Soinov, L.A.; Krestyaninova, M.A.; Brazma, A. Towards reconstruction of gene networks from expression data by supervised learning. Genome Biol., 2003, 4 (1), R6.
    • (2003) Genome Biol. , vol.4 , Issue.1 , pp. 6
    • Soinov, L.A.1    Krestyaninova, M.A.2    Brazma, A.3
  • 177
    • 49549104230 scopus 로고    scopus 로고
    • SIRENE: Supervised inference of regulatory networks
    • [177] Mordelet, F.; Vert, J.P. SIRENE: supervised inference of regulatory networks. Bioinformatics,2008,24 (16), i76-82.
    • (2008) Bioinformatics , vol.24 , Issue.16 , pp. 76-82
    • Mordelet, F.1    Vert, J.P.2
  • 178
    • 84869882656 scopus 로고    scopus 로고
    • TIGRESS: Trustful Inference of Gene REgulation using Stability Selection
    • [178] Haury, A.C.; Mordelet, F.; Vera-Licona, P.; Vert, J.P. TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. BMC Syst. Biol., 2012, 6, 145.
    • (2012) BMC Syst. Biol , vol.6 , pp. 145
    • Haury, A.C.1    Mordelet, F.2    Vera-Licona, P.3    Vert, J.P.4
  • 179
    • 0036532201 scopus 로고    scopus 로고
    • Deciphering gene expression regulatory networks
    • [179] Wyrick, J.J.; Young, R.A. Deciphering gene expression regulatory networks. Curr. Opin. Genet. Dev., 2002, 12 (2), 130-136.
    • (2002) Curr. Opin. Genet. Dev. , vol.12 , Issue.2 , pp. 130-136
    • Wyrick, J.J.1    Young, R.A.2
  • 180
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: A revolutionary tool for transcriptomics
    • [180] Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 2009, 10 (1), 57-63.
    • (2009) Nat. Rev. Genet. , vol.10 , Issue.1 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 181
    • 84863887694 scopus 로고    scopus 로고
    • Studying and modelling dynamic biological processes using time-series gene expression data
    • [181] Bar-Joseph, Z.; Gitter, A.; Simon, I. Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet., 2012, 13 (8), 552-564.
    • (2012) Nat. Rev. Genet , vol.13 , Issue.8 , pp. 552-564
    • Bar-Joseph, Z.1    Gitter, A.2    Simon, I.3
  • 182
    • 84868128310 scopus 로고    scopus 로고
    • INuc-PhysChem: A sequence-based predictor for identifying nucleosomes via physicochemical properties
    • [182] Chen, W.; Lin, H.; Feng, P.M.; Ding, C.; Zuo, Y.C.; Chou, K.C. iNuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties. PLoS One, 2012, 7 (10), e47843.
    • (2012) Plos One , vol.7 , Issue.10 , pp. 47843
    • Chen, W.1    Lin, H.2    Feng, P.M.3    Ding, C.4    Zuo, Y.C.5    Chou, K.C.6
  • 183
    • 6344231856 scopus 로고    scopus 로고
    • SLLE for predicting membrane protein types
    • [183] Wang, M.; Yang, J.; Xu, Z.J.; Chou, K.C. SLLE for predicting membrane protein types. J. Theor. Biol., 2005, 232 (1), 7-15.
    • (2005) J. Theor. Biol. , vol.232 , Issue.1 , pp. 7-15
    • Wang, M.1    Yang, J.2    Xu, Z.J.3    Chou, K.C.4
  • 184
    • 22144470177 scopus 로고    scopus 로고
    • Boosting classifier for predicting protein domain structural class. Biochem. Biophys. Res
    • [184] Feng, K.Y.; Cai, Y.D.; Chou, K.C. Boosting classifier for predicting protein domain structural class. Biochem. Biophys. Res. Commun., 2005, 334 (1), 213-217.
    • (2005) Commun. , vol.334 , Issue.1 , pp. 213-217
    • Feng, K.Y.1    Cai, Y.D.2    Chou, K.C.3
  • 185
    • 84885640993 scopus 로고    scopus 로고
    • IHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal
    • [185] Feng, P.M.; Chen, W.; Lin, H.; Chou, K.C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442 (1), 118-125.
    • (2013) Biochem. , vol.442 , Issue.1 , pp. 118-125
    • Feng, P.M.1    Chen, W.2    Lin, H.3    Chou, K.C.4
  • 186
    • 84876053736 scopus 로고    scopus 로고
    • IRSpot-PseDNC: Identify recombination spots with pseudo dinucleotide composition
    • [186] Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res., 2013, 41 (6), e68.
    • (2013) Nucleic Acids Res. , vol.41 , Issue.6 , pp. 68
    • Chen, W.1    Feng, P.M.2    Lin, H.3    Chou, K.C.4
  • 187
    • 80052855771 scopus 로고    scopus 로고
    • IDNA-Prot: Identification of DNA binding proteins using random forest with grey model
    • [187] Lin, W.Z.; Fang, J.A.; Xiao, X.; Chou, K.C. iDNA-Prot: identification of DNA binding proteins using random forest with grey model. PLoS One, 2011, 6 (9), e24756.
    • (2011) Plos One , vol.6 , Issue.9 , pp. 24756
    • Lin, W.Z.1    Fang, J.A.2    Xiao, X.3    Chou, K.C.4
  • 188
    • 84873575437 scopus 로고    scopus 로고
    • ISNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition
    • [188] Xu, Y.; Ding, J.; Wu, L.Y.; Chou, K.C. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One, 2013, 8 (2), e55844.
    • (2013) Plos One , vol.8 , Issue.2 , pp. 55844
    • Xu, Y.1    Ding, J.2    Wu, L.Y.3    Chou, K.C.4
  • 189
    • 2442671554 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins in a hybridization space
    • [189] Cai, Y.D.; Chou, K.C. Predicting subcellular localization of proteins in a hybridization space. Bioinformatics, 2004, 20 (7), 1151-1156.
    • (2004) Bioinformatics , vol.20 , Issue.7 , pp. 1151-1156
    • Cai, Y.D.1    Chou, K.C.2
  • 190
    • 69949101944 scopus 로고    scopus 로고
    • Top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0
    • [190] Shen, H.B.; Chou, K.C. A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0. Anal. Biochem., 2009, 394 (2), 269-274.
    • (2009) Anal. Biochem , vol.394 , Issue.2 , pp. 269-274
    • Shen, H.B.1    Chou, K.2
  • 191
    • 79951606205 scopus 로고    scopus 로고
    • GPCR-2L: Predicting G proteincoupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions
    • [191] Xiao, X.; Wang, P.; Chou, K.C. GPCR-2L: predicting G proteincoupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions. Mol. Biosyst., 2010, 7 (3), 911-919.
    • (2010) Mol. Biosyst , vol.7 , Issue.3 , pp. 911-919
    • Xiao, X.1    Wang, P.2    Chou, K.C.3
  • 192
    • 84883661549 scopus 로고    scopus 로고
    • ICDI-PseFpt: Identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints
    • [192] Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iCDI-PseFpt: identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints. J. Theor. Biol., 2013, 337, 71-79.
    • (2013) J. Theor. Biol. , vol.337 , pp. 71-79
    • Xiao, X.1    Min, J.L.2    Wang, P.3    Chou, K.C.4
  • 193
    • 80755158862 scopus 로고    scopus 로고
    • ILoc-Plant: A multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites
    • [193] Wu, Z.C.; Xiao, X.; Chou, K.C. iLoc-Plant: a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites. Mol. Biosyst., 2011, 7 (12), 3287-3297.
    • (2011) Mol. Biosyst , vol.7 , Issue.12 , pp. 3287-3297
    • Wu, Z.C.1    Xiao, X.2    Chou, K.C.3
  • 194
    • 0035874091 scopus 로고    scopus 로고
    • Prediction of protein cellular attributes using pseudoamino acid composition
    • [194] Chou, K.C. Prediction of protein cellular attributes using pseudoamino acid composition. Proteins, 2001, 43 (3), 246-255.
    • (2001) Proteins , vol.43 , Issue.3 , pp. 246-255
    • Chou, K.C.1
  • 195
    • 12744279642 scopus 로고    scopus 로고
    • Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
    • [195] Chou, K.C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics, 2005, 21 (1), 10-19.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 10-19
    • Chou, K.C.1
  • 196
    • 37549004451 scopus 로고    scopus 로고
    • PseAAC: A flexible web server for generating various kinds of protein pseudo amino acid composition
    • [196] Shen, H.B.; Chou, K.C. PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition. Anal. Biochem., 2008,373 (2), 386-388.
    • (2008) Anal. Biochem , vol.373 , Issue.2 , pp. 386-388
    • Shen, H.B.1    Chou, K.C.2
  • 197
    • 84892958175 scopus 로고    scopus 로고
    • IRSpot-TNCPseAAC: Identify recombination spots with trinucleotide composition and pseudo amino acid components
    • [197] Qiu, W.R.; Xiao, X.; Chou, K.C. iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components. Int. J. Mol. Sci., 2014, 15 (2), 1746-1766.
    • (2014) Int. J. Mol. Sci , vol.15 , Issue.2 , pp. 1746-1766
    • Qiu, W.R.1    Xiao, X.2    Chou, K.C.3
  • 198
    • 38149007012 scopus 로고    scopus 로고
    • Predicting DNA-binding proteins: Approached from Chou's pseudo amino acid composition and other specific sequence features
    • [198] Fang, Y.; Guo, Y.; Feng, Y.; Li, M. Predicting DNA-binding proteins: approached from Chou's pseudo amino acid composition and other specific sequence features. Amino Acids, 2008, 34 (1), 103-109.
    • (2008) Amino Acids , vol.34 , Issue.1 , pp. 103-109
    • Fang, Y.1    Guo, Y.2    Feng, Y.3    Li, M.4
  • 199
    • 84863353488 scopus 로고    scopus 로고
    • Identify DNA-binding proteins with optimal Chou's amino acid composition
    • [199] Zhao, X.W.; Li, X.T.; Ma, Z.Q.; Yin, M.H. Identify DNA-binding proteins with optimal Chou's amino acid composition. Protein Pept. Lett., 2012, 19 (4), 398-405.
    • (2012) Protein Pept. Lett , vol.19 , Issue.4 , pp. 398-405
    • Zhao, X.W.1    Li, X.T.2    Ma, Z.Q.3    Yin, M.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.