메뉴 건너뛰기




Volumn 28, Issue 10, 2012, Pages 1376-1382

Inferring gene regulatory networks by ANOVA

Author keywords

[No Author keywords available]

Indexed keywords

TRANSCRIPTION FACTOR;

EID: 84861168271     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/bts143     Document Type: Article
Times cited : (89)

References (42)
  • 1
    • 77957141016 scopus 로고    scopus 로고
    • Inferring the conservative causal core of gene regulatory networks
    • Altay,G. and Emmert-Streib,F. (2010a) Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol., 4, 132.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 132
    • Altay, G.1    Emmert-Streib, F.2
  • 2
    • 77954484005 scopus 로고    scopus 로고
    • Revealing differences in gene network inference algorithms on the network level by ensemble methods
    • Altay,G. and Emmert-Streib,F. (2010b) Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics, 26, 1738.
    • (2010) Bioinformatics , vol.26 , pp. 1738
    • Altay, G.1    Emmert-Streib, F.2
  • 3
    • 78651339534 scopus 로고    scopus 로고
    • NCBI GEO: archive for functional genomics data sets-10 years on
    • Barrett,T. et al. (2010) NCBI GEO: archive for functional genomics data sets-10 years on. Nucleic Acids Res., 39, D1005-D1010.
    • (2010) Nucleic Acids Res. , vol.39
    • Barrett, T.1
  • 4
    • 23744491001 scopus 로고    scopus 로고
    • Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach
    • Boulesteix,A.-L. and Strimmer,K. (2005) Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. Theor. Biol. Med. Model, 2.
    • (2005) Theor. Biol. Med. Model , vol.2
    • Boulesteix, A.-L.1    Strimmer, K.2
  • 5
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements
    • Butte,A.J. and Kohane,I.S. (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput., 5, 418-429.
    • (2000) Pac. Symp. Biocomput. , vol.5 , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 6
    • 0033258311 scopus 로고    scopus 로고
    • Unsupervised knowledge discovery in medical databases using relevance networks
    • American Medical Informatics Association
    • Butte,A. and Kohane,I. (1999) Unsupervised knowledge discovery in medical databases using relevance networks. In Proceedings of the AMIA Symposium. American Medical Informatics Association, 7, 11-15.
    • (1999) Proceedings of the AMIA Symposium , vol.7 , pp. 11-15
    • Butte, A.1    Kohane, I.2
  • 7
    • 59649121280 scopus 로고    scopus 로고
    • Reverse engineering molecular regulatory networks from microarray data with qp-graphs
    • Castelo,R. and Roverato,A. (2009) Reverse engineering molecular regulatory networks from microarray data with qp-graphs. J. Comput. Biol., 16, 213-227.
    • (2009) J. Comput. Biol. , vol.16 , pp. 213-227
    • Castelo, R.1    Roverato, A.2
  • 8
    • 84965886353 scopus 로고
    • Eta-squared and partial eta-squared in fixed factor ANOVA designs
    • Cohen,J. (1973) Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ. Psychol. Meas., 33, 107.
    • (1973) Educ. Psychol. Meas. , vol.33 , pp. 107
    • Cohen, J.1
  • 9
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding,C. and Peng,H. (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol., 3: 185-205.
    • (2005) J Bioinform Comput Biol , vol.3 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 10
    • 0036529479 scopus 로고    scopus 로고
    • An efficient algorithm for large-scale detection of protein families
    • Enright,A.J. et al. (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res., 30, 1575-1584.
    • (2002) Nucleic Acids Res , vol.30 , pp. 1575-1584
    • Enright, A.J.1
  • 11
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • Faith,J.J. et al. (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol., 5, e8.
    • (2007) PLoS Biol. , vol.5
    • Faith, J.J.1
  • 12
    • 38549134505 scopus 로고    scopus 로고
    • Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata
    • Faith,J.J. et al. (2008) Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucleic Acids Res., 36, D866-D870.
    • (2008) Nucleic Acids Res. , vol.36
    • Faith, J.J.1
  • 13
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman,J. et al. (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1
  • 14
    • 78651299341 scopus 로고    scopus 로고
    • RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units)
    • Gama-Castro,S. et al. (2011) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Res., 39, D98-D105.
    • (2011) Nucleic Acids Res , vol.39
    • Gama-Castro, S.1
  • 15
    • 17444430052 scopus 로고    scopus 로고
    • Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection
    • Guthke,R. et al. (2005) Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics, 21, 1626-1634.
    • (2005) Bioinformatics , vol.21 , pp. 1626-1634
    • Guthke, R.1
  • 16
    • 68349161006 scopus 로고    scopus 로고
    • Reverse engineering of gene regulatory networks: a comparative study
    • Hache,H. et al. (2009) Reverse engineering of gene regulatory networks: a comparative study. EURASIP J. Bioinform. Syst. Biol., 2009, 1-12.
    • (2009) EURASIP J. Bioinform. Syst. Biol. , vol.2009 , pp. 1-12
    • Hache, H.1
  • 17
    • 0031811851 scopus 로고    scopus 로고
    • RegulonDB: a database on transcriptional regulation in Escherichia coli
    • Huerta,A.M. et al. (1998) RegulonDB: a database on transcriptional regulation in Escherichia coli. Nucleic Acids Res., 26, 55-59.
    • (1998) Nucleic Acids Res , vol.26 , pp. 55-59
    • Huerta, A.M.1
  • 18
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • Huynh-Thu,V.A. et al. (2010) Inferring regulatory networks from expression data using tree-based methods. PLoS One, 5, e12776.
    • (2010) PLoS One , vol.5
    • Huynh-Thu, V.A.1
  • 19
    • 34247629588 scopus 로고    scopus 로고
    • Genetic reconstruction of a functional transcriptional regulatory network
    • Hu,Z. et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat. Genet., 39, 683-687.
    • (2007) Nat. Genet. , vol.39 , pp. 683-687
    • Hu, Z.1
  • 20
    • 75149166629 scopus 로고    scopus 로고
    • Reverse engineering gene regulatory network from microarray data using linear time-variant model
    • Kabir,M. et al. (2010) Reverse engineering gene regulatory network from microarray data using linear time-variant model. BMC Bioinformatics, 11 (Suppl. 1), S56.
    • (2010) BMC Bioinformatics , vol.11 , Issue.SUPPL. 1
    • Kabir, M.1
  • 21
    • 77958508515 scopus 로고    scopus 로고
    • Petri Nets with Fuzzy Logic (PNFL): reverse engineering and parametrization
    • Küffner,R. et al. (2010) Petri Nets with Fuzzy Logic (PNFL): reverse engineering and parametrization. PLoS One, 5, e12807.
    • (2010) PLoS One , vol.5
    • Küffner, R.1
  • 22
    • 0038281506 scopus 로고    scopus 로고
    • Inference of transcriptional regulation relationships from gene expression data
    • Kwon,A.T. et al. (2003) Inference of transcriptional regulation relationships from gene expression data. Bioinformatics, 19, 905-912.
    • (2003) Bioinformatics , vol.19 , pp. 905-912
    • Kwon, A.T.1
  • 23
    • 67449095889 scopus 로고    scopus 로고
    • Computational methods for discovering gene networks from expression data
    • Lee,W.-P. and Tzou,W.-S. (2009) Computational methods for discovering gene networks from expression data. Brief. Bioinform., 10, 408-423.
    • (2009) Brief. Bioinform. , vol.10 , pp. 408-423
    • Lee, W.-P.1    Tzou, W.-S.2
  • 24
    • 33645769260 scopus 로고    scopus 로고
    • An improved map of conserved regulatory sites for Saccharomyces cerevisiae
    • MacIsaac,K.D. et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics, 7, 113.
    • (2006) BMC Bioinformatics , vol.7 , pp. 113
    • MacIsaac, K.D.1
  • 25
    • 59649110273 scopus 로고    scopus 로고
    • Generating realistic in silico gene networks for performance assessment of reverse engineering methods
    • Marbach,D. et al. (2009) Generating realistic in silico gene networks for performance assessment of reverse engineering methods. J. Comput. Biol., 16, 229-239.
    • (2009) J. Comput. Biol. , vol.16 , pp. 229-239
    • Marbach, D.1
  • 26
    • 77950910419 scopus 로고    scopus 로고
    • Revealing strengths and weaknesses of methods for gene network inference
    • Marbach,D. et al. (2010) Revealing strengths and weaknesses of methods for gene network inference. Proc. Natl Acad. Sci. USA, 107, 6286-6291.
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 6286-6291
    • Marbach, D.1
  • 27
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin,A.A. et al. (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 7 (Suppl. 1), S7.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 1
    • Margolin, A.A.1
  • 28
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks-a review
    • Markowetz,F. and Spang,R. (2007) Inferring cellular networks-a review. BMC Bioinformatics, 8 (Suppl. 6), S5.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 6
    • Markowetz, F.1    Spang, R.2
  • 29
    • 36248999573 scopus 로고    scopus 로고
    • Information-theoretic inference of large transcriptional regulatory networks
    • Meyer,P.E. et al. (2007) Information-theoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinform. Syst. Biol., 2007, 79879.
    • (2007) EURASIP J. Bioinform. Syst. Biol. , vol.2007 , pp. 79879
    • Meyer, P.E.1
  • 30
    • 66449116353 scopus 로고    scopus 로고
    • Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks
    • Michoel,T. et al. (2009) Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks. BMC Syst. Biol., 3, 49.
    • (2009) BMC Syst. Biol. , vol.3 , pp. 49
    • Michoel, T.1
  • 32
    • 49549104230 scopus 로고    scopus 로고
    • SIRENE: supervised inference of regulatory networks
    • Mordelet,F. andVert,J.-P. (2008) SIRENE: supervised inference of regulatory networks. Bioinformatics, 24, i76-i82.
    • (2008) Bioinformatics , vol.24
    • Mordelet, F.1    Vert, J.-P.2
  • 33
    • 55749093996 scopus 로고    scopus 로고
    • Network inference using informative priors
    • Mukherjee,S. and Speed,T.P. (2008) Network inference using informative priors. Proc. Natl Acad. Sci. USA, 105, 14313-14318.
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 14313-14318
    • Mukherjee, S.1    Speed, T.P.2
  • 34
    • 78650773077 scopus 로고    scopus 로고
    • Acomprehensive assessment of methods for de-novo reverseengineering of genome-scale regulatory networks
    • Narendra,V. et al. (2011)Acomprehensive assessment of methods for de-novo reverseengineering of genome-scale regulatory networks. Genomics, 97, 7-18.
    • (2011) Genomics , vol.97 , pp. 7-18
    • Narendra, V.1
  • 35
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
    • Opgen-Rhein,R. and Strimmer,K. (2007) From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol., 1, 37.
    • (2007) BMC Syst. Biol. , vol.1 , pp. 37
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 36
    • 77949644952 scopus 로고    scopus 로고
    • Towards a rigorous assessment of systems biology models: the DREAM3 challenges
    • Prill,R.J. et al. (2010) Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS One, 5, e9202.
    • (2010) PLoS One , vol.5
    • Prill, R.J.1
  • 37
    • 34547844096 scopus 로고    scopus 로고
    • Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data
    • Soranzo,N. et al. (2007) Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics, 23, 1640-1647.
    • (2007) Bioinformatics , vol.23 , pp. 1640-1647
    • Soranzo, N.1
  • 38
    • 33750016109 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from multiple microarray datasets
    • Wang,Y. et al. (2006) Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics, 22, 2413-2420.
    • (2006) Bioinformatics , vol.22 , pp. 2413-2420
    • Wang, Y.1
  • 39
    • 68649105450 scopus 로고    scopus 로고
    • An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series
    • Wang,Z. et al. (2009) An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series. IEEE/ACM Trans. Comput. Biol. Bioinform., 6, 410-419.
    • (2009) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.6 , pp. 410-419
    • Wang, Z.1
  • 40
    • 33748654580 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time series data using the minimum description length principle
    • Zhao,W. et al. (2006) Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics, 22, 2129-2135.
    • (2006) Bioinformatics , vol.22 , pp. 2129-2135
    • Zhao, W.1
  • 41
    • 45149106353 scopus 로고    scopus 로고
    • Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
    • Zhu,J. et al. (2008) Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat. Genet., 40, 854-861.
    • (2008) Nat. Genet. , vol.40 , pp. 854-861
    • Zhu, J.1
  • 42
    • 67650927399 scopus 로고    scopus 로고
    • Granger causality vs. dynamic Bayesian network inference: a comparative study
    • Zou,C. and Feng,J. (2009) Granger causality vs. dynamic Bayesian network inference: a comparative study. BMC Bioinformatics, 10, 122.
    • (2009) BMC Bioinformatics , vol.10 , pp. 122
    • Zou, C.1    Feng, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.