메뉴 건너뛰기




Volumn 26, Issue 18, 2010, Pages

Discovering graphical granger causality using the truncating lasso penalty

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANIMAL; ARTICLE; BIOLOGICAL MODEL; COMPUTER SIMULATION; ESCHERICHIA COLI; EVALUATION; GENE EXPRESSION PROFILING; GENE EXPRESSION REGULATION; GENE REGULATORY NETWORK; GENETICS; HELA CELL; HUMAN; METHODOLOGY; REGRESSION ANALYSIS; STATISTICAL MODEL;

EID: 77956514067     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btq377     Document Type: Article
Times cited : (170)

References (23)
  • 2
    • 0002403935 scopus 로고
    • Block-relaxation algorithms in statistics
    • Bock, H. H. et al. (eds)
    • de Leeuw, J. (1994) Block-relaxation algorithms in statistics. In Bock, H.H. et al. (eds), Information System and Data Analysis, pp. 308-325.
    • (1994) Information System and Data Analysis , pp. 308-325
    • de Leeuw, J.1
  • 3
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J. et al. (2008) Regularization paths for generalized linear models via coordinate descent. J. Stat. Soft., 33.
    • (2008) J. Stat. Soft. , pp. 33
    • Friedman, J.1
  • 4
    • 35748964479 scopus 로고    scopus 로고
    • Modeling gene expression regulatory networks with the sparse vector autoregressive model
    • Fujita, A. et al. (2007) Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Systems Biol., 1, 39.
    • (2007) BMC Systems Biol. , vol.1 , pp. 39
    • Fujita, A.1
  • 5
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • Granger, C. (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424-438.
    • (1969) Econometrica , vol.37 , pp. 424-438
    • Granger, C.1
  • 6
    • 0345743695 scopus 로고    scopus 로고
    • Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis
    • Kao, K. et al. (2004) Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. Proc. Natl Acad. Sci. USA, 101, 641-646.
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 641-646
    • Kao, K.1
  • 7
    • 66349115724 scopus 로고    scopus 로고
    • Grouped graphical Granger modeling for gene expression regulatory networks discovery
    • Lozano, A. et al. (2009) Grouped graphical Granger modeling for gene expression regulatory networks discovery. Bioinformatics, 25, i110.
    • (2009) Bioinformatics , vol.25
    • Lozano, A.1
  • 9
    • 33847348163 scopus 로고    scopus 로고
    • Causality and pathway search in microarray time series experiment
    • Mukhopadhyay, N. and Chatterjee, S. (2007) Causality and pathway search in microarray time series experiment. Bioinformatics, 23, 442.
    • (2007) Bioinformatics , vol.23 , pp. 442
    • Mukhopadhyay, N.1    Chatterjee, S.2
  • 10
    • 0013288412 scopus 로고    scopus 로고
    • Dynamic Bayesian Networks: Representation, Inference and Learning
    • PhD Thesis, University Of California, Berkeley, California, USA
    • Murphy, K. (2002) Dynamic Bayesian Networks: Representation, Inference and Learning. PhD Thesis, University Of California, Berkeley, California, USA.
    • (2002)
    • Murphy, K.1
  • 11
    • 0344844807 scopus 로고    scopus 로고
    • Modelling regulatory pathways in E. coli from times eries expression profiles
    • Ong, I. et al. (2002) Modelling regulatory pathways in E. coli from times eries expression profiles. Bioinformatics, 18 (Suppl. 1), S241-S248.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Ong, I.1
  • 12
    • 34249862287 scopus 로고    scopus 로고
    • Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process
    • Opgen-Rhein, R. and Strimmer, K. (2007) Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinformatics, 8 (Suppl. 2), S3.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 2
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 14
    • 4143058645 scopus 로고    scopus 로고
    • Gene networks inference using dynamic Bayesian networks
    • Perrin, B. et al. (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics, 19, 138-148.
    • (2003) Bioinformatics , vol.19 , pp. 138-148
    • Perrin, B.1
  • 15
    • 77956531971 scopus 로고    scopus 로고
    • CNET: an algorithm for reverse engineering of causal gene networks
    • Varenna, Italy
    • Sambo, F. et al. (2008) CNET: an algorithm for reverse engineering of causal gene networks. In NETTAB2008.. Varenna, Italy.
    • (2008) NETTAB2008
    • Sambo, F.1
  • 16
    • 61749083981 scopus 로고    scopus 로고
    • Analysis of gene sets based on the underlying regulatory network
    • Shojaie, A. and Michailidis, G. (2009) Analysis of gene sets based on the underlying regulatory network. J. Comput. Biol., 16, 407-426.
    • (2009) J. Comput. Biol. , vol.16 , pp. 407-426
    • Shojaie, A.1    Michailidis, G.2
  • 17
    • 77953084703 scopus 로고    scopus 로고
    • Network enrichment analysis in complex experiments
    • Article
    • Shojaie, A. and Michailidis, G. (2010a) Network enrichment analysis in complex experiments. Stat. App. in Genet. Mol. Biol., 9, Article 22.
    • (2010) Stat. App. in Genet. Mol. Biol. , vol.9 , pp. 22
    • Shojaie, A.1    Michailidis, G.2
  • 18
    • 77953107844 scopus 로고    scopus 로고
    • Penalized likelihood methods for estimation of sparse high dimensional directed acyclic graphs
    • [Epub ahead of print, doi:10.1093/biomet/asq038]
    • Shojaie, A. and Michailidis, G. (2010b) Penalized likelihood methods for estimation of sparse high dimensional directed acyclic graphs. Biometrika [Epub ahead of print, doi:10.1093/biomet/asq038].
    • (2010) Biometrika
    • Shojaie, A.1    Michailidis, G.2
  • 19
    • 0035533631 scopus 로고    scopus 로고
    • C onvergenceo f ablockcoordinate descent methodf or nondifferentiable minimization
    • Tseng, P. (2001)C onvergenceo f ablockcoordinate descent methodf or nondifferentiable minimization. J. Optimizat. Theory Appli., 109, 475-494.
    • (2001) J. Optimizat. Theory Appli. , vol.109 , pp. 475-494
    • Tseng, P.1
  • 20
    • 0035985177 scopus 로고    scopus 로고
    • Identification of genes periodically expressed in the human cell cycle and their expression in tumors
    • Whitfield, M. et al. (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell, 13, 1977.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 1977
    • Whitfield, M.1
  • 21
    • 85032779470 scopus 로고    scopus 로고
    • Finding module-based gene networks with state-space models-Mining high-dimensional and short time-course gene expression data
    • Yamaguchi, R. et al. (2007) Finding module-based gene networks with state-space models-Mining high-dimensional and short time-course gene expression data. IEEE Signal Proc. Mag., 24, 37-46.
    • (2007) IEEE Signal Proc. Mag. , vol.24 , pp. 37-46
    • Yamaguchi, R.1
  • 22
    • 67650927399 scopus 로고    scopus 로고
    • Granger causality vs. dynamic Bayesian network inference: a comparative study
    • Zou, C. and Feng, J. (2009) Granger causality vs. dynamic Bayesian network inference: a comparative study. BMC Bioinformatics, 10, 122.
    • (2009) BMC Bioinformatics , vol.10 , pp. 122
    • Zou, C.1    Feng, J.2
  • 23
    • 33846114377 scopus 로고    scopus 로고
    • The Adaptive Lasso and Its Oracle Properties
    • Zou, H. (2006) The Adaptive Lasso and Its Oracle Properties. J. Am. Stat. Assoc., 101, 1418-1429.
    • (2006) J. Am. Stat. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.