메뉴 건너뛰기




Volumn 25, Issue 8, 2009, Pages 335-343

What controls nucleosome positions?

Author keywords

[No Author keywords available]

Indexed keywords

DNA; DNA BINDING PROTEIN; HISTONE; TRANSCRIPTION FACTOR;

EID: 68349125112     PISSN: 01689525     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tig.2009.06.002     Document Type: Review
Times cited : (318)

References (100)
  • 1
    • 0037992395 scopus 로고    scopus 로고
    • The structure of DNA in the nucleosome core
    • Richmond T.J., and Davey C.A. The structure of DNA in the nucleosome core. Nature 423 (2003) 145-150
    • (2003) Nature , vol.423 , pp. 145-150
    • Richmond, T.J.1    Davey, C.A.2
  • 3
    • 0033529565 scopus 로고    scopus 로고
    • Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome
    • Kornberg R.D., and Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98 (1999) 285-294
    • (1999) Cell , vol.98 , pp. 285-294
    • Kornberg, R.D.1    Lorch, Y.2
  • 4
    • 0033604609 scopus 로고    scopus 로고
    • Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast
    • Wyrick J.J., et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402 (1999) 418-421
    • (1999) Nature , vol.402 , pp. 418-421
    • Wyrick, J.J.1
  • 5
    • 0029878216 scopus 로고    scopus 로고
    • Yeast histone H3 and H4 amino termini are important for nucleosome assembly in vivo and in vitro: redundant and position-independent functions in assembly but not in gene regulation
    • Ling X., et al. Yeast histone H3 and H4 amino termini are important for nucleosome assembly in vivo and in vitro: redundant and position-independent functions in assembly but not in gene regulation. Genes Dev. 10 (1996) 686-699
    • (1996) Genes Dev. , vol.10 , pp. 686-699
    • Ling, X.1
  • 6
    • 0022500042 scopus 로고
    • Yeast histone H2A and H2B amino termini have interchangeable functions
    • Schuster T., et al. Yeast histone H2A and H2B amino termini have interchangeable functions. Cell 45 (1986) 445-451
    • (1986) Cell , vol.45 , pp. 445-451
    • Schuster, T.1
  • 7
    • 0025880340 scopus 로고
    • The highly conserved N-terminal domains of histones H3 and H4 are required for normal cell cycle progression
    • Morgan B.A., et al. The highly conserved N-terminal domains of histones H3 and H4 are required for normal cell cycle progression. Mol. Cell. Biol. 11 (1991) 4111-4120
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 4111-4120
    • Morgan, B.A.1
  • 8
    • 0034598944 scopus 로고    scopus 로고
    • Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites
    • Anderson J.D., and Widom J. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296 (2000) 979-987
    • (2000) J. Mol. Biol. , vol.296 , pp. 979-987
    • Anderson, J.D.1    Widom, J.2
  • 9
    • 0028791330 scopus 로고
    • Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation
    • Polach K.J., and Widom J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254 (1995) 130-149
    • (1995) J. Mol. Biol. , vol.254 , pp. 130-149
    • Polach, K.J.1    Widom, J.2
  • 10
    • 3042801306 scopus 로고    scopus 로고
    • Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1
    • Martinez-Campa C., et al. Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1. Mol. Cell 15 (2004) 69-81
    • (2004) Mol. Cell , vol.15 , pp. 69-81
    • Martinez-Campa, C.1
  • 11
    • 0037178777 scopus 로고    scopus 로고
    • Modifying gene expression programs by altering core promoter chromatin architecture
    • Lomvardas S., and Thanos D. Modifying gene expression programs by altering core promoter chromatin architecture. Cell 110 (2002) 261-271
    • (2002) Cell , vol.110 , pp. 261-271
    • Lomvardas, S.1    Thanos, D.2
  • 12
    • 0025067370 scopus 로고
    • Nucleosome positioning can affect the function of a cis-acting DNA element in vivo
    • Simpson R.T. Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature 343 (1990) 387-389
    • (1990) Nature , vol.343 , pp. 387-389
    • Simpson, R.T.1
  • 13
    • 22744432660 scopus 로고    scopus 로고
    • Genome-scale identification of nucleosome positions in S. cerevisiae
    • Yuan G.C., et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309 (2005) 626-630
    • (2005) Science , vol.309 , pp. 626-630
    • Yuan, G.C.1
  • 14
    • 34748826166 scopus 로고    scopus 로고
    • A high-resolution atlas of nucleosome occupancy in yeast
    • Lee W., et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39 (2007) 1235-1244
    • (2007) Nat. Genet. , vol.39 , pp. 1235-1244
    • Lee, W.1
  • 15
    • 33846862405 scopus 로고    scopus 로고
    • High-throughput mapping of the chromatin structure of human promoters
    • Ozsolak F., et al. High-throughput mapping of the chromatin structure of human promoters. Nat. Biotechnol. 25 (2007) 244-248
    • (2007) Nat. Biotechnol. , vol.25 , pp. 244-248
    • Ozsolak, F.1
  • 16
    • 46449112319 scopus 로고    scopus 로고
    • A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome
    • Mavrich T.N., et al. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res. 18 (2008) 1073-1083
    • (2008) Genome Res. , vol.18 , pp. 1073-1083
    • Mavrich, T.N.1
  • 17
    • 43749099875 scopus 로고    scopus 로고
    • Nucleosome organization in the Drosophila genome
    • Mavrich T.N., et al. Nucleosome organization in the Drosophila genome. Nature 453 (2008) 358-362
    • (2008) Nature , vol.453 , pp. 358-362
    • Mavrich, T.N.1
  • 18
    • 34047111213 scopus 로고    scopus 로고
    • Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome
    • Albert I., et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446 (2007) 572-576
    • (2007) Nature , vol.446 , pp. 572-576
    • Albert, I.1
  • 19
    • 46449103738 scopus 로고    scopus 로고
    • A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning
    • Valouev A., et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 18 (2008) 1051-1063
    • (2008) Genome Res. , vol.18 , pp. 1051-1063
    • Valouev, A.1
  • 20
    • 33845298285 scopus 로고    scopus 로고
    • Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin
    • Johnson S.M., et al. Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Res. 16 (2006) 1505-1516
    • (2006) Genome Res. , vol.16 , pp. 1505-1516
    • Johnson, S.M.1
  • 21
    • 33746456962 scopus 로고    scopus 로고
    • Unusual DNA structures associated with germline genetic activity in Caenorhabditis elegans
    • Fire A., et al. Unusual DNA structures associated with germline genetic activity in Caenorhabditis elegans. Genetics 173 (2006) 1259-1273
    • (2006) Genetics , vol.173 , pp. 1259-1273
    • Fire, A.1
  • 22
    • 41749091787 scopus 로고    scopus 로고
    • Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation
    • Shivaswamy S., et al. Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol. 6 (2008) e65
    • (2008) PLoS Biol. , vol.6
    • Shivaswamy, S.1
  • 23
    • 39749145198 scopus 로고    scopus 로고
    • Dynamic regulation of nucleosome positioning in the human genome
    • Schones D.E., et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132 (2008) 887-898
    • (2008) Cell , vol.132 , pp. 887-898
    • Schones, D.E.1
  • 24
    • 63449135035 scopus 로고    scopus 로고
    • Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization
    • Field Y., et al. Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization. Nat. Genet. 41 (2009) 438-445
    • (2009) Nat. Genet. , vol.41 , pp. 438-445
    • Field, Y.1
  • 25
    • 62649085538 scopus 로고    scopus 로고
    • The DNA-encoded nucleosome organization of a eukaryotic genome
    • Kaplan N., et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458 (2009) 362-366
    • (2009) Nature , vol.458 , pp. 362-366
    • Kaplan, N.1
  • 26
    • 57149119464 scopus 로고    scopus 로고
    • Distinct modes of regulation by chromatin encoded through nucleosome positioning signals
    • Field Y., et al. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLOS Comput. Biol. 4 (2008) e1000216
    • (2008) PLOS Comput. Biol. , vol.4
    • Field, Y.1
  • 27
    • 33746343986 scopus 로고    scopus 로고
    • In Vitro and in vivo nucleosome positioning on the ovine beta-lactoglobulin gene are related
    • Gencheva M., et al. In Vitro and in vivo nucleosome positioning on the ovine beta-lactoglobulin gene are related. J. Mol. Biol. 361 (2006) 216-230
    • (2006) J. Mol. Biol. , vol.361 , pp. 216-230
    • Gencheva, M.1
  • 28
    • 1942489758 scopus 로고    scopus 로고
    • Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning
    • Thåström A., et al. Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning. J. Mol. Biol. 338 (2004) 695-709
    • (2004) J. Mol. Biol. , vol.338 , pp. 695-709
    • Thåström, A.1
  • 29
    • 0032512794 scopus 로고    scopus 로고
    • New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning
    • Lowary P.T., and Widom J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276 (1998) 19-42
    • (1998) J. Mol. Biol. , vol.276 , pp. 19-42
    • Lowary, P.T.1    Widom, J.2
  • 30
    • 0035704707 scopus 로고    scopus 로고
    • Role of DNA sequence in nucleosome stability and dynamics
    • Widom J. Role of DNA sequence in nucleosome stability and dynamics. Q. Rev. Biophys. 34 (2001) 269-324
    • (2001) Q. Rev. Biophys. , vol.34 , pp. 269-324
    • Widom, J.1
  • 31
    • 0018447932 scopus 로고
    • Anisotropic flexibility of DNA and the nucleosomal structure
    • Zhurkin V.B., et al. Anisotropic flexibility of DNA and the nucleosomal structure. Nucleic Acids Res. 6 (1979) 1081-1096
    • (1979) Nucleic Acids Res. , vol.6 , pp. 1081-1096
    • Zhurkin, V.B.1
  • 32
    • 0023001414 scopus 로고
    • Sequence periodicities in chicken nucleosome core DNA
    • Satchwell S.C., et al. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 191 (1986) 659-675
    • (1986) J. Mol. Biol. , vol.191 , pp. 659-675
    • Satchwell, S.C.1
  • 33
    • 0001415964 scopus 로고
    • The pitch of chromatin DNA is reflected in its nucleotide sequence
    • Trifonov E.N., and Sussman J.L. The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc. Natl. Acad. Sci. U. S. A. 77 (1980) 3816-3820
    • (1980) Proc. Natl. Acad. Sci. U. S. A. , vol.77 , pp. 3816-3820
    • Trifonov, E.N.1    Sussman, J.L.2
  • 34
    • 28544449926 scopus 로고    scopus 로고
    • Nucleosome stability at the yeast PHO5 and PHO8 promoters correlates with differential cofactor requirements for chromatin opening
    • Hertel C.B., et al. Nucleosome stability at the yeast PHO5 and PHO8 promoters correlates with differential cofactor requirements for chromatin opening. Mol. Cell. Biol. 25 (2005) 10755-10767
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 10755-10767
    • Hertel, C.B.1
  • 35
    • 33747500567 scopus 로고    scopus 로고
    • A genomic code for nucleosome positioning
    • Segal E., et al. A genomic code for nucleosome positioning. Nature 442 (2006) 772-778
    • (2006) Nature , vol.442 , pp. 772-778
    • Segal, E.1
  • 36
    • 33749153628 scopus 로고    scopus 로고
    • Nucleosome positions predicted through comparative genomics
    • Ioshikhes I.P., et al. Nucleosome positions predicted through comparative genomics. Nat. Genet. 38 (2006) 1210-1215
    • (2006) Nat. Genet. , vol.38 , pp. 1210-1215
    • Ioshikhes, I.P.1
  • 37
    • 38949204996 scopus 로고    scopus 로고
    • Genomic sequence is highly predictive of local nucleosome depletion
    • Yuan G.C., and Liu J. Genomic sequence is highly predictive of local nucleosome depletion. PLOS Comput. Biol. 4 (2008) e13
    • (2008) PLOS Comput. Biol. , vol.4
    • Yuan, G.C.1    Liu, J.2
  • 38
    • 34547643563 scopus 로고    scopus 로고
    • Nucleosome positioning signals in genomic DNA
    • Peckham H.E., et al. Nucleosome positioning signals in genomic DNA. Genome Res. 17 (2007) 1170-1177
    • (2007) Genome Res. , vol.17 , pp. 1170-1177
    • Peckham, H.E.1
  • 39
    • 0032530555 scopus 로고    scopus 로고
    • DNA sequence-dependent deformability deduced from protein-DNA crystal complexes
    • Olson W.K., et al. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 11163-11168
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 11163-11168
    • Olson, W.K.1
  • 40
    • 34447644439 scopus 로고    scopus 로고
    • A novel roll-and-slide mechanism of DNA folding in chromatin: implications for nucleosome positioning
    • Tolstorukov M.Y., et al. A novel roll-and-slide mechanism of DNA folding in chromatin: implications for nucleosome positioning. J. Mol. Biol. 371 (2007) 725-738
    • (2007) J. Mol. Biol. , vol.371 , pp. 725-738
    • Tolstorukov, M.Y.1
  • 41
    • 60349115060 scopus 로고    scopus 로고
    • Poly(dA:dT) tracts: major determinants of nucleosome organization
    • Segal E., and Widom J. Poly(dA:dT) tracts: major determinants of nucleosome organization. Curr. Opin. Struct. Biol. 19 (2009) 65-71
    • (2009) Curr. Opin. Struct. Biol. , vol.19 , pp. 65-71
    • Segal, E.1    Widom, J.2
  • 42
    • 0023777538 scopus 로고
    • Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism
    • Kornberg R.D., and Stryer L. Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res. 16 (1988) 6677-6690
    • (1988) Nucleic Acids Res. , vol.16 , pp. 6677-6690
    • Kornberg, R.D.1    Stryer, L.2
  • 43
    • 0036306349 scopus 로고    scopus 로고
    • Bending and flexibility of methylated and unmethylated EcoRI DNA
    • Nathan D., and Crothers D.M. Bending and flexibility of methylated and unmethylated EcoRI DNA. J. Mol. Biol. 316 (2002) 7-17
    • (2002) J. Mol. Biol. , vol.316 , pp. 7-17
    • Nathan, D.1    Crothers, D.M.2
  • 44
    • 0031576993 scopus 로고    scopus 로고
    • Nine polymorphic crystal structures of d(CCGGGCCCGG), d(CCGGGCCm5CGG), d(Cm5CGGGCCm5CGG) and d(CCGGGCC(Br)5CGG) in three different conformations: effects of spermine binding and methylation on the bending and condensation of A-DNA
    • Tippin D.B., and Sundaralingam M. Nine polymorphic crystal structures of d(CCGGGCCCGG), d(CCGGGCCm5CGG), d(Cm5CGGGCCm5CGG) and d(CCGGGCC(Br)5CGG) in three different conformations: effects of spermine binding and methylation on the bending and condensation of A-DNA. J. Mol. Biol. 267 (1997) 1171-1185
    • (1997) J. Mol. Biol. , vol.267 , pp. 1171-1185
    • Tippin, D.B.1    Sundaralingam, M.2
  • 45
    • 16344367080 scopus 로고    scopus 로고
    • DNA methylation, nucleosome formation and positioning
    • Pennings S., et al. DNA methylation, nucleosome formation and positioning. Brief. Funct. Genomic Proteomic 3 (2005) 351-361
    • (2005) Brief. Funct. Genomic Proteomic , vol.3 , pp. 351-361
    • Pennings, S.1
  • 46
    • 0035815105 scopus 로고    scopus 로고
    • Effects of histone acetylation on the equilibrium accessibility of nucleosomal DNA target sites
    • Anderson J.D., et al. Effects of histone acetylation on the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 307 (2001) 977-985
    • (2001) J. Mol. Biol. , vol.307 , pp. 977-985
    • Anderson, J.D.1
  • 47
    • 0034724562 scopus 로고    scopus 로고
    • Effects of core histone tail domains on the equilibrium constants for dynamic DNA site accessibility in nucleosomes
    • Polach K.J., et al. Effects of core histone tail domains on the equilibrium constants for dynamic DNA site accessibility in nucleosomes. J. Mol. Biol. 298 (2000) 211-223
    • (2000) J. Mol. Biol. , vol.298 , pp. 211-223
    • Polach, K.J.1
  • 48
    • 0034603742 scopus 로고    scopus 로고
    • DNA sequence-dependent contributions of core histone tails to nucleosome stability: differential effects of acetylation and proteolytic tail removal
    • Widlund H.R., et al. DNA sequence-dependent contributions of core histone tails to nucleosome stability: differential effects of acetylation and proteolytic tail removal. Biochemistry 39 (2000) 3835-3841
    • (2000) Biochemistry , vol.39 , pp. 3835-3841
    • Widlund, H.R.1
  • 49
    • 34247181137 scopus 로고    scopus 로고
    • The core histone tail domains contribute to sequence-dependent nucleosome positioning
    • Yang Z., et al. The core histone tail domains contribute to sequence-dependent nucleosome positioning. J. Biol. Chem. 282 (2007) 7930-7938
    • (2007) J. Biol. Chem. , vol.282 , pp. 7930-7938
    • Yang, Z.1
  • 50
    • 3242884785 scopus 로고    scopus 로고
    • Structural determinants for generating centromeric chromatin
    • Black B.E., et al. Structural determinants for generating centromeric chromatin. Nature 430 (2004) 578-582
    • (2004) Nature , vol.430 , pp. 578-582
    • Black, B.E.1
  • 51
    • 34548267126 scopus 로고    scopus 로고
    • Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells
    • Dalal Y., et al. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol. 5 (2007) e218
    • (2007) PLoS Biol. , vol.5
    • Dalal, Y.1
  • 52
    • 4444312848 scopus 로고    scopus 로고
    • Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA
    • Bao Y., et al. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J. 23 (2004) 3314-3324
    • (2004) EMBO J. , vol.23 , pp. 3314-3324
    • Bao, Y.1
  • 53
    • 0033151772 scopus 로고    scopus 로고
    • Histone H1: location and role
    • Thomas J.O. Histone H1: location and role. Curr. Opin. Cell Biol. 11 (1999) 312-317
    • (1999) Curr. Opin. Cell Biol. , vol.11 , pp. 312-317
    • Thomas, J.O.1
  • 54
    • 0032488030 scopus 로고    scopus 로고
    • Chromatin structure: linking structure to function with histone H1
    • Widom J. Chromatin structure: linking structure to function with histone H1. Curr. Biol. 8 (1998) R788-R791
    • (1998) Curr. Biol. , vol.8
    • Widom, J.1
  • 55
    • 0024841735 scopus 로고
    • 'SPKK' motifs prefer to bind to DNA at A/T-rich sites
    • Churchill M.E., and Suzuki M. 'SPKK' motifs prefer to bind to DNA at A/T-rich sites. EMBO J. 8 (1989) 4189-4195
    • (1989) EMBO J. , vol.8 , pp. 4189-4195
    • Churchill, M.E.1    Suzuki, M.2
  • 56
    • 0029964505 scopus 로고    scopus 로고
    • A preference of histone H1 for methylated DNA
    • McArthur M., and Thomas J.O. A preference of histone H1 for methylated DNA. EMBO J. 15 (1996) 1705-1714
    • (1996) EMBO J. , vol.15 , pp. 1705-1714
    • McArthur, M.1    Thomas, J.O.2
  • 57
    • 0018181008 scopus 로고
    • The nucleosome repeat length increases during erythropoiesis in the chick
    • Weintraub H. The nucleosome repeat length increases during erythropoiesis in the chick. Nucleic Acids Res. 5 (1978) 1179-1188
    • (1978) Nucleic Acids Res. , vol.5 , pp. 1179-1188
    • Weintraub, H.1
  • 58
    • 44949087512 scopus 로고    scopus 로고
    • Nucleosome switches
    • Schwab D.J., et al. Nucleosome switches. Phys. Rev. Lett. 100 (2008) 228105
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 228105
    • Schwab, D.J.1
  • 59
    • 33751049605 scopus 로고    scopus 로고
    • In silico approaches reveal the potential for DNA sequence-dependent histone octamer affinity to influence chromatin structure in vivo
    • Fraser R.M., et al. In silico approaches reveal the potential for DNA sequence-dependent histone octamer affinity to influence chromatin structure in vivo. J. Mol. Biol. 364 (2006) 582-598
    • (2006) J. Mol. Biol. , vol.364 , pp. 582-598
    • Fraser, R.M.1
  • 60
    • 0001879994 scopus 로고
    • A different View Point on the Chromatin Higher Order Structure: Steric Exclusion Effects. Biomolecular Stereodynamics III
    • Albany, NY, June 04-09
    • Ulanovsky, L. and Trifonov, E. (1986) A different View Point on the Chromatin Higher Order Structure: Steric Exclusion Effects. Biomolecular Stereodynamics III. Proceedings of the Fourth Conversation in the Discipline Biomolecular Stereodynamics, Albany, NY, June 04-09, 1985, 35-44
    • (1985) Proceedings of the Fourth Conversation in the Discipline Biomolecular Stereodynamics , pp. 35-44
    • Ulanovsky, L.1    Trifonov, E.2
  • 61
    • 0026517738 scopus 로고
    • A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells
    • Widom J. A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells. Proc. Natl. Acad. Sci. U. S. A. 89 (1992) 1095-1099
    • (1992) Proc. Natl. Acad. Sci. U. S. A. , vol.89 , pp. 1095-1099
    • Widom, J.1
  • 62
    • 34147191973 scopus 로고    scopus 로고
    • DNA stretching and extreme kinking in the nucleosome core
    • Ong M.S., et al. DNA stretching and extreme kinking in the nucleosome core. J. Mol. Biol. 368 (2007) 1067-1074
    • (2007) J. Mol. Biol. , vol.368 , pp. 1067-1074
    • Ong, M.S.1
  • 63
    • 59649124442 scopus 로고    scopus 로고
    • Nucleosomes can invade DNA territories occupied by their neighbors
    • Engeholm M., et al. Nucleosomes can invade DNA territories occupied by their neighbors. Nat. Struct. Mol. Biol. 16 (2009) 151-158
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 151-158
    • Engeholm, M.1
  • 64
    • 0036221883 scopus 로고    scopus 로고
    • Salt-induced conformation and interaction changes of nucleosome core particles
    • Mangenot S., et al. Salt-induced conformation and interaction changes of nucleosome core particles. Biophys. J. 82 (2002) 345-356
    • (2002) Biophys. J. , vol.82 , pp. 345-356
    • Mangenot, S.1
  • 65
    • 0034602688 scopus 로고    scopus 로고
    • Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure
    • Cui Y., and Bustamante C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 127-132
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 127-132
    • Cui, Y.1    Bustamante, C.2
  • 66
    • 1942502793 scopus 로고    scopus 로고
    • Role of histone tails in the conformation and interactions of nucleosome core particles
    • Bertin A., et al. Role of histone tails in the conformation and interactions of nucleosome core particles. Biochemistry 43 (2004) 4773-4780
    • (2004) Biochemistry , vol.43 , pp. 4773-4780
    • Bertin, A.1
  • 67
    • 32444434989 scopus 로고    scopus 로고
    • Histone H4-K16 acetylation controls chromatin structure and protein interactions
    • Shogren-Knaak M., et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311 (2006) 844-847
    • (2006) Science , vol.311 , pp. 844-847
    • Shogren-Knaak, M.1
  • 68
    • 48249103503 scopus 로고    scopus 로고
    • Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure
    • Routh A., et al. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 8872-8877
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 8872-8877
    • Routh, A.1
  • 69
    • 21844436803 scopus 로고    scopus 로고
    • X-ray structure of a tetranucleosome and its implications for the chromatin fibre
    • Schalch T., et al. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436 (2005) 138-141
    • (2005) Nature , vol.436 , pp. 138-141
    • Schalch, T.1
  • 70
    • 39149106101 scopus 로고    scopus 로고
    • Hydrodynamic studies on defined heterochromatin fragments support a 30-nm fiber having six nucleosomes per turn
    • Ghirlando R., and Felsenfeld G. Hydrodynamic studies on defined heterochromatin fragments support a 30-nm fiber having six nucleosomes per turn. J. Mol. Biol. 376 (2008) 1417-1425
    • (2008) J. Mol. Biol. , vol.376 , pp. 1417-1425
    • Ghirlando, R.1    Felsenfeld, G.2
  • 71
    • 0028841366 scopus 로고
    • Periodicity of strong nucleosome positioning sites around the chicken adult β-globin gene may encode regularly spaced chromatin
    • Davey C., et al. Periodicity of strong nucleosome positioning sites around the chicken adult β-globin gene may encode regularly spaced chromatin. Proc. Natl. Acad. Sci. U. S. A. 92 (1995) 11210-11214
    • (1995) Proc. Natl. Acad. Sci. U. S. A. , vol.92 , pp. 11210-11214
    • Davey, C.1
  • 73
    • 52949092297 scopus 로고    scopus 로고
    • Preferentially quantized linker DNA lengths in Saccharomyces cerevisiae
    • Wang J.P., et al. Preferentially quantized linker DNA lengths in Saccharomyces cerevisiae. PLOS Comput. Biol. 4 (2008) e1000175
    • (2008) PLOS Comput. Biol. , vol.4
    • Wang, J.P.1
  • 74
    • 0041735085 scopus 로고    scopus 로고
    • Dinucleosome DNA of human K562 cells: experimental and computational characterizations
    • Kato M., et al. Dinucleosome DNA of human K562 cells: experimental and computational characterizations. J. Mol. Biol. 332 (2003) 111-125
    • (2003) J. Mol. Biol. , vol.332 , pp. 111-125
    • Kato, M.1
  • 75
    • 0018581187 scopus 로고
    • Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin
    • Thoma F., et al. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83 (1979) 403-427
    • (1979) J. Cell Biol. , vol.83 , pp. 403-427
    • Thoma, F.1
  • 76
    • 0026015325 scopus 로고
    • Linker DNA bending induced by the core histones of chromatin
    • Yao J., et al. Linker DNA bending induced by the core histones of chromatin. Biochemistry 30 (1991) 8408-8414
    • (1991) Biochemistry , vol.30 , pp. 8408-8414
    • Yao, J.1
  • 77
    • 29244449333 scopus 로고    scopus 로고
    • Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation
    • Fan Y., et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123 (2005) 1199-1212
    • (2005) Cell , vol.123 , pp. 1199-1212
    • Fan, Y.1
  • 78
    • 61449102557 scopus 로고    scopus 로고
    • Linker histone H1 is essential for Drosophila development, the establishment of pericentric heterochromatin, and a normal polytene chromosome structure
    • Lu X., et al. Linker histone H1 is essential for Drosophila development, the establishment of pericentric heterochromatin, and a normal polytene chromosome structure. Genes Dev. 23 (2009) 452-465
    • (2009) Genes Dev. , vol.23 , pp. 452-465
    • Lu, X.1
  • 79
    • 0032793066 scopus 로고    scopus 로고
    • Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae
    • Yu L., and Morse R.H. Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 19 (1999) 5279-5288
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 5279-5288
    • Yu, L.1    Morse, R.H.2
  • 80
    • 31544446038 scopus 로고    scopus 로고
    • Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions
    • Adkins M.W., and Tyler J.K. Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions. Mol. Cell 21 (2006) 405-416
    • (2006) Mol. Cell , vol.21 , pp. 405-416
    • Adkins, M.W.1    Tyler, J.K.2
  • 81
    • 0036786970 scopus 로고    scopus 로고
    • Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation
    • Anderson J.D., et al. Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation. Mol. Cell. Biol. 22 (2002) 7147-7157
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 7147-7157
    • Anderson, J.D.1
  • 82
    • 55549113874 scopus 로고    scopus 로고
    • A quantitative model of transcription factor-activated gene expression
    • Kim H.D., and O'Shea E.K. A quantitative model of transcription factor-activated gene expression. Nat. Struct. Mol. Biol. 15 (2008) 1192-1198
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 1192-1198
    • Kim, H.D.1    O'Shea, E.K.2
  • 83
    • 0028872728 scopus 로고
    • Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative
    • Adams C.C., and Workman J.L. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol. Cell. Biol. 15 (1995) 1405-1421
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 1405-1421
    • Adams, C.C.1    Workman, J.L.2
  • 84
    • 0029875865 scopus 로고    scopus 로고
    • A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites
    • Polach K.J., and Widom J. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258 (1996) 800-812
    • (1996) J. Mol. Biol. , vol.258 , pp. 800-812
    • Polach, K.J.1    Widom, J.2
  • 85
    • 0037369952 scopus 로고    scopus 로고
    • Collaborative competition mechanism for gene activation in vivo
    • Miller J.A., and Widom J. Collaborative competition mechanism for gene activation in vivo. Mol. Cell. Biol. 23 (2003) 1623-1632
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 1623-1632
    • Miller, J.A.1    Widom, J.2
  • 86
    • 0032499071 scopus 로고    scopus 로고
    • Evidence for two modes of cooperative DNA binding in vivo that do not involve direct protein-protein interactions
    • Vashee S., et al. Evidence for two modes of cooperative DNA binding in vivo that do not involve direct protein-protein interactions. Curr. Biol. 8 (1998) 452-458
    • (1998) Curr. Biol. , vol.8 , pp. 452-458
    • Vashee, S.1
  • 87
    • 15744394192 scopus 로고    scopus 로고
    • Transcriptional regulation by the numbers: models
    • Bintu L., et al. Transcriptional regulation by the numbers: models. Curr. Opin. Genet. Dev. 15 (2005) 116-124
    • (2005) Curr. Opin. Genet. Dev. , vol.15 , pp. 116-124
    • Bintu, L.1
  • 88
    • 38749127589 scopus 로고    scopus 로고
    • Predicting expression patterns from regulatory sequence in Drosophila segmentation
    • Segal E., et al. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451 (2008) 535-540
    • (2008) Nature , vol.451 , pp. 535-540
    • Segal, E.1
  • 89
    • 58149354385 scopus 로고    scopus 로고
    • Analysis of combinatorial cis-regulation in synthetic and genomic promoters
    • Gertz J., et al. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457 (2009) 215-218
    • (2009) Nature , vol.457 , pp. 215-218
    • Gertz, J.1
  • 91
    • 0033603388 scopus 로고    scopus 로고
    • Intermediate species possessing bent DNA are present along the pathway to formation of a final TBP-TATA complex
    • Parkhurst K.M., et al. Intermediate species possessing bent DNA are present along the pathway to formation of a final TBP-TATA complex. J. Mol. Biol. 289 (1999) 1327-1341
    • (1999) J. Mol. Biol. , vol.289 , pp. 1327-1341
    • Parkhurst, K.M.1
  • 92
    • 0030835671 scopus 로고    scopus 로고
    • Molecular analysis of the SNF2/SWI2 protein family member MOT1, an ATP-driven enzyme that dissociates TATA-binding protein from DNA
    • Auble D.T., et al. Molecular analysis of the SNF2/SWI2 protein family member MOT1, an ATP-driven enzyme that dissociates TATA-binding protein from DNA. Mol. Cell. Biol. 17 (1997) 4842-4851
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 4842-4851
    • Auble, D.T.1
  • 93
    • 57849109058 scopus 로고    scopus 로고
    • Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters
    • Core L.J., et al. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322 (2008) 1845-1848
    • (2008) Science , vol.322 , pp. 1845-1848
    • Core, L.J.1
  • 94
    • 33846283384 scopus 로고    scopus 로고
    • Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions
    • Lanctôt C., et al. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8 (2007) 104-115
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 104-115
    • Lanctôt, C.1
  • 95
    • 34247341747 scopus 로고    scopus 로고
    • H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state
    • Brickner D.G., et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5 (2007) e81
    • (2007) PLoS Biol. , vol.5
    • Brickner, D.G.1
  • 96
    • 67650725820 scopus 로고    scopus 로고
    • Clapier, C.R. and Cairns, B.R. (2009) The biology of chromatin remodeling complexes. Annu. Rev. Biochem. DOI:10.1146/annurev.biochem.77.062706.153223
    • Clapier, C.R. and Cairns, B.R. (2009) The biology of chromatin remodeling complexes. Annu. Rev. Biochem. DOI:10.1146/annurev.biochem.77.062706.153223
  • 97
    • 43049157587 scopus 로고    scopus 로고
    • Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription
    • Boeger H., et al. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 133 (2008) 716-726
    • (2008) Cell , vol.133 , pp. 716-726
    • Boeger, H.1
  • 98
    • 65249164132 scopus 로고    scopus 로고
    • Mechanisms that specify promoter nucleosome location and identity
    • Hartley P.D., and Madhani H.D. Mechanisms that specify promoter nucleosome location and identity. Cell 137 (2009) 445-458
    • (2009) Cell , vol.137 , pp. 445-458
    • Hartley, P.D.1    Madhani, H.D.2
  • 99
    • 35348984181 scopus 로고    scopus 로고
    • DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes
    • Rippe K., et al. DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes. Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 15635-15640
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 15635-15640
    • Rippe, K.1
  • 100
    • 1642290007 scopus 로고    scopus 로고
    • Measurement of histone-DNA interaction free energy in nucleosomes
    • Thåström A., et al. Measurement of histone-DNA interaction free energy in nucleosomes. Methods 33 (2004) 33-44
    • (2004) Methods , vol.33 , pp. 33-44
    • Thåström, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.