-
1
-
-
41549101939
-
Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
-
D'ASPREMONTALEXANDRE
-
BANERJEE,O.,ELGHAOUI, L.&D'ASPREMONTALEXANDRE (2008).Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 9, 485-516.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 485-516
-
-
Banerjee, O.1
Elghaoui, L.2
-
2
-
-
45849107328
-
Pathwise coordinate optimization
-
FRIEDMAN, J.,HASTIE, T., HöFLING, H. & TIBSHIRANI, R. (2007). Pathwise coordinate optimization. Ann. Appl. Statist. 1, 302-332
-
(2007)
Ann. Appl. Statist.
, vol.1
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Höfling, H.3
Tibshirani, R.4
-
3
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
FRIEDMAN, J., HASTIE, T. & TIBSHIRANI, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432-441
-
(2008)
Biostatistics
, vol.9
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
4
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
HECKERMAN, D., GEIGER, D. & CHICKERING, D. (1995). Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20, 197-243.
-
(1995)
Mach. Learn.
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
5
-
-
33644986127
-
Covariance matrix selection and estimation via penalised normal likelihood
-
HUANG, J., LIU, N., POURAHMADI, M. & LIU, L. (2006). Covariance matrix selection and estimation via penalised normal likelihood. Biometrika 93, 85-98.
-
(2006)
Biometrika
, vol.93
, pp. 85-98
-
-
Huang, J.1
Liu, N.2
Pourahmadi, M.3
Liu, L.4
-
6
-
-
51049096710
-
Adaptive Lasso for sparse high-dimensional regression models
-
HUANG, J.,MA, S. & ZHANG, C. (2008). Adaptive Lasso for sparse high-dimensional regression models. Statist. Sinica 18, 1603-1618
-
(2008)
Statist. Sinica
, vol.18
, pp. 1603-1618
-
-
Huang, J.1
Ma, S.2
Zhang, C.3
-
7
-
-
33947524259
-
Estimating high-dimensional directed acyclic graphs with the PC-algorithm
-
KALISCH, M. & BÜHLMANN, P. (2007). Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 8, 613-636
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 613-636
-
-
Kalisch, M.1
Bühlmann, P.2
-
8
-
-
0345743695
-
Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis
-
KAO, K.,YANG, Y.,BOSCOLO, R.,SABATTI, C.,ROYCHOWDHURY, V.&LIAO, J. (2004). Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. Proc. Nat. Acad. Sci. 101, 641-646
-
(2004)
Proc. Nat. Acad. Sci.
, vol.101
, pp. 641-646
-
-
Kao, K.1
Yang, Y.2
Boscolo, R.3
Sabatti, C.4
Roychowdhury, V.5
Liao, J.6
-
9
-
-
0034287156
-
Asymptotics for lasso-type estimators
-
KNIGHT, K. & FU, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28, 1356-1378
-
(2000)
Ann. Statist.
, vol.28
, pp. 1356-1378
-
-
Knight, K.1
W, F.U.2
-
10
-
-
73949122606
-
Sparsity and rate of convergence in large covariance matrix estimation
-
LAM, C. & FAN, J. (2009). Sparsity and rate of convergence in large covariance matrix estimation. Ann. Statist. 37, 4254-4278
-
(2009)
Ann. Statist.
, vol.37
, pp. 4254-4278
-
-
Lam, C.1
Fan, J.2
-
11
-
-
0004047518
-
-
Oxford: Oxford University Press
-
LAURITZEN, S. (1996). Graphical Models. Oxford: Oxford University Press.
-
(1996)
Graphical Models
-
-
Lauritzen, S.1
-
12
-
-
49449086368
-
Survival of the sparsest: Robust gene networks are parsimonious
-
LECLERC, R. (2008). Survival of the sparsest: robust gene networks are parsimonious. Molec. Syst. Biol. 4, 1-6.
-
(2008)
Molec. Syst. Biol.
, vol.4
, pp. 1-6
-
-
Leclerc, R.1
-
13
-
-
62349114549
-
Sparse estimation of large covariance matrices via a nested Lasso penalty
-
LEVINA, E., ROTHMAN, A. & ZHU, J. (2008). Sparse estimation of large covariance matrices via a nested Lasso penalty. Ann. Appl. Statist. 2, 245-263
-
(2008)
Ann. Appl. Statist.
, vol.2
, pp. 245-263
-
-
Levina, E.1
Rothman, A.2
Zhu, J.3
-
15
-
-
33747163541
-
High-dimensional graphs and variable selection with the Lasso
-
MEINSHAUSEN, N. & BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the Lasso. Ann. Statist. 34, 1436-1462
-
(2006)
Ann. Statist.
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
17
-
-
1842607847
-
-
R DEVELOPMENT CORE TEAM. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. URL
-
R DEVELOPMENT CORE TEAM (2010). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. URL: http://www.R-project.org.
-
(2010)
R: A Language and Environment for Statistical Computing
-
-
-
18
-
-
0002444961
-
Counting unlabeled acyclic digraphs
-
R. Melbourne Inst. Technol, Ed. C. H. C. Little, Berlin: Springer
-
ROBINSON, R. (1977). Counting unlabeled acyclic digraphs. In Combinatorial Mathematics V: Proc. Fifth Australian Conf., R. Melbourne Inst. Technol, Ed. C. H. C. Little, pp. 28-43. Berlin: Springer.
-
(1977)
Combinatorial Mathematics V: Proc. Fifth Australian Conf.
, pp. 28-43
-
-
Robinson, R.1
-
19
-
-
62349119614
-
Sparse permutation invariant covariance estimation
-
ROTHMAN, A., BICKEL, P., LEVINA, E. & ZHU, J. (2008). Sparse permutation invariant covariance estimation. Electron. J. Statist. 2, 494-515.
-
(2008)
Electron. J. Statist.
, vol.2
, pp. 494-515
-
-
Rothman, A.1
Bickel, P.2
Levina, E.3
Zhu, J.4
-
20
-
-
77955900908
-
Causal protein-signaling networks derived from multiparameter single-cell data
-
SACHS, K., PEREZ, O., PE'ER, D., LAUFFENBURGER, D. & NOLAN, G. (2003). Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 504-506
-
(2003)
Science
, vol.308
, pp. 504-506
-
-
Sachs, K.1
Perez, O.2
Pe'Er, D.3
Lauffenburger, D.4
Nolan, G.5
-
21
-
-
61749083981
-
Analysis of gene sets based on the underlying regulatory network
-
SHOJAIE, A. & MICHAILIDIS, G. (2009). Analysis of gene sets based on the underlying regulatory network. J. Comp. Biol. 16, 407-426
-
(2009)
J. Comp. Biol.
, vol.16
, pp. 407-426
-
-
Shojaie, A.1
Michailidis, G.2
-
23
-
-
0003614273
-
-
Cambridge, MA: MIT Press
-
SPIRTES, P., GLYMOUR, C. & SCHEINES, R. (2000). Causation, Prediction, and Search. Cambridge, MA: MIT Press.
-
(2000)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
24
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
TSAMARDINOS, I., BROWN, L. & ALIFERIS, C. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65, 31-78.
-
(2006)
Mach. Learn.
, vol.65
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.2
Aliferis, C.3
-
26
-
-
33947115409
-
Model selection and estimation in the Gaussian graphical model
-
YUAN, M. & LIN, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika 94, 19-36.
-
(2007)
Biometrika
, vol.94
, pp. 19-36
-
-
Yuan, M.1
Lin, Y.2
-
27
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Am. Statist. Assoc. 101, 1418-1429
-
(2006)
J. Am. Statist. Assoc.
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
|