메뉴 건너뛰기




Volumn 97, Issue 3, 2010, Pages 519-538

Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs

Author keywords

Adaptive lasso; Directed acyclic graph; High dimensional sparse graphs; Lasso; Penalized likelihood estimation; Small n large p asymptotics

Indexed keywords


EID: 77953107844     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asq038     Document Type: Article
Times cited : (163)

References (27)
  • 1
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • D'ASPREMONTALEXANDRE
    • BANERJEE,O.,ELGHAOUI, L.&D'ASPREMONTALEXANDRE (2008).Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 9, 485-516.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 485-516
    • Banerjee, O.1    Elghaoui, L.2
  • 3
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • FRIEDMAN, J., HASTIE, T. & TIBSHIRANI, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432-441
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 4
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • HECKERMAN, D., GEIGER, D. & CHICKERING, D. (1995). Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20, 197-243.
    • (1995) Mach. Learn. , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 5
    • 33644986127 scopus 로고    scopus 로고
    • Covariance matrix selection and estimation via penalised normal likelihood
    • HUANG, J., LIU, N., POURAHMADI, M. & LIU, L. (2006). Covariance matrix selection and estimation via penalised normal likelihood. Biometrika 93, 85-98.
    • (2006) Biometrika , vol.93 , pp. 85-98
    • Huang, J.1    Liu, N.2    Pourahmadi, M.3    Liu, L.4
  • 6
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive Lasso for sparse high-dimensional regression models
    • HUANG, J.,MA, S. & ZHANG, C. (2008). Adaptive Lasso for sparse high-dimensional regression models. Statist. Sinica 18, 1603-1618
    • (2008) Statist. Sinica , vol.18 , pp. 1603-1618
    • Huang, J.1    Ma, S.2    Zhang, C.3
  • 7
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • KALISCH, M. & BÜHLMANN, P. (2007). Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 8, 613-636
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 8
    • 0345743695 scopus 로고    scopus 로고
    • Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis
    • KAO, K.,YANG, Y.,BOSCOLO, R.,SABATTI, C.,ROYCHOWDHURY, V.&LIAO, J. (2004). Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. Proc. Nat. Acad. Sci. 101, 641-646
    • (2004) Proc. Nat. Acad. Sci. , vol.101 , pp. 641-646
    • Kao, K.1    Yang, Y.2    Boscolo, R.3    Sabatti, C.4    Roychowdhury, V.5    Liao, J.6
  • 9
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • KNIGHT, K. & FU, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28, 1356-1378
    • (2000) Ann. Statist. , vol.28 , pp. 1356-1378
    • Knight, K.1    W, F.U.2
  • 10
    • 73949122606 scopus 로고    scopus 로고
    • Sparsity and rate of convergence in large covariance matrix estimation
    • LAM, C. & FAN, J. (2009). Sparsity and rate of convergence in large covariance matrix estimation. Ann. Statist. 37, 4254-4278
    • (2009) Ann. Statist. , vol.37 , pp. 4254-4278
    • Lam, C.1    Fan, J.2
  • 11
    • 0004047518 scopus 로고    scopus 로고
    • Oxford: Oxford University Press
    • LAURITZEN, S. (1996). Graphical Models. Oxford: Oxford University Press.
    • (1996) Graphical Models
    • Lauritzen, S.1
  • 12
    • 49449086368 scopus 로고    scopus 로고
    • Survival of the sparsest: Robust gene networks are parsimonious
    • LECLERC, R. (2008). Survival of the sparsest: robust gene networks are parsimonious. Molec. Syst. Biol. 4, 1-6.
    • (2008) Molec. Syst. Biol. , vol.4 , pp. 1-6
    • Leclerc, R.1
  • 13
    • 62349114549 scopus 로고    scopus 로고
    • Sparse estimation of large covariance matrices via a nested Lasso penalty
    • LEVINA, E., ROTHMAN, A. & ZHU, J. (2008). Sparse estimation of large covariance matrices via a nested Lasso penalty. Ann. Appl. Statist. 2, 245-263
    • (2008) Ann. Appl. Statist. , vol.2 , pp. 245-263
    • Levina, E.1    Rothman, A.2    Zhu, J.3
  • 14
  • 15
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • MEINSHAUSEN, N. & BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the Lasso. Ann. Statist. 34, 1436-1462
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 17
    • 1842607847 scopus 로고    scopus 로고
    • R DEVELOPMENT CORE TEAM. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. URL
    • R DEVELOPMENT CORE TEAM (2010). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. URL: http://www.R-project.org.
    • (2010) R: A Language and Environment for Statistical Computing
  • 18
    • 0002444961 scopus 로고
    • Counting unlabeled acyclic digraphs
    • R. Melbourne Inst. Technol, Ed. C. H. C. Little, Berlin: Springer
    • ROBINSON, R. (1977). Counting unlabeled acyclic digraphs. In Combinatorial Mathematics V: Proc. Fifth Australian Conf., R. Melbourne Inst. Technol, Ed. C. H. C. Little, pp. 28-43. Berlin: Springer.
    • (1977) Combinatorial Mathematics V: Proc. Fifth Australian Conf. , pp. 28-43
    • Robinson, R.1
  • 19
  • 20
    • 77955900908 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • SACHS, K., PEREZ, O., PE'ER, D., LAUFFENBURGER, D. & NOLAN, G. (2003). Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 504-506
    • (2003) Science , vol.308 , pp. 504-506
    • Sachs, K.1    Perez, O.2    Pe'Er, D.3    Lauffenburger, D.4    Nolan, G.5
  • 21
    • 61749083981 scopus 로고    scopus 로고
    • Analysis of gene sets based on the underlying regulatory network
    • SHOJAIE, A. & MICHAILIDIS, G. (2009). Analysis of gene sets based on the underlying regulatory network. J. Comp. Biol. 16, 407-426
    • (2009) J. Comp. Biol. , vol.16 , pp. 407-426
    • Shojaie, A.1    Michailidis, G.2
  • 24
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • TSAMARDINOS, I., BROWN, L. & ALIFERIS, C. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65, 31-78.
    • (2006) Mach. Learn. , vol.65 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.2    Aliferis, C.3
  • 26
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • YUAN, M. & LIN, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika 94, 19-36.
    • (2007) Biometrika , vol.94 , pp. 19-36
    • Yuan, M.1    Lin, Y.2
  • 27
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Am. Statist. Assoc. 101, 1418-1429
    • (2006) J. Am. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.