메뉴 건너뛰기




Volumn 21, Issue 3, 2005, Pages 349-356

A Bayesian approach to reconstructing genetic regulatory networks with hidden factors

Author keywords

[No Author keywords available]

Indexed keywords

IONOMYCIN; MESSENGER RNA; REGULATOR PROTEIN;

EID: 13844253637     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/bti014     Document Type: Article
Times cited : (232)

References (29)
  • 1
    • 0025720735 scopus 로고
    • The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation
    • Angel,P. and Karin,M. (1991) The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim. Biophys. Acta., 1072, 129-157.
    • (1991) Biochim. Biophys. Acta , vol.1072 , pp. 129-157
    • Angel, P.1    Karin, M.2
  • 2
    • 0034595423 scopus 로고    scopus 로고
    • Cell cycle-dependent variations in c-Jun and Jun-b phosphorylation: A role in the control of cyclin D1 expression
    • Bakiri,L. (2000) Cell cycle-dependent variations in c-Jun and Jun-b phosphorylation: a role in the control of cyclin D1 expression. EMBO J., 19, 2056-2068.
    • (2000) EMBO J. , vol.19 , pp. 2056-2068
    • Bakiri, L.1
  • 3
    • 13844295342 scopus 로고    scopus 로고
    • The variational Bayesian EM algorithm for incomplete data: With application to scoring graphical model structures
    • Bernardo,J.M., Dawid,A.P., Berger,J.O., West,M., Heckerman,D. and Bayarri,M.J. (eds), Oxford University Press, Oxford
    • Beal,M.J. and Ghahramani,Z. (2003) The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. In Bernardo,J.M., Dawid,A.P., Berger,J.O., West,M., Heckerman,D. and Bayarri,M.J. (eds), Bayesian Statistics 7. Oxford University Press, Oxford, pp. 453-464.
    • (2003) Bayesian Statistics 7 , pp. 453-464
    • Beal, M.J.1    Ghahramani, Z.2
  • 4
    • 3543081155 scopus 로고    scopus 로고
    • Variational Algorithms for Approximate Bayesian Inference
    • PhD Thesis, Gatsby Computational Neuroscience Unit, University College London, UK
    • Beal,M.J. (2003) Variational Algorithms for Approximate Bayesian Inference. PhD Thesis, Gatsby Computational Neuroscience Unit, University College London, UK.
    • (2003)
    • Beal, M.J.1
  • 5
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on bias and variance
    • Bolstad,B., Irizarry,R., Astrand,M. and Speed,T. (2002) A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics, 19, 185-193.
    • (2002) Bioinformatics , vol.19 , pp. 185-193
    • Bolstad, B.1    Irizarry, R.2    Astrand, M.3    Speed, T.4
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster,A.P., Laird,N.M. and Rubin,D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B Met., 39, 1-38.
    • (1977) J. R. Stat. Soc. B Met. , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 8
    • 0032612220 scopus 로고    scopus 로고
    • Linear modeling of mRNA expression levels during CNS development and injury
    • D'Haeseleer,P., Wen,X., Fuhrman,S. and Somogyi,R. (1999) Linear modeling of mRNA expression levels during CNS development and injury. Pac. Symp. Biocomput., 3, 41-52.
    • (1999) Pac. Symp. Biocomput. , vol.3 , pp. 41-52
    • D'Haeseleer, P.1    Wen, X.2    Fuhrman, S.3    Somogyi, R.4
  • 9
    • 0000712567 scopus 로고
    • Bayesian model discrimination and Bayes factors for linear Gaussian state space models
    • Früwirth-Schnatter,S. (1995) Bayesian model discrimination and Bayes factors for linear Gaussian state space models. J. R. Stat. Soc.B, 57, 237-246.
    • (1995) J. R. Stat. Soc. B , vol.57 , pp. 237-246
    • Früwirth-Schnatter, S.1
  • 10
    • 84899003086 scopus 로고    scopus 로고
    • Propagation algorithms for variational Bayesian learning
    • Lean,T.K., Dietterich,T.G. and Tresp,V. (eds), MIT Press, Cambridge, MA
    • Ghahramani,Z. and Beal,M.J. (2001) Propagation algorithms for variational Bayesian learning. In Lean,T.K., Dietterich,T.G. and Tresp,V. (eds), Advances in Neural Information Processing Systems 13. MIT Press, Cambridge, MA, pp. 507-513.
    • (2001) Advances in Neural Information Processing Systems 13 , pp. 507-513
    • Ghahramani, Z.1    Beal, M.J.2
  • 13
    • 0000801240 scopus 로고    scopus 로고
    • Discovering regulatory and signaling circuits in molecular interaction networks
    • Ideker,T., Ozier,O., Schwikowski,B. and Siegel,A. (2002) Discovering regulatory and signaling circuits in molecular interaction networks. Bioinformatics, 18, S233.
    • (2002) Bioinformatics , vol.18
    • Ideker, T.1    Ozier, O.2    Schwikowski, B.3    Siegel, A.4
  • 16
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay,D.J.C. (1992) Bayesian interpolation. Neural Comput., 4, 415-447.
    • (1992) Neural Comput. , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 17
    • 0004158155 scopus 로고    scopus 로고
    • Modelling gene expression data using Dynamic Bayesian Networks
    • University of California, Berkeley, CA
    • Murphy,K. and Mian,S. (1999) Modelling gene expression data using Dynamic Bayesian Networks. Technical Report, University of California, Berkeley, CA.
    • (1999) Technical Report
    • Murphy, K.1    Mian, S.2
  • 18
    • 0034660640 scopus 로고    scopus 로고
    • JunB suppresses cell proliferation by transcriptional activation of p16INK4a expression
    • Passegu,E. and Wagner,E. (2000) JunB suppresses cell proliferation by transcriptional activation of p16INK4a expression. EMBO J., 19, 2969-2979.
    • (2000) EMBO J. , vol.19 , pp. 2969-2979
    • Passegu, E.1    Wagner, E.2
  • 21
    • 3142671295 scopus 로고    scopus 로고
    • Modeling genetic regulatory networks using gene expression profiling and state space models
    • Husmeier,D., Roberts,S. and Dybowski,R. (eds), Springer-Verlag, Berlin
    • Rangel,C., Angus,J., Ghahramani,Z. and Wild,D.L. (2004b) Modeling genetic regulatory networks using gene expression profiling and state space models. In Husmeier,D., Roberts,S. and Dybowski,R. (eds), Probabilistic Modelling in Bioinformatics and Medical Informatics. Springer-Verlag, Berlin, pp. 269-293
    • (2004) Probabilistic Modelling in Bioinformatics and Medical Informatics , pp. 269-293
    • Rangel, C.1    Angus, J.2    Ghahramani, Z.3    Wild, D.L.4
  • 23
    • 0038392724 scopus 로고    scopus 로고
    • Response delays and the structure of transcription networks
    • Rosenfeld,N. and Alon,U. (2003) Response delays and the structure of transcription networks. J. Mol. Biol., 329, 645-654.
    • (2003) J. Mol. Biol. , vol.329 , pp. 645-654
    • Rosenfeld, N.1    Alon, U.2
  • 24
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • Roweis,S. and Ghahramani,Z. (1999) A unifying review of linear Gaussian models. Neural Comput., 11, 305-345.
    • (1999) Neural Comput. , vol.11 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 25
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the EM algorithm
    • Shumway,R. and Stoffer,D. (1982) An approach to time series smoothing and forecasting using the EM algorithm. J. Time Ser. Anal. 3, 253-264.
    • (1982) J. Time Ser. Anal. , vol.3 , pp. 253-264
    • Shumway, R.1    Stoffer, D.2
  • 27
    • 0035060335 scopus 로고    scopus 로고
    • Life and death in the jungle
    • Weitzman,J.B. (2001) Life and death in the jungle. Trends Mol. Med., 7, 141-142.
    • (2001) Trends Mol. Med. , vol.7 , pp. 141-142
    • Weitzman, J.B.1
  • 28
    • 0033634878 scopus 로고    scopus 로고
    • JunD protects cells from p53-dependent senescence and apoptosis
    • Weitzman,J. (2000) JunD protects cells from p53-dependent senescence and apoptosis. Mol. Cell, 6, 1-20.
    • (2000) Mol. Cell , vol.6 , pp. 1-20
    • Weitzman, J.1
  • 29
    • 2442691914 scopus 로고    scopus 로고
    • Modeling gene expression from microarray expression data with state-space equations
    • Wu,F., Zhang,W. and Kusalik,A. (2004) Modeling gene expression from microarray expression data with state-space equations. Pac. Symp. Biocomput., 9, 581-592.
    • (2004) Pac. Symp. Biocomput. , vol.9 , pp. 581-592
    • Wu, F.1    Zhang, W.2    Kusalik, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.